123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- /*
- * Copyright (C) 2014-2015 Broadcom Corporation
- * Copyright 2014 Linaro Limited
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation version 2.
- *
- * This program is distributed "as is" WITHOUT ANY WARRANTY of any
- * kind, whether express or implied; without even the implied warranty
- * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
- #include <linux/cpumask.h>
- #include <linux/delay.h>
- #include <linux/errno.h>
- #include <linux/init.h>
- #include <linux/io.h>
- #include <linux/jiffies.h>
- #include <linux/of.h>
- #include <linux/of_address.h>
- #include <linux/sched.h>
- #include <linux/smp.h>
- #include <asm/cacheflush.h>
- #include <asm/smp.h>
- #include <asm/smp_plat.h>
- #include <asm/smp_scu.h>
- /* Size of mapped Cortex A9 SCU address space */
- #define CORTEX_A9_SCU_SIZE 0x58
- #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
- #define BOOT_ADDR_CPUID_MASK 0x3
- /* Name of device node property defining secondary boot register location */
- #define OF_SECONDARY_BOOT "secondary-boot-reg"
- #define MPIDR_CPUID_BITMASK 0x3
- /*
- * Enable the Cortex A9 Snoop Control Unit
- *
- * By the time this is called we already know there are multiple
- * cores present. We assume we're running on a Cortex A9 processor,
- * so any trouble getting the base address register or getting the
- * SCU base is a problem.
- *
- * Return 0 if successful or an error code otherwise.
- */
- static int __init scu_a9_enable(void)
- {
- unsigned long config_base;
- void __iomem *scu_base;
- if (!scu_a9_has_base()) {
- pr_err("no configuration base address register!\n");
- return -ENXIO;
- }
- /* Config base address register value is zero for uniprocessor */
- config_base = scu_a9_get_base();
- if (!config_base) {
- pr_err("hardware reports only one core\n");
- return -ENOENT;
- }
- scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
- if (!scu_base) {
- pr_err("failed to remap config base (%lu/%u) for SCU\n",
- config_base, CORTEX_A9_SCU_SIZE);
- return -ENOMEM;
- }
- scu_enable(scu_base);
- iounmap(scu_base); /* That's the last we'll need of this */
- return 0;
- }
- static u32 secondary_boot_addr_for(unsigned int cpu)
- {
- u32 secondary_boot_addr = 0;
- struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
- if (!cpu_node) {
- pr_err("Failed to find device tree node for CPU%u\n", cpu);
- return 0;
- }
- if (of_property_read_u32(cpu_node,
- OF_SECONDARY_BOOT,
- &secondary_boot_addr))
- pr_err("required secondary boot register not specified for CPU%u\n",
- cpu);
- of_node_put(cpu_node);
- return secondary_boot_addr;
- }
- static int nsp_write_lut(unsigned int cpu)
- {
- void __iomem *sku_rom_lut;
- phys_addr_t secondary_startup_phy;
- const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
- if (!secondary_boot_addr)
- return -EINVAL;
- sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
- sizeof(phys_addr_t));
- if (!sku_rom_lut) {
- pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
- return -ENOMEM;
- }
- secondary_startup_phy = virt_to_phys(secondary_startup);
- BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
- writel_relaxed(secondary_startup_phy, sku_rom_lut);
- /* Ensure the write is visible to the secondary core */
- smp_wmb();
- iounmap(sku_rom_lut);
- return 0;
- }
- static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
- {
- const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
- /* Enable the SCU on Cortex A9 based SoCs */
- if (scu_a9_enable()) {
- /* Update the CPU present map to reflect uniprocessor mode */
- pr_warn("failed to enable A9 SCU - disabling SMP\n");
- init_cpu_present(&only_cpu_0);
- }
- }
- /*
- * The ROM code has the secondary cores looping, waiting for an event.
- * When an event occurs each core examines the bottom two bits of the
- * secondary boot register. When a core finds those bits contain its
- * own core id, it performs initialization, including computing its boot
- * address by clearing the boot register value's bottom two bits. The
- * core signals that it is beginning its execution by writing its boot
- * address back to the secondary boot register, and finally jumps to
- * that address.
