pgtable.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. /*
  2. * arch/arm/include/asm/pgtable.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASMARM_PGTABLE_H
  11. #define _ASMARM_PGTABLE_H
  12. #include <linux/const.h>
  13. #include <asm/proc-fns.h>
  14. #ifndef CONFIG_MMU
  15. #include <asm-generic/4level-fixup.h>
  16. #include <asm/pgtable-nommu.h>
  17. #else
  18. #include <asm-generic/pgtable-nopud.h>
  19. #include <asm/memory.h>
  20. #include <asm/pgtable-hwdef.h>
  21. #include <asm/tlbflush.h>
  22. #ifdef CONFIG_ARM_LPAE
  23. #include <asm/pgtable-3level.h>
  24. #else
  25. #include <asm/pgtable-2level.h>
  26. #endif
  27. /*
  28. * Just any arbitrary offset to the start of the vmalloc VM area: the
  29. * current 8MB value just means that there will be a 8MB "hole" after the
  30. * physical memory until the kernel virtual memory starts. That means that
  31. * any out-of-bounds memory accesses will hopefully be caught.
  32. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  33. * area for the same reason. ;)
  34. */
  35. #define VMALLOC_OFFSET (8*1024*1024)
  36. #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  37. #define VMALLOC_END 0xff800000UL
  38. #define LIBRARY_TEXT_START 0x0c000000
  39. #ifndef __ASSEMBLY__
  40. extern void __pte_error(const char *file, int line, pte_t);
  41. extern void __pmd_error(const char *file, int line, pmd_t);
  42. extern void __pgd_error(const char *file, int line, pgd_t);
  43. #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
  44. #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
  45. #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
  46. /*
  47. * This is the lowest virtual address we can permit any user space
  48. * mapping to be mapped at. This is particularly important for
  49. * non-high vector CPUs.
  50. */
  51. #define FIRST_USER_ADDRESS (PAGE_SIZE * 2)
  52. /*
  53. * Use TASK_SIZE as the ceiling argument for free_pgtables() and
  54. * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
  55. * page shared between user and kernel).
  56. */
  57. #ifdef CONFIG_ARM_LPAE
  58. #define USER_PGTABLES_CEILING TASK_SIZE
  59. #endif
  60. /*
  61. * The pgprot_* and protection_map entries will be fixed up in runtime
  62. * to include the cachable and bufferable bits based on memory policy,
  63. * as well as any architecture dependent bits like global/ASID and SMP
  64. * shared mapping bits.
  65. */
  66. #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
  67. extern pgprot_t pgprot_user;
  68. extern pgprot_t pgprot_kernel;
  69. extern pgprot_t pgprot_hyp_device;
  70. extern pgprot_t pgprot_s2;
  71. extern pgprot_t pgprot_s2_device;
  72. #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
  73. #define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
  74. #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
  75. #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
  76. #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  77. #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  78. #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  79. #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  80. #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
  81. #define PAGE_KERNEL_EXEC pgprot_kernel
  82. #define PAGE_HYP _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_XN)
  83. #define PAGE_HYP_EXEC _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
  84. #define PAGE_HYP_RO _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
  85. #define PAGE_HYP_DEVICE _MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
  86. #define PAGE_S2 _MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
  87. #define PAGE_S2_DEVICE _MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY)
  88. #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
  89. #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
  90. #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
  91. #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  92. #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  93. #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  94. #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  95. #define __pgprot_modify(prot,mask,bits) \
  96. __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
  97. #define pgprot_noncached(prot) \
  98. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
  99. #define pgprot_writecombine(prot) \
  100. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
  101. #define pgprot_stronglyordered(prot) \
  102. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
  103. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  104. #define pgprot_dmacoherent(prot) \
  105. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
  106. #define __HAVE_PHYS_MEM_ACCESS_PROT
  107. struct file;
  108. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  109. unsigned long size, pgprot_t vma_prot);
  110. #else
  111. #define pgprot_dmacoherent(prot) \
  112. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
  113. #endif
  114. #endif /* __ASSEMBLY__ */
  115. /*
  116. * The table below defines the page protection levels that we insert into our
  117. * Linux page table version. These get translated into the best that the
  118. * architecture can perform. Note that on most ARM hardware:
  119. * 1) We cannot do execute protection
  120. * 2) If we could do execute protection, then read is implied
  121. * 3) write implies read permissions
  122. */
  123. #define __P000 __PAGE_NONE
  124. #define __P001 __PAGE_READONLY
  125. #define __P010 __PAGE_COPY
  126. #define __P011 __PAGE_COPY
  127. #define __P100 __PAGE_READONLY_EXEC
  128. #define __P101 __PAGE_READONLY_EXEC
  129. #define __P110 __PAGE_COPY_EXEC
  130. #define __P111 __PAGE_COPY_EXEC
  131. #define __S000 __PAGE_NONE
  132. #define __S001 __PAGE_READONLY
  133. #define __S010 __PAGE_SHARED
  134. #define __S011 __PAGE_SHARED
  135. #define __S100 __PAGE_READONLY_EXEC
  136. #define __S101 __PAGE_READONLY_EXEC
  137. #define __S110 __PAGE_SHARED_EXEC
  138. #define __S111 __PAGE_SHARED_EXEC
  139. #ifndef __ASSEMBLY__
  140. /*
  141. * ZERO_PAGE is a global shared page that is always zero: used
  142. * for zero-mapped memory areas etc..
