mempool.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. /*
  2. * linux/mm/mempool.c
  3. *
  4. * memory buffer pool support. Such pools are mostly used
  5. * for guaranteed, deadlock-free memory allocations during
  6. * extreme VM load.
  7. *
  8. * started by Ingo Molnar, Copyright (C) 2001
  9. * debugging by David Rientjes, Copyright (C) 2015
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/slab.h>
  13. #include <linux/highmem.h>
  14. #include <linux/kasan.h>
  15. #include <linux/kmemleak.h>
  16. #include <linux/export.h>
  17. #include <linux/mempool.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/writeback.h>
  20. #include "slab.h"
  21. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
  22. static void poison_error(mempool_t *pool, void *element, size_t size,
  23. size_t byte)
  24. {
  25. const int nr = pool->curr_nr;
  26. const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
  27. const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
  28. int i;
  29. pr_err("BUG: mempool element poison mismatch\n");
  30. pr_err("Mempool %p size %zu\n", pool, size);
  31. pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
  32. for (i = start; i < end; i++)
  33. pr_cont("%x ", *(u8 *)(element + i));
  34. pr_cont("%s\n", end < size ? "..." : "");
  35. dump_stack();
  36. }
  37. static void __check_element(mempool_t *pool, void *element, size_t size)
  38. {
  39. u8 *obj = element;
  40. size_t i;
  41. for (i = 0; i < size; i++) {
  42. u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
  43. if (obj[i] != exp) {
  44. poison_error(pool, element, size, i);
  45. return;
  46. }
  47. }
  48. memset(obj, POISON_INUSE, size);
  49. }
  50. static void check_element(mempool_t *pool, void *element)
  51. {
  52. /* Mempools backed by slab allocator */
  53. if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
  54. __check_element(pool, element, ksize(element));
  55. /* Mempools backed by page allocator */
  56. if (pool->free == mempool_free_pages) {
  57. int order = (int)(long)pool->pool_data;
  58. void *addr = kmap_atomic((struct page *)element);
  59. __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
  60. kunmap_atomic(addr);
  61. }
  62. }
  63. static void __poison_element(void *element, size_t size)
  64. {
  65. u8 *obj = element;
  66. memset(obj, POISON_FREE, size - 1);
  67. obj[size - 1] = POISON_END;
  68. }
  69. static void poison_element(mempool_t *pool, void *element)
  70. {
  71. /* Mempools backed by slab allocator */
  72. if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
  73. __poison_element(element, ksize(element));
  74. /* Mempools backed by page allocator */
  75. if (pool->alloc == mempool_alloc_pages) {
  76. int order = (int)(long)pool->pool_data;
  77. void *addr = kmap_atomic((struct page *)element);
  78. __poison_element(addr, 1UL << (PAGE_SHIFT + order));
  79. kunmap_atomic(addr);
  80. }
  81. }
  82. #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
  83. static inline void check_element(mempool_t *pool, void *element)
  84. {
  85. }
  86. static inline void poison_element(mempool_t *pool, void *element)
  87. {
  88. }
  89. #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
  90. static void kasan_poison_element(mempool_t *pool, void *element)
  91. {
  92. if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
  93. kasan_poison_kfree(element);
  94. if (pool->alloc == mempool_alloc_pages)
  95. kasan_free_pages(element, (unsigned long)pool->pool_data);
  96. }
  97. static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
  98. {
  99. if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
  100. kasan_unpoison_slab(element);
  101. if (pool->alloc == mempool_alloc_pages)
  102. kasan_alloc_pages(element, (unsigned long)pool->pool_data);
  103. }
  104. static void add_element(mempool_t *pool, void *element)
  105. {
  106. BUG_ON(pool->curr_nr >= pool->min_nr);
  107. poison_element(pool, element);
  108. kasan_poison_element(pool, element);
  109. pool->elements[pool->curr_nr++] = element;
  110. }
  111. static void *remove_element(mempool_t *pool, gfp_t flags)
  112. {
  113. void *element = pool->elements[--pool->curr_nr];
  114. BUG_ON(pool->curr_nr < 0);
  115. kasan_unpoison_element(pool, element, flags);
  116. check_element(pool, element);
  117. return element;
  118. }
  119. /**
  120. * mempool_destroy - deallocate a memory pool
  121. * @pool: pointer to the memory pool which was allocated via
  122. * mempool_create().