- *
- * So to start a core executing we need to:
- * - Encode the (hardware) CPU id with the bottom bits of the secondary
- * start address.
- * - Write that value into the secondary boot register.
- * - Generate an event to wake up the secondary CPU(s).
- * - Wait for the secondary boot register to be re-written, which
- * indicates the secondary core has started.
- */
- static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
- {
- void __iomem *boot_reg;
- phys_addr_t boot_func;
- u64 start_clock;
- u32 cpu_id;
- u32 boot_val;
- bool timeout = false;
- const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
- cpu_id = cpu_logical_map(cpu);
- if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
- pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
- return -EINVAL;
- }
- if (!secondary_boot_addr)
- return -EINVAL;
- boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
- sizeof(phys_addr_t));
- if (!boot_reg) {
- pr_err("unable to map boot register for cpu %u\n", cpu_id);
- return -ENOMEM;
- }
- /*
- * Secondary cores will start in secondary_startup(),
- * defined in "arch/arm/kernel/head.S"
- */
- boot_func = virt_to_phys(secondary_startup);
- BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
- BUG_ON(boot_func > (phys_addr_t)U32_MAX);
- /* The core to start is encoded in the low bits */
- boot_val = (u32)boot_func | cpu_id;
- writel_relaxed(boot_val, boot_reg);
- sev();
- /* The low bits will be cleared once the core has started */
- start_clock = local_clock();
- while (!timeout && readl_relaxed(boot_reg) == boot_val)
- timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
- iounmap(boot_reg);
- if (!timeout)
- return 0;
- pr_err("timeout waiting for cpu %u to start\n", cpu_id);
- return -ENXIO;
- }
- /* Cluster Dormant Control command to bring CPU into a running state */
- #define CDC_CMD 6
- #define CDC_CMD_OFFSET 0
- #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
- /*
- * BCM23550 has a Cluster Dormant Control block that keeps the core in
- * idle state. A command needs to be sent to the block to bring the CPU
- * into running state.
- */
- static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
- {
- void __iomem *cdc_base;
- struct device_node *dn;
- char *name;
- int ret;
- /* Make sure a CDC node exists before booting the
- * secondary core.
- */
- name = "brcm,bcm23550-cdc";
- dn = of_find_compatible_node(NULL, NULL, name);
- if (!dn) {
- pr_err("unable to find cdc node\n");
- return -ENODEV;
- }
- cdc_base = of_iomap(dn, 0);
- of_node_put(dn);
- if (!cdc_base) {
- pr_err("unable to remap cdc base register\n");
- return -ENOMEM;
- }
- /* Boot the secondary core */
- ret = kona_boot_secondary(cpu, idle);
- if (ret)
- goto out;
- /* Bring this CPU to RUN state so that nIRQ nFIQ
- * signals are unblocked.
- */
- writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
- out:
- iounmap(cdc_base);
- return ret;
- }
- static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
- {
- int ret;
- /*
- * After wake up, secondary core branches to the startup
- * address programmed at SKU ROM LUT location.
- */
- ret = nsp_write_lut(cpu);
- if (ret) {
- pr_err("unable to write startup addr to SKU ROM LUT\n");
- goto out;
- }
- /* Send a CPU wakeup interrupt to the secondary core */
- arch_send_wakeup_ipi_mask(cpumask_of(cpu));
- out:
- return ret;
- }
- static const struct smp_operations kona_smp_ops __initconst = {
- .smp_prepare_cpus = bcm_smp_prepare_cpus,
- .smp_boot_secondary = kona_boot_secondary,
- };
- CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
- &kona_smp_ops);
- static const struct smp_operations bcm23550_smp_ops __initconst = {
- .smp_boot_secondary = bcm23550_boot_secondary,
- };
- CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
- &bcm23550_smp_ops);
- static const struct smp_operations nsp_smp_ops __initconst = {
- .smp_prepare_cpus = bcm_smp_prepare_cpus,
- .smp_boot_secondary = nsp_boot_secondary,
- };
- CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
|