123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- /*
- * Copyright 1995, Russell King.
- * Various bits and pieces copyrights include:
- * Linus Torvalds (test_bit).
- * Big endian support: Copyright 2001, Nicolas Pitre
- * reworked by rmk.
- *
- * bit 0 is the LSB of an "unsigned long" quantity.
- *
- * Please note that the code in this file should never be included
- * from user space. Many of these are not implemented in assembler
- * since they would be too costly. Also, they require privileged
- * instructions (which are not available from user mode) to ensure
- * that they are atomic.
- */
- #ifndef __ASM_ARM_BITOPS_H
- #define __ASM_ARM_BITOPS_H
- #ifdef __KERNEL__
- #ifndef _LINUX_BITOPS_H
- #error only <linux/bitops.h> can be included directly
- #endif
- #include <linux/compiler.h>
- #include <linux/irqflags.h>
- #include <asm/barrier.h>
- /*
- * These functions are the basis of our bit ops.
- *
- * First, the atomic bitops. These use native endian.
- */
- static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
- {
- unsigned long flags;
- unsigned long mask = BIT_MASK(bit);
- p += BIT_WORD(bit);
- raw_local_irq_save(flags);
- *p |= mask;
- raw_local_irq_restore(flags);
- }
- static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
- {
- unsigned long flags;
- unsigned long mask = BIT_MASK(bit);
- p += BIT_WORD(bit);
- raw_local_irq_save(flags);
- *p &= ~mask;
- raw_local_irq_restore(flags);
- }
- static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
- {
- unsigned long flags;
- unsigned long mask = BIT_MASK(bit);
- p += BIT_WORD(bit);
- raw_local_irq_save(flags);
- *p ^= mask;
- raw_local_irq_restore(flags);
- }
- static inline int
- ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
- {
- unsigned long flags;
- unsigned int res;
- unsigned long mask = BIT_MASK(bit);
- p += BIT_WORD(bit);
- raw_local_irq_save(flags);
- res = *p;
- *p = res | mask;
- raw_local_irq_restore(flags);
- return (res & mask) != 0;
- }
- static inline int
- ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
- {
- unsigned long flags;
- unsigned int res;
- unsigned long mask = BIT_MASK(bit);
- p += BIT_WORD(bit);
- raw_local_irq_save(flags);
- res = *p;
- *p = res & ~mask;
- raw_local_irq_restore(flags);
- return (res & mask) != 0;
- }
- static inline int
- ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
- {
- unsigned long flags;
- unsigned int res;
- unsigned long mask = BIT_MASK(bit);
- p += BIT_WORD(bit);
- raw_local_irq_save(flags);
- res = *p;
- *p = res ^ mask;
- raw_local_irq_restore(flags);
- return (res & mask) != 0;
- }
- #include <asm-generic/bitops/non-atomic.h>
- /*
- * A note about Endian-ness.
- * -------------------------
- *
- * When the ARM is put into big endian mode via CR15, the processor
- * merely swaps the order of bytes within words, thus:
- *
- * ------------ physical data bus bits -----------
- * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
- * little byte 3 byte 2 byte 1 byte 0
- * big byte 0 byte 1 byte 2 byte 3
- *
- * This means that reading a 32-bit word at address 0 returns the same
- * value irrespective of the endian mode bit.
- *
- * Peripheral devices should be connected with the data bus reversed in
- * "Big Endian" mode. ARM Application Note 61 is applicable, and is
- * available from http://www.arm.com/.
- *
- * The following assumes that the data bus connectivity for big endian
- * mode has been followed.
- *
- * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
- */
- /*
- * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
- */
- extern void _set_bit(int nr, volatile unsigned long * p);
- extern void _clear_bit(int nr, volatile unsigned long * p);
- extern void _change_bit(int nr, volatile unsigned long * p);
- extern int _test_and_set_bit(int nr, volatile unsigned long * p);
- extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
- extern int _test_and_change_bit(int nr, volatile unsigned long * p);
- /*
- * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
- */
- extern int _find_first_zero_bit_le(const void * p, unsigned size);
- extern int _find_next_zero_bit_le(const void * p, int size, int offset);
- extern int _find_first_bit_le(const unsigned long *p, unsigned size);
- extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
- /*
- * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
- */
- extern int _find_first_zero_bit_be(const void * p, unsigned size);
- extern int _find_next_zero_bit_be(const void * p, int size, int offset);
- extern int _find_first_bit_be(const unsigned long *p, unsigned size);
- extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
- #ifndef CONFIG_SMP
- /*
- * The __* form of bitops are non-atomic and may be reordered.