  143. */
  144. extern struct page *empty_zero_page;
  145. #define ZERO_PAGE(vaddr) (empty_zero_page)
  146. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  147. /* to find an entry in a page-table-directory */
  148. #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
  149. #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
  150. /* to find an entry in a kernel page-table-directory */
  151. #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
  152. #define pmd_none(pmd) (!pmd_val(pmd))
  153. static inline pte_t *pmd_page_vaddr(pmd_t pmd)
  154. {
  155. return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
  156. }
  157. #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
  158. #ifndef CONFIG_HIGHPTE
  159. #define __pte_map(pmd) pmd_page_vaddr(*(pmd))
  160. #define __pte_unmap(pte) do { } while (0)
  161. #else
  162. #define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
  163. #define __pte_unmap(pte) kunmap_atomic(pte)
  164. #endif
  165. #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  166. #define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
  167. #define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
  168. #define pte_unmap(pte) __pte_unmap(pte)
  169. #define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
  170. #define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
  171. #define pte_page(pte) pfn_to_page(pte_pfn(pte))
  172. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
  173. #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
  174. #define pte_isset(pte, val) ((u32)(val) == (val) ? pte_val(pte) & (val) \
  175. : !!(pte_val(pte) & (val)))
  176. #define pte_isclear(pte, val) (!(pte_val(pte) & (val)))
  177. #define pte_none(pte) (!pte_val(pte))
  178. #define pte_present(pte) (pte_isset((pte), L_PTE_PRESENT))
  179. #define pte_valid(pte) (pte_isset((pte), L_PTE_VALID))
  180. #define pte_accessible(mm, pte) (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
  181. #define pte_write(pte) (pte_isclear((pte), L_PTE_RDONLY))
  182. #define pte_dirty(pte) (pte_isset((pte), L_PTE_DIRTY))
  183. #define pte_young(pte) (pte_isset((pte), L_PTE_YOUNG))
  184. #define pte_exec(pte) (pte_isclear((pte), L_PTE_XN))
  185. #define pte_valid_user(pte) \
  186. (pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
  187. #if __LINUX_ARM_ARCH__ < 6
  188. static inline void __sync_icache_dcache(pte_t pteval)
  189. {
  190. }
  191. #else
  192. extern void __sync_icache_dcache(pte_t pteval);
  193. #endif
  194. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  195. pte_t *ptep, pte_t pteval)
  196. {
  197. unsigned long ext = 0;
  198. if (addr < TASK_SIZE && pte_valid_user(pteval)) {
  199. if (!pte_special(pteval))
  200. __sync_icache_dcache(pteval);
  201. ext |= PTE_EXT_NG;
  202. }
  203. set_pte_ext(ptep, pteval, ext);
  204. }
  205. static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
  206. {
  207. pte_val(pte) &= ~pgprot_val(prot);
  208. return pte;
  209. }
  210. static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
  211. {
  212. pte_val(pte) |= pgprot_val(prot);
  213. return pte;
  214. }
  215. static inline pte_t pte_wrprotect(pte_t pte)
  216. {
  217. return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
  218. }
  219. static inline pte_t pte_mkwrite(pte_t pte)
  220. {
  221. return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
  222. }
  223. static inline pte_t pte_mkclean(pte_t pte)
  224. {
  225. return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
  226. }
  227. static inline pte_t pte_mkdirty(pte_t pte)
  228. {
  229. return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
  230. }
  231. static inline pte_t pte_mkold(pte_t pte)
  232. {
  233. return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
  234. }
  235. static inline pte_t pte_mkyoung(pte_t pte)
  236. {
  237. return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
  238. }
  239. static inline pte_t pte_mkexec(pte_t pte)
  240. {
  241. return clear_pte_bit(pte, __pgprot(L_PTE_XN));
  242. }
  243. static inline pte_t pte_mknexec(pte_t pte)
  244. {
  245. return set_pte_bit(pte, __pgprot(L_PTE_XN));
  246. }
  247. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  248. {
  249. const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
  250. L_PTE_NONE | L_PTE_VALID;
  251. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  252. return pte;
  253. }
  254. /*
  255. * Encode and decode a swap entry. Swap entries are stored in the Linux
  256. * page tables as follows:
  257. *
  258. * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
  259. * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  260. * <--------------- offset ------------------------> < type -> 0 0
  261. *
  262. * This gives us up to 31 swap files and 128GB per swap file. Note that
  263. * the offset field is always non-zero.
  264. */
  265. #define __SWP_TYPE_SHIFT 2
  266. #define __SWP_TYPE_BITS 5
  267. #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
  268. #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
  269. #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
  270. #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
  271. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
  272. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  273. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  274. /*
  275. * It is an error for the kernel to have more swap files than we can
  276. * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
  277. * is increased beyond what we presently support.
  278. */
  279. #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
  280. /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
  281. /* FIXME: this is not correct */
  282. #define kern_addr_valid(addr) (1)
  283. #include <asm-generic/pgtable.h>
  284. /*
  285. * We provide our own arch_get_unmapped_area to cope with VIPT caches.
  286. */
  287. #define HAVE_ARCH_UNMAPPED_AREA
  288. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  289. #define pgtable_cache_init() do { } while (0)
  290. #endif /* !__ASSEMBLY__ */
  291. #endif /* CONFIG_MMU */
  292. #endif /* _ASMARM_PGTABLE_H */