  123. *
  124. * Free all reserved elements in @pool and @pool itself. This function
  125. * only sleeps if the free_fn() function sleeps.
  126. */
  127. void mempool_destroy(mempool_t *pool)
  128. {
  129. if (unlikely(!pool))
  130. return;
  131. while (pool->curr_nr) {
  132. void *element = remove_element(pool, GFP_KERNEL);
  133. pool->free(element, pool->pool_data);
  134. }
  135. kfree(pool->elements);
  136. kfree(pool);
  137. }
  138. EXPORT_SYMBOL(mempool_destroy);
  139. /**
  140. * mempool_create - create a memory pool
  141. * @min_nr: the minimum number of elements guaranteed to be
  142. * allocated for this pool.
  143. * @alloc_fn: user-defined element-allocation function.
  144. * @free_fn: user-defined element-freeing function.
  145. * @pool_data: optional private data available to the user-defined functions.
  146. *
  147. * this function creates and allocates a guaranteed size, preallocated
  148. * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
  149. * functions. This function might sleep. Both the alloc_fn() and the free_fn()
  150. * functions might sleep - as long as the mempool_alloc() function is not called
  151. * from IRQ contexts.
  152. */
  153. mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
  154. mempool_free_t *free_fn, void *pool_data)
  155. {
  156. return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
  157. GFP_KERNEL, NUMA_NO_NODE);
  158. }
  159. EXPORT_SYMBOL(mempool_create);
  160. mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
  161. mempool_free_t *free_fn, void *pool_data,
  162. gfp_t gfp_mask, int node_id)
  163. {
  164. mempool_t *pool;
  165. pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
  166. if (!pool)
  167. return NULL;
  168. pool->elements = kmalloc_node(min_nr * sizeof(void *),
  169. gfp_mask, node_id);
  170. if (!pool->elements) {
  171. kfree(pool);
  172. return NULL;
  173. }
  174. spin_lock_init(&pool->lock);
  175. pool->min_nr = min_nr;
  176. pool->pool_data = pool_data;
  177. init_waitqueue_head(&pool->wait);
  178. pool->alloc = alloc_fn;
  179. pool->free = free_fn;
  180. /*
  181. * First pre-allocate the guaranteed number of buffers.
  182. */
  183. while (pool->curr_nr < pool->min_nr) {
  184. void *element;
  185. element = pool->alloc(gfp_mask, pool->pool_data);
  186. if (unlikely(!element)) {
  187. mempool_destroy(pool);
  188. return NULL;
  189. }
  190. add_element(pool, element);
  191. }
  192. return pool;
  193. }
  194. EXPORT_SYMBOL(mempool_create_node);
  195. /**
  196. * mempool_resize - resize an existing memory pool
  197. * @pool: pointer to the memory pool which was allocated via
  198. * mempool_create().
  199. * @new_min_nr: the new minimum number of elements guaranteed to be
  200. * allocated for this pool.
  201. *
  202. * This function shrinks/grows the pool. In the case of growing,
  203. * it cannot be guaranteed that the pool will be grown to the new
  204. * size immediately, but new mempool_free() calls will refill it.
  205. * This function may sleep.
  206. *
  207. * Note, the caller must guarantee that no mempool_destroy is called
  208. * while this function is running. mempool_alloc() & mempool_free()
  209. * might be called (eg. from IRQ contexts) while this function executes.
