rdma.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
  1. /*
  2. * Copyright (c) 2007 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/pagemap.h>
  34. #include <linux/slab.h>
  35. #include <linux/rbtree.h>
  36. #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
  37. #include "rds.h"
  38. /*
  39. * XXX
  40. * - build with sparse
  41. * - should we detect duplicate keys on a socket? hmm.
  42. * - an rdma is an mlock, apply rlimit?
  43. */
  44. /*
  45. * get the number of pages by looking at the page indices that the start and
  46. * end addresses fall in.
  47. *
  48. * Returns 0 if the vec is invalid. It is invalid if the number of bytes
  49. * causes the address to wrap or overflows an unsigned int. This comes
  50. * from being stored in the 'length' member of 'struct scatterlist'.
  51. */
  52. static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
  53. {
  54. if ((vec->addr + vec->bytes <= vec->addr) ||
  55. (vec->bytes > (u64)UINT_MAX))
  56. return 0;
  57. return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
  58. (vec->addr >> PAGE_SHIFT);
  59. }
  60. static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
  61. struct rds_mr *insert)
  62. {
  63. struct rb_node **p = &root->rb_node;
  64. struct rb_node *parent = NULL;
  65. struct rds_mr *mr;
  66. while (*p) {
  67. parent = *p;
  68. mr = rb_entry(parent, struct rds_mr, r_rb_node);
  69. if (key < mr->r_key)
  70. p = &(*p)->rb_left;
  71. else if (key > mr->r_key)
  72. p = &(*p)->rb_right;
  73. else
  74. return mr;
  75. }
  76. if (insert) {
  77. rb_link_node(&insert->r_rb_node, parent, p);
  78. rb_insert_color(&insert->r_rb_node, root);
  79. atomic_inc(&insert->r_refcount);
  80. }
  81. return NULL;
  82. }
  83. /*
  84. * Destroy the transport-specific part of a MR.
  85. */
  86. static void rds_destroy_mr(struct rds_mr *mr)
  87. {
  88. struct rds_sock *rs = mr->r_sock;
  89. void *trans_private = NULL;
  90. unsigned long flags;
  91. rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
  92. mr->r_key, atomic_read(&mr->r_refcount));
  93. if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
  94. return;
  95. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  96. if (!RB_EMPTY_NODE(&mr->r_rb_node))
  97. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  98. trans_private = mr->r_trans_private;
  99. mr->r_trans_private = NULL;
  100. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  101. if (trans_private)
  102. mr->r_trans->free_mr(trans_private, mr->r_invalidate);
  103. }
  104. void __rds_put_mr_final(struct rds_mr *mr)
  105. {
  106. rds_destroy_mr(mr);
  107. kfree(mr);
  108. }
  109. /*
  110. * By the time this is called we can't have any more ioctls called on
  111. * the socket so we don't need to worry about racing with others.
  112. */
  113. void rds_rdma_drop_keys(struct rds_sock *rs)
  114. {
  115. struct rds_mr *mr;
  116. struct rb_node *node;
  117. unsigned long flags;
  118. /* Release any MRs associated with this socket */
  119. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  120. while ((node = rb_first(&rs->rs_rdma_keys))) {
  121. mr = container_of(node, struct rds_mr, r_rb_node);
  122. if (mr->r_trans == rs->rs_transport)
  123. mr->r_invalidate = 0;
  124. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  125. RB_CLEAR_NODE(&mr->r_rb_node);
  126. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  127. rds_destroy_mr(mr);
  128. rds_mr_put(mr);
  129. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  130. }
  131. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  132. if (rs->rs_transport && rs->rs_transport->flush_mrs)
  133. rs->rs_transport->flush_mrs();
  134. }
  135. /*
  136. * Helper function to pin user pages.