- */
- #define ATOMIC_BITOP(name,nr,p) \
- (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
- #else
- #define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
- #endif
- /*
- * Native endian atomic definitions.
- */
- #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
- #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
- #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
- #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
- #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
- #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
- #ifndef __ARMEB__
- /*
- * These are the little endian, atomic definitions.
- */
- #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
- #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
- #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
- #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
- #else
- /*
- * These are the big endian, atomic definitions.
- */
- #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
- #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
- #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
- #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
- #endif
- #if __LINUX_ARM_ARCH__ < 5
- #include <asm-generic/bitops/ffz.h>
- #include <asm-generic/bitops/__fls.h>
- #include <asm-generic/bitops/__ffs.h>
- #include <asm-generic/bitops/fls.h>
- #include <asm-generic/bitops/ffs.h>
- #else
- static inline int constant_fls(int x)
- {
- int r = 32;
- if (!x)
- return 0;
- if (!(x & 0xffff0000u)) {
- x <<= 16;
- r -= 16;
- }
- if (!(x & 0xff000000u)) {
- x <<= 8;
- r -= 8;
- }
- if (!(x & 0xf0000000u)) {
- x <<= 4;
- r -= 4;
- }
- if (!(x & 0xc0000000u)) {
- x <<= 2;
- r -= 2;
- }
- if (!(x & 0x80000000u)) {
- x <<= 1;
- r -= 1;
- }
- return r;
- }
- /*
- * On ARMv5 and above those functions can be implemented around the
- * clz instruction for much better code efficiency. __clz returns
- * the number of leading zeros, zero input will return 32, and
- * 0x80000000 will return 0.
- */
- static inline unsigned int __clz(unsigned int x)
- {
- unsigned int ret;
- asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
- return ret;
- }
- /*
- * fls() returns zero if the input is zero, otherwise returns the bit
- * position of the last set bit, where the LSB is 1 and MSB is 32.
- */
- static inline int fls(int x)
- {
- if (__builtin_constant_p(x))
- return constant_fls(x);
- return 32 - __clz(x);
- }
- /*
- * __fls() returns the bit position of the last bit set, where the
- * LSB is 0 and MSB is 31. Zero input is undefined.
- */
- static inline unsigned long __fls(unsigned long x)
- {
- return fls(x) - 1;
- }
- /*
- * ffs() returns zero if the input was zero, otherwise returns the bit
- * position of the first set bit, where the LSB is 1 and MSB is 32.
- */
- static inline int ffs(int x)
- {
- return fls(x & -x);
- }
- /*
- * __ffs() returns the bit position of the first bit set, where the
- * LSB is 0 and MSB is 31. Zero input is undefined.
- */
- static inline unsigned long __ffs(unsigned long x)
- {
- return ffs(x) - 1;
- }
- #define ffz(x) __ffs( ~(x) )
- #endif
- #include <asm-generic/bitops/fls64.h>
- #include <asm-generic/bitops/sched.h>
- #include <asm-generic/bitops/hweight.h>
- #include <asm-generic/bitops/lock.h>
- #ifdef __ARMEB__
- static inline int find_first_zero_bit_le(const void *p, unsigned size)
- {
- return _find_first_zero_bit_le(p, size);
- }
- #define find_first_zero_bit_le find_first_zero_bit_le
- static inline int find_next_zero_bit_le(const void *p, int size, int offset)
- {
- return _find_next_zero_bit_le(p, size, offset);
- }
- #define find_next_zero_bit_le find_next_zero_bit_le
- static inline int find_next_bit_le(const void *p, int size, int offset)
- {
- return _find_next_bit_le(p, size, offset);
- }
- #define find_next_bit_le find_next_bit_le
- #endif
- #include <asm-generic/bitops/le.h>
- /*
- * Ext2 is defined to use little-endian byte ordering.
- */
- #include <asm-generic/bitops/ext2-atomic-setbit.h>
- #endif /* __KERNEL__ */
- #endif /* _ARM_BITOPS_H */
|