  210. */
  211. int mempool_resize(mempool_t *pool, int new_min_nr)
  212. {
  213. void *element;
  214. void **new_elements;
  215. unsigned long flags;
  216. BUG_ON(new_min_nr <= 0);
  217. might_sleep();
  218. spin_lock_irqsave(&pool->lock, flags);
  219. if (new_min_nr <= pool->min_nr) {
  220. while (new_min_nr < pool->curr_nr) {
  221. element = remove_element(pool, GFP_KERNEL);
  222. spin_unlock_irqrestore(&pool->lock, flags);
  223. pool->free(element, pool->pool_data);
  224. spin_lock_irqsave(&pool->lock, flags);
  225. }
  226. pool->min_nr = new_min_nr;
  227. goto out_unlock;
  228. }
  229. spin_unlock_irqrestore(&pool->lock, flags);
  230. /* Grow the pool */
  231. new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
  232. GFP_KERNEL);
  233. if (!new_elements)
  234. return -ENOMEM;
  235. spin_lock_irqsave(&pool->lock, flags);
  236. if (unlikely(new_min_nr <= pool->min_nr)) {
  237. /* Raced, other resize will do our work */
  238. spin_unlock_irqrestore(&pool->lock, flags);
  239. kfree(new_elements);
  240. goto out;
  241. }
  242. memcpy(new_elements, pool->elements,
  243. pool->curr_nr * sizeof(*new_elements));
  244. kfree(pool->elements);
  245. pool->elements = new_elements;
  246. pool->min_nr = new_min_nr;
  247. while (pool->curr_nr < pool->min_nr) {
  248. spin_unlock_irqrestore(&pool->lock, flags);
  249. element = pool->alloc(GFP_KERNEL, pool->pool_data);
  250. if (!element)
  251. goto out;
  252. spin_lock_irqsave(&pool->lock, flags);
  253. if (pool->curr_nr < pool->min_nr) {
  254. add_element(pool, element);
  255. } else {
  256. spin_unlock_irqrestore(&pool->lock, flags);
  257. pool->free(element, pool->pool_data); /* Raced */
  258. goto out;
  259. }
  260. }
  261. out_unlock:
  262. spin_unlock_irqrestore(&pool->lock, flags);
  263. out:
  264. return 0;
  265. }
  266. EXPORT_SYMBOL(mempool_resize);
  267. /**
  268. * mempool_alloc - allocate an element from a specific memory pool
  269. * @pool: pointer to the memory pool which was allocated via
  270. * mempool_create().
  271. * @gfp_mask: the usual allocation bitmask.
  272. *
  273. * this function only sleeps if the alloc_fn() function sleeps or
  274. * returns NULL. Note that due to preallocation, this function
  275. * *never* fails when called from process contexts. (it might
  276. * fail if called from an IRQ context.)
  277. * Note: using __GFP_ZERO is not supported.
  278. */
  279. void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
  280. {
  281. void *element;
  282. unsigned long flags;
  283. wait_queue_t wait;
  284. gfp_t gfp_temp;
  285. VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
  286. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  287. gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
  288. gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
  289. gfp_mask |= __GFP_NOWARN; /* failures are OK */
  290. gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
  291. repeat_alloc:
  292. element = pool->alloc(gfp_temp, pool->pool_data);
  293. if (likely(element != NULL))
  294. return element;
  295. spin_lock_irqsave(&pool->lock, flags);
  296. if (likely(pool->curr_nr)) {
  297. element = remove_element(pool, gfp_temp);
  298. spin_unlock_irqrestore(&pool->lock, flags);
  299. /* paired with rmb in mempool_free(), read comment there */
  300. smp_wmb();
  301. /*
  302. * Update the allocation stack trace as this is more useful
  303. * for debugging.
  304. */
  305. kmemleak_update_trace(element);
  306. return element;
  307. }
  308. /*
  309. * We use gfp mask w/o direct reclaim or IO for the first round. If
  310. * alloc failed with that and @pool was empty, retry immediately.
  311. */
  312. if (gfp_temp != gfp_mask) {
  313. spin_unlock_irqrestore(&pool->lock, flags);
  314. gfp_temp = gfp_mask;
  315. goto repeat_alloc;
  316. }
  317. /* We must not sleep if !__GFP_DIRECT_RECLAIM */
  318. if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
  319. spin_unlock_irqrestore(&pool->lock, flags);
  320. return NULL;
  321. }
  322. /* Let's wait for someone else to return an element to @pool */
  323. init_wait(&wait);
  324. prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
  325. spin_unlock_irqrestore(&pool->lock, flags);
  326. /*
  327. * FIXME: this should be io_schedule(). The timeout is there as a
  328. * workaround for some DM problems in 2.6.18.