  137. */
  138. static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
  139. struct page **pages, int write)
  140. {
  141. int ret;
  142. ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
  143. if (ret >= 0 && ret < nr_pages) {
  144. while (ret--)
  145. put_page(pages[ret]);
  146. ret = -EFAULT;
  147. }
  148. return ret;
  149. }
  150. static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
  151. u64 *cookie_ret, struct rds_mr **mr_ret)
  152. {
  153. struct rds_mr *mr = NULL, *found;
  154. unsigned int nr_pages;
  155. struct page **pages = NULL;
  156. struct scatterlist *sg;
  157. void *trans_private;
  158. unsigned long flags;
  159. rds_rdma_cookie_t cookie;
  160. unsigned int nents;
  161. long i;
  162. int ret;
  163. if (rs->rs_bound_addr == 0 || !rs->rs_transport) {
  164. ret = -ENOTCONN; /* XXX not a great errno */
  165. goto out;
  166. }
  167. if (!rs->rs_transport->get_mr) {
  168. ret = -EOPNOTSUPP;
  169. goto out;
  170. }
  171. nr_pages = rds_pages_in_vec(&args->vec);
  172. if (nr_pages == 0) {
  173. ret = -EINVAL;
  174. goto out;
  175. }
  176. /* Restrict the size of mr irrespective of underlying transport
  177. * To account for unaligned mr regions, subtract one from nr_pages
  178. */
  179. if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
  180. ret = -EMSGSIZE;
  181. goto out;
  182. }
  183. rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
  184. args->vec.addr, args->vec.bytes, nr_pages);
  185. /* XXX clamp nr_pages to limit the size of this alloc? */
  186. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  187. if (!pages) {
  188. ret = -ENOMEM;
  189. goto out;
  190. }
  191. mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
  192. if (!mr) {
  193. ret = -ENOMEM;
  194. goto out;
  195. }
  196. atomic_set(&mr->r_refcount, 1);
  197. RB_CLEAR_NODE(&mr->r_rb_node);
  198. mr->r_trans = rs->rs_transport;
  199. mr->r_sock = rs;
  200. if (args->flags & RDS_RDMA_USE_ONCE)
  201. mr->r_use_once = 1;
  202. if (args->flags & RDS_RDMA_INVALIDATE)
  203. mr->r_invalidate = 1;
  204. if (args->flags & RDS_RDMA_READWRITE)
  205. mr->r_write = 1;
  206. /*
  207. * Pin the pages that make up the user buffer and transfer the page
  208. * pointers to the mr's sg array. We check to see if we've mapped
  209. * the whole region after transferring the partial page references
  210. * to the sg array so that we can have one page ref cleanup path.
  211. *
  212. * For now we have no flag that tells us whether the mapping is
  213. * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
  214. * the zero page.
  215. */
  216. ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
  217. if (ret < 0)
  218. goto out;
  219. nents = ret;
  220. sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
  221. if (!sg) {
  222. ret = -ENOMEM;
  223. goto out;
  224. }
  225. WARN_ON(!nents);
  226. sg_init_table(sg, nents);
  227. /* Stick all pages into the scatterlist */
  228. for (i = 0 ; i < nents; i++)
  229. sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
  230. rdsdebug("RDS: trans_private nents is %u\n", nents);
  231. /* Obtain a transport specific MR. If this succeeds, the
  232. * s/g list is now owned by the MR.
  233. * Note that dma_map() implies that pending writes are
  234. * flushed to RAM, so no dma_sync is needed here. */
  235. trans_private = rs->rs_transport->get_mr(sg, nents, rs,
  236. &mr->r_key);
  237. if (IS_ERR(trans_private)) {
  238. for (i = 0 ; i < nents; i++)
  239. put_page(sg_page(&sg[i]));
  240. kfree(sg);
  241. ret = PTR_ERR(trans_private);
  242. goto out;
  243. }
  244. mr->r_trans_private = trans_private;
  245. rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
  246. mr->r_key, (void *)(unsigned long) args->cookie_addr);
  247. /* The user may pass us an unaligned address, but we can only
  248. * map page aligned regions. So we keep the offset, and build
  249. * a 64bit cookie containing <R_Key, offset> and pass that
  250. * around. */
  251. cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
  252. if (cookie_ret)
  253. *cookie_ret = cookie;
  254. if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
  255. ret = -EFAULT;
  256. goto out;
  257. }
  258. /* Inserting the new MR into the rbtree bumps its
  259. * reference count. */
  260. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  261. found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
  262. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  263. BUG_ON(found && found != mr);
  264. rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
  265. if (mr_ret) {
  266. atomic_inc(&mr->r_refcount);
  267. *mr_ret = mr;
  268. }
  269. ret = 0;
  270. out:
  271. kfree(pages);
  272. if (mr)
  273. rds_mr_put(mr);
  274. return ret;
  275. }
  276. int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
  277. {
  278. struct rds_get_mr_args args;
  279. if (optlen != sizeof(struct rds_get_mr_args))
  280. return -EINVAL;
  281. if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
  282. sizeof(struct rds_get_mr_args)))
  283. return -EFAULT;
  284. return __rds_rdma_map(rs, &args, NULL, NULL);
  285. }
  286. int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
  287. {
  288. struct rds_get_mr_for_dest_args args;
  289. struct rds_get_mr_args new_args;
  290. if (optlen != sizeof(struct rds_get_mr_for_dest_args))
  291. return -EINVAL;
  292. if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
  293. sizeof(struct rds_get_mr_for_dest_args)))
  294. return -EFAULT;
  295. /*
  296. * Initially, just behave like get_mr().
