timer-ep93xx.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. #include <linux/kernel.h>
  2. #include <linux/init.h>
  3. #include <linux/clocksource.h>
  4. #include <linux/clockchips.h>
  5. #include <linux/sched_clock.h>
  6. #include <linux/interrupt.h>
  7. #include <linux/irq.h>
  8. #include <linux/io.h>
  9. #include <asm/mach/time.h>
  10. #include "soc.h"
  11. /*************************************************************************
  12. * Timer handling for EP93xx
  13. *************************************************************************
  14. * The ep93xx has four internal timers. Timers 1, 2 (both 16 bit) and
  15. * 3 (32 bit) count down at 508 kHz, are self-reloading, and can generate
  16. * an interrupt on underflow. Timer 4 (40 bit) counts down at 983.04 kHz,
  17. * is free-running, and can't generate interrupts.
  18. *
  19. * The 508 kHz timers are ideal for use for the timer interrupt, as the
  20. * most common values of HZ divide 508 kHz nicely. We pick the 32 bit
  21. * timer (timer 3) to get as long sleep intervals as possible when using
  22. * CONFIG_NO_HZ.
  23. *
  24. * The higher clock rate of timer 4 makes it a better choice than the
  25. * other timers for use as clock source and for sched_clock(), providing
  26. * a stable 40 bit time base.
  27. *************************************************************************
  28. */
  29. #define EP93XX_TIMER_REG(x) (EP93XX_TIMER_BASE + (x))
  30. #define EP93XX_TIMER1_LOAD EP93XX_TIMER_REG(0x00)
  31. #define EP93XX_TIMER1_VALUE EP93XX_TIMER_REG(0x04)
  32. #define EP93XX_TIMER1_CONTROL EP93XX_TIMER_REG(0x08)
  33. #define EP93XX_TIMER123_CONTROL_ENABLE (1 << 7)
  34. #define EP93XX_TIMER123_CONTROL_MODE (1 << 6)
  35. #define EP93XX_TIMER123_CONTROL_CLKSEL (1 << 3)
  36. #define EP93XX_TIMER1_CLEAR EP93XX_TIMER_REG(0x0c)
  37. #define EP93XX_TIMER2_LOAD EP93XX_TIMER_REG(0x20)
  38. #define EP93XX_TIMER2_VALUE EP93XX_TIMER_REG(0x24)
  39. #define EP93XX_TIMER2_CONTROL EP93XX_TIMER_REG(0x28)
  40. #define EP93XX_TIMER2_CLEAR EP93XX_TIMER_REG(0x2c)
  41. #define EP93XX_TIMER4_VALUE_LOW EP93XX_TIMER_REG(0x60)
  42. #define EP93XX_TIMER4_VALUE_HIGH EP93XX_TIMER_REG(0x64)
  43. #define EP93XX_TIMER4_VALUE_HIGH_ENABLE (1 << 8)
  44. #define EP93XX_TIMER3_LOAD EP93XX_TIMER_REG(0x80)
  45. #define EP93XX_TIMER3_VALUE EP93XX_TIMER_REG(0x84)
  46. #define EP93XX_TIMER3_CONTROL EP93XX_TIMER_REG(0x88)
  47. #define EP93XX_TIMER3_CLEAR EP93XX_TIMER_REG(0x8c)
  48. #define EP93XX_TIMER123_RATE 508469
  49. #define EP93XX_TIMER4_RATE 983040
  50. static u64 notrace ep93xx_read_sched_clock(void)
  51. {
  52. u64 ret;
  53. ret = readl(EP93XX_TIMER4_VALUE_LOW);
  54. ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
  55. return ret;
  56. }
  57. cycle_t ep93xx_clocksource_read(struct clocksource *c)
  58. {
  59. u64 ret;
  60. ret = readl(EP93XX_TIMER4_VALUE_LOW);
  61. ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
  62. return (cycle_t) ret;
  63. }
  64. static int ep93xx_clkevt_set_next_event(unsigned long next,
  65. struct clock_event_device *evt)
  66. {
  67. /* Default mode: periodic, off, 508 kHz */
  68. u32 tmode = EP93XX_TIMER123_CONTROL_MODE |
  69. EP93XX_TIMER123_CONTROL_CLKSEL;
  70. /* Clear timer */
  71. writel(tmode, EP93XX_TIMER3_CONTROL);
  72. /* Set next event */
  73. writel(next, EP93XX_TIMER3_LOAD);
  74. writel(tmode | EP93XX_TIMER123_CONTROL_ENABLE,
  75. EP93XX_TIMER3_CONTROL);
  76. return 0;
  77. }
  78. static int ep93xx_clkevt_shutdown(struct clock_event_device *evt)
  79. {
  80. /* Disable timer */
  81. writel(0, EP93XX_TIMER3_CONTROL);
  82. return 0;
  83. }
  84. static struct clock_event_device ep93xx_clockevent = {
  85. .name = "timer1",
  86. .features = CLOCK_EVT_FEAT_ONESHOT,
  87. .set_state_shutdown = ep93xx_clkevt_shutdown,
  88. .set_state_oneshot = ep93xx_clkevt_shutdown,
  89. .tick_resume = ep93xx_clkevt_shutdown,
  90. .set_next_event = ep93xx_clkevt_set_next_event,
  91. .rating = 300,
  92. };
  93. static irqreturn_t ep93xx_timer_interrupt(int irq, void *dev_id)
  94. {
  95. struct clock_event_device *evt = dev_id;
  96. /* Writing any value clears the timer interrupt */
  97. writel(1, EP93XX_TIMER3_CLEAR);
  98. evt->event_handler(evt);
  99. return IRQ_HANDLED;
  100. }
  101. static struct irqaction ep93xx_timer_irq = {
  102. .name = "ep93xx timer",
  103. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  104. .handler = ep93xx_timer_interrupt,
  105. .dev_id = &ep93xx_clockevent,
  106. };
  107. void __init ep93xx_timer_init(void)
  108. {
  109. /* Enable and register clocksource and sched_clock on timer 4 */
  110. writel(EP93XX_TIMER4_VALUE_HIGH_ENABLE,
  111. EP93XX_TIMER4_VALUE_HIGH);
  112. clocksource_mmio_init(NULL, "timer4",
  113. EP93XX_TIMER4_RATE, 200, 40,
  114. ep93xx_clocksource_read);
  115. sched_clock_register(ep93xx_read_sched_clock, 40,
  116. EP93XX_TIMER4_RATE);
  117. /* Set up clockevent on timer 3 */
  118. setup_irq(IRQ_EP93XX_TIMER3, &ep93xx_timer_irq);
  119. clockevents_config_and_register(&ep93xx_clockevent,
  120. EP93XX_TIMER123_RATE,
  121. 1,
  122. 0xffffffffU);
  123. }