  329. */
  330. io_schedule_timeout(5*HZ);
  331. finish_wait(&pool->wait, &wait);
  332. goto repeat_alloc;
  333. }
  334. EXPORT_SYMBOL(mempool_alloc);
  335. /**
  336. * mempool_free - return an element to the pool.
  337. * @element: pool element pointer.
  338. * @pool: pointer to the memory pool which was allocated via
  339. * mempool_create().
  340. *
  341. * this function only sleeps if the free_fn() function sleeps.
  342. */
  343. void mempool_free(void *element, mempool_t *pool)
  344. {
  345. unsigned long flags;
  346. if (unlikely(element == NULL))
  347. return;
  348. /*
  349. * Paired with the wmb in mempool_alloc(). The preceding read is
  350. * for @element and the following @pool->curr_nr. This ensures
  351. * that the visible value of @pool->curr_nr is from after the
  352. * allocation of @element. This is necessary for fringe cases
  353. * where @element was passed to this task without going through
  354. * barriers.
  355. *
  356. * For example, assume @p is %NULL at the beginning and one task
  357. * performs "p = mempool_alloc(...);" while another task is doing
  358. * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
  359. * may end up using curr_nr value which is from before allocation
  360. * of @p without the following rmb.
  361. */
  362. smp_rmb();
  363. /*
  364. * For correctness, we need a test which is guaranteed to trigger
  365. * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
  366. * without locking achieves that and refilling as soon as possible
  367. * is desirable.
  368. *
  369. * Because curr_nr visible here is always a value after the
  370. * allocation of @element, any task which decremented curr_nr below
  371. * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
  372. * incremented to min_nr afterwards. If curr_nr gets incremented
  373. * to min_nr after the allocation of @element, the elements
  374. * allocated after that are subject to the same guarantee.
  375. *
  376. * Waiters happen iff curr_nr is 0 and the above guarantee also
  377. * ensures that there will be frees which return elements to the
  378. * pool waking up the waiters.
  379. */
  380. if (unlikely(pool->curr_nr < pool->min_nr)) {
  381. spin_lock_irqsave(&pool->lock, flags);
  382. if (likely(pool->curr_nr < pool->min_nr)) {
  383. add_element(pool, element);
  384. spin_unlock_irqrestore(&pool->lock, flags);
  385. wake_up(&pool->wait);
  386. return;
  387. }
  388. spin_unlock_irqrestore(&pool->lock, flags);
  389. }
  390. pool->free(element, pool->pool_data);
  391. }
  392. EXPORT_SYMBOL(mempool_free);
  393. /*
  394. * A commonly used alloc and free fn.
  395. */
  396. void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
  397. {
  398. struct kmem_cache *mem = pool_data;
  399. VM_BUG_ON(mem->ctor);
  400. return kmem_cache_alloc(mem, gfp_mask);
  401. }
  402. EXPORT_SYMBOL(mempool_alloc_slab);
  403. void mempool_free_slab(void *element, void *pool_data)
  404. {
  405. struct kmem_cache *mem = pool_data;
  406. kmem_cache_free(mem, element);
  407. }
  408. EXPORT_SYMBOL(mempool_free_slab);
  409. /*
  410. * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
  411. * specified by pool_data
  412. */
  413. void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
  414. {
  415. size_t size = (size_t)pool_data;
  416. return kmalloc(size, gfp_mask);
  417. }
  418. EXPORT_SYMBOL(mempool_kmalloc);
  419. void mempool_kfree(void *element, void *pool_data)
  420. {
  421. kfree(element);
  422. }
  423. EXPORT_SYMBOL(mempool_kfree);
  424. /*
  425. * A simple mempool-backed page allocator that allocates pages
  426. * of the order specified by pool_data.
  427. */
  428. void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
  429. {
  430. int order = (int)(long)pool_data;
  431. return alloc_pages(gfp_mask, order);
  432. }
  433. EXPORT_SYMBOL(mempool_alloc_pages);
  434. void mempool_free_pages(void *element, void *pool_data)
  435. {
  436. int order = (int)(long)pool_data;
  437. __free_pages(element, order);
  438. }
  439. EXPORT_SYMBOL(mempool_free_pages);