  297. * TODO: Implement get_mr as wrapper around this
  298. * and deprecate it.
  299. */
  300. new_args.vec = args.vec;
  301. new_args.cookie_addr = args.cookie_addr;
  302. new_args.flags = args.flags;
  303. return __rds_rdma_map(rs, &new_args, NULL, NULL);
  304. }
  305. /*
  306. * Free the MR indicated by the given R_Key
  307. */
  308. int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
  309. {
  310. struct rds_free_mr_args args;
  311. struct rds_mr *mr;
  312. unsigned long flags;
  313. if (optlen != sizeof(struct rds_free_mr_args))
  314. return -EINVAL;
  315. if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
  316. sizeof(struct rds_free_mr_args)))
  317. return -EFAULT;
  318. /* Special case - a null cookie means flush all unused MRs */
  319. if (args.cookie == 0) {
  320. if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
  321. return -EINVAL;
  322. rs->rs_transport->flush_mrs();
  323. return 0;
  324. }
  325. /* Look up the MR given its R_key and remove it from the rbtree
  326. * so nobody else finds it.
  327. * This should also prevent races with rds_rdma_unuse.
  328. */
  329. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  330. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
  331. if (mr) {
  332. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  333. RB_CLEAR_NODE(&mr->r_rb_node);
  334. if (args.flags & RDS_RDMA_INVALIDATE)
  335. mr->r_invalidate = 1;
  336. }
  337. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  338. if (!mr)
  339. return -EINVAL;
  340. /*
  341. * call rds_destroy_mr() ourselves so that we're sure it's done by the time
  342. * we return. If we let rds_mr_put() do it it might not happen until
  343. * someone else drops their ref.
  344. */
  345. rds_destroy_mr(mr);
  346. rds_mr_put(mr);
  347. return 0;
  348. }
  349. /*
  350. * This is called when we receive an extension header that
  351. * tells us this MR was used. It allows us to implement
  352. * use_once semantics
  353. */
  354. void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
  355. {
  356. struct rds_mr *mr;
  357. unsigned long flags;
  358. int zot_me = 0;
  359. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  360. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
  361. if (!mr) {
  362. printk(KERN_ERR "rds: trying to unuse MR with unknown r_key %u!\n", r_key);
  363. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  364. return;
  365. }
  366. if (mr->r_use_once || force) {
  367. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  368. RB_CLEAR_NODE(&mr->r_rb_node);
  369. zot_me = 1;
  370. }
  371. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  372. /* May have to issue a dma_sync on this memory region.
  373. * Note we could avoid this if the operation was a RDMA READ,
  374. * but at this point we can't tell. */
  375. if (mr->r_trans->sync_mr)
  376. mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
  377. /* If the MR was marked as invalidate, this will
  378. * trigger an async flush. */
  379. if (zot_me) {
  380. rds_destroy_mr(mr);
  381. rds_mr_put(mr);
  382. }
  383. }
  384. void rds_rdma_free_op(struct rm_rdma_op *ro)
  385. {
  386. unsigned int i;
  387. for (i = 0; i < ro->op_nents; i++) {
  388. struct page *page = sg_page(&ro->op_sg[i]);
  389. /* Mark page dirty if it was possibly modified, which
  390. * is the case for a RDMA_READ which copies from remote
  391. * to local memory */
  392. if (!ro->op_write) {
  393. WARN_ON(!page->mapping && irqs_disabled());
  394. set_page_dirty(page);
  395. }
  396. put_page(page);
  397. }
  398. kfree(ro->op_notifier);
  399. ro->op_notifier = NULL;
  400. ro->op_active = 0;
  401. }
  402. void rds_atomic_free_op(struct rm_atomic_op *ao)
  403. {
  404. struct page *page = sg_page(ao->op_sg);
  405. /* Mark page dirty if it was possibly modified, which
  406. * is the case for a RDMA_READ which copies from remote
  407. * to local memory */
  408. set_page_dirty(page);
  409. put_page(page);
  410. kfree(ao->op_notifier);
  411. ao->op_notifier = NULL;
  412. ao->op_active = 0;
  413. }
  414. /*
  415. * Count the number of pages needed to describe an incoming iovec array.
  416. */
  417. static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
  418. {
  419. int tot_pages = 0;
  420. unsigned int nr_pages;
  421. unsigned int i;
  422. /* figure out the number of pages in the vector */
  423. for (i = 0; i < nr_iovecs; i++) {
  424. nr_pages = rds_pages_in_vec(&iov[i]);
  425. if (nr_pages == 0)
  426. return -EINVAL;
  427. tot_pages += nr_pages;
  428. /*
  429. * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
  430. * so tot_pages cannot overflow without first going negative.
  431. */
  432. if (tot_pages < 0)
  433. return -EINVAL;
  434. }
  435. return tot_pages;
  436. }
  437. int rds_rdma_extra_size(struct rds_rdma_args *args)
  438. {
  439. struct rds_iovec vec;
  440. struct rds_iovec __user *local_vec;
  441. int tot_pages = 0;
  442. unsigned int nr_pages;
  443. unsigned int i;
  444. local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
  445. if (args->nr_local == 0)
  446. return -EINVAL;
  447. /* figure out the number of pages in the vector */
  448. for (i = 0; i < args->nr_local; i++) {
  449. if (copy_from_user(&vec, &local_vec[i],
  450. sizeof(struct rds_iovec)))
  451. return -EFAULT;
  452. nr_pages = rds_pages_in_vec(&vec);
  453. if (nr_pages == 0)
  454. return -EINVAL;
  455. tot_pages += nr_pages;
  456. /*
  457. * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
  458. * so tot_pages cannot overflow without first going negative.
  459. */
  460. if (tot_pages < 0)
  461. return -EINVAL;
  462. }
  463. return tot_pages * sizeof(struct scatterlist);
  464. }
  465. /*
  466. * The application asks for a RDMA transfer.
  467. * Extract all arguments and set up the rdma_op
  468. */
  469. int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
  470. struct cmsghdr *cmsg)
  471. {
  472. struct rds_rdma_args *args;
  473. struct rm_rdma_op *op = &rm->rdma;
  474. int nr_pages;
  475. unsigned int nr_bytes;
  476. struct page **pages = NULL;
  477. struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
  478. int iov_size;
  479. unsigned int i, j;
  480. int ret = 0;
  481. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
  482. || rm->rdma.op_active)
  483. return -EINVAL;
  484. args = CMSG_DATA(cmsg);
  485. if (rs->rs_bound_addr == 0) {
  486. ret = -ENOTCONN; /* XXX not a great errno */
  487. goto out_ret;
  488. }
  489. if (args->nr_local > UIO_MAXIOV) {
  490. ret = -EMSGSIZE;
  491. goto out_ret;
  492. }
  493. /* Check whether to allocate the iovec area */
  494. iov_size = args->nr_local * sizeof(struct rds_iovec);
  495. if (args->nr_local > UIO_FASTIOV) {
  496. iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
  497. if (!iovs) {
  498. ret = -ENOMEM;
  499. goto out_ret;
  500. }
  501. }
  502. if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
  503. ret = -EFAULT;
  504. goto out;
  505. }
  506. nr_pages = rds_rdma_pages(iovs, args->nr_local);
  507. if (nr_pages < 0) {
  508. ret = -EINVAL;
  509. goto out;
  510. }
  511. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  512. if (!pages) {
  513. ret = -ENOMEM;
  514. goto out;
  515. }
  516. op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
  517. op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
  518. op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  519. op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
  520. op->op_active = 1;
  521. op->op_recverr = rs->rs_recverr;
  522. WARN_ON(!nr_pages);
  523. op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
  524. if (!op->op_sg) {
  525. ret = -ENOMEM;
  526. goto out;
  527. }
  528. if (op->op_notify || op->op_recverr) {
  529. /* We allocate an uninitialized notifier here, because
  530. * we don't want to do that in the completion handler. We
  531. * would have to use GFP_ATOMIC there, and don't want to deal
  532. * with failed allocations.
  533. */
  534. op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
  535. if (!op->op_notifier) {
  536. ret = -ENOMEM;
  537. goto out;
  538. }
  539. op->op_notifier->n_user_token = args->user_token;
  540. op->op_notifier->n_status = RDS_RDMA_SUCCESS;
  541. /* Enable rmda notification on data operation for composite
  542. * rds messages and make sure notification is enabled only
  543. * for the data operation which follows it so that application
  544. * gets notified only after full message gets delivered.
  545. */
  546. if (rm->data.op_sg) {
  547. rm->rdma.op_notify = 0;
  548. rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  549. }
  550. }
  551. /* The cookie contains the R_Key of the remote memory region, and
  552. * optionally an offset into it. This is how we implement RDMA into
  553. * unaligned memory.
  554. * When setting up the RDMA, we need to add that offset to the
  555. * destination address (which is really an offset into the MR)
  556. * FIXME: We may want to move this into ib_rdma.c
  557. */
  558. op->op_rkey = rds_rdma_cookie_key(args->cookie);
  559. op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
  560. nr_bytes = 0;
  561. rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
  562. (unsigned long long)args->nr_local,
  563. (unsigned long long)args->remote_vec.addr,
  564. op->op_rkey);
  565. for (i = 0; i < args->nr_local; i++) {
  566. struct rds_iovec *iov = &iovs[i];
  567. /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
  568. unsigned int nr = rds_pages_in_vec(iov);
  569. rs->rs_user_addr = iov->addr;
  570. rs->rs_user_bytes = iov->bytes;
  571. /* If it's a WRITE operation, we want to pin the pages for reading.
  572. * If it's a READ operation, we need to pin the pages for writing.
  573. */
  574. ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
  575. if (ret < 0)
  576. goto out;
  577. else
  578. ret = 0;
  579. rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
  580. nr_bytes, nr, iov->bytes, iov->addr);
  581. nr_bytes += iov->bytes;
  582. for (j = 0; j < nr; j++) {
  583. unsigned int offset = iov->addr & ~PAGE_MASK;
  584. struct scatterlist *sg;
  585. sg = &op->op_sg[op->op_nents + j];
  586. sg_set_page(sg, pages[j],
  587. min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
  588. offset);
  589. rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
  590. sg->offset, sg->length, iov->addr, iov->bytes);
  591. iov->addr += sg->length;
  592. iov->bytes -= sg->length;
  593. }
  594. op->op_nents += nr;
  595. }
  596. if (nr_bytes > args->remote_vec.bytes) {
  597. rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
  598. nr_bytes,
  599. (unsigned int) args->remote_vec.bytes);
  600. ret = -EINVAL;
  601. goto out;
  602. }
  603. op->op_bytes = nr_bytes;
  604. out:
  605. if (iovs != iovstack)
  606. sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
  607. kfree(pages);
  608. out_ret:
  609. if (ret)
  610. rds_rdma_free_op(op);
  611. else
  612. rds_stats_inc(s_send_rdma);
  613. return ret;
  614. }
  615. /*
  616. * The application wants us to pass an RDMA destination (aka MR)
  617. * to the remote
  618. */
  619. int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
  620. struct cmsghdr *cmsg)
  621. {
  622. unsigned long flags;
  623. struct rds_mr *mr;
  624. u32 r_key;
  625. int err = 0;
  626. if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
  627. rm->m_rdma_cookie != 0)
  628. return -EINVAL;
  629. memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
  630. /* We are reusing a previously mapped MR here. Most likely, the
  631. * application has written to the buffer, so we need to explicitly
  632. * flush those writes to RAM. Otherwise the HCA may not see them
  633. * when doing a DMA from that buffer.
  634. */
  635. r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
  636. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  637. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
  638. if (!mr)
  639. err = -EINVAL; /* invalid r_key */
  640. else
  641. atomic_inc(&mr->r_refcount);
  642. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  643. if (mr) {
  644. mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
  645. rm->rdma.op_rdma_mr = mr;
  646. }
  647. return err;
  648. }
  649. /*
  650. * The application passes us an address range it wants to enable RDMA
  651. * to/from. We map the area, and save the <R_Key,offset> pair
  652. * in rm->m_rdma_cookie. This causes it to be sent along to the peer
  653. * in an extension header.
  654. */
  655. int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
  656. struct cmsghdr *cmsg)
  657. {
  658. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
  659. rm->m_rdma_cookie != 0)
  660. return -EINVAL;
  661. return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr);
  662. }
  663. /*
  664. * Fill in rds_message for an atomic request.
  665. */
  666. int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
  667. struct cmsghdr *cmsg)
  668. {
  669. struct page *page = NULL;
  670. struct rds_atomic_args *args;
  671. int ret = 0;
  672. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
  673. || rm->atomic.op_active)
  674. return -EINVAL;
  675. args = CMSG_DATA(cmsg);
  676. /* Nonmasked & masked cmsg ops converted to masked hw ops */
  677. switch (cmsg->cmsg_type) {
  678. case RDS_CMSG_ATOMIC_FADD:
  679. rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
  680. rm->atomic.op_m_fadd.add = args->fadd.add;
  681. rm->atomic.op_m_fadd.nocarry_mask = 0;
  682. break;
  683. case RDS_CMSG_MASKED_ATOMIC_FADD:
  684. rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
  685. rm->atomic.op_m_fadd.add = args->m_fadd.add;
  686. rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
  687. break;
  688. case RDS_CMSG_ATOMIC_CSWP:
  689. rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
  690. rm->atomic.op_m_cswp.compare = args->cswp.compare;
  691. rm->atomic.op_m_cswp.swap = args->cswp.swap;
  692. rm->atomic.op_m_cswp.compare_mask = ~0;
  693. rm->atomic.op_m_cswp.swap_mask = ~0;
  694. break;
  695. case RDS_CMSG_MASKED_ATOMIC_CSWP:
  696. rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
  697. rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
  698. rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
  699. rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
  700. rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
  701. break;
  702. default:
  703. BUG(); /* should never happen */
  704. }
  705. rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  706. rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
  707. rm->atomic.op_active = 1;
  708. rm->atomic.op_recverr = rs->rs_recverr;
  709. rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
  710. if (!rm->atomic.op_sg) {
  711. ret = -ENOMEM;
  712. goto err;
  713. }
  714. /* verify 8 byte-aligned */
  715. if (args->local_addr & 0x7) {
  716. ret = -EFAULT;
  717. goto err;
  718. }
  719. ret = rds_pin_pages(args->local_addr, 1, &page, 1);
  720. if (ret != 1)
  721. goto err;
  722. ret = 0;
  723. sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
  724. if (rm->atomic.op_notify || rm->atomic.op_recverr) {
  725. /* We allocate an uninitialized notifier here, because
  726. * we don't want to do that in the completion handler. We
  727. * would have to use GFP_ATOMIC there, and don't want to deal
  728. * with failed allocations.
  729. */
  730. rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
  731. if (!rm->atomic.op_notifier) {
  732. ret = -ENOMEM;
  733. goto err;
  734. }
  735. rm->atomic.op_notifier->n_user_token = args->user_token;
  736. rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
  737. }
  738. rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
  739. rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
  740. return ret;
  741. err:
  742. if (page)
  743. put_page(page);
  744. rm->atomic.op_active = 0;
  745. kfree(rm->atomic.op_notifier);
  746. return ret;
  747. }