shdmac.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958
  1. /*
  2. * Renesas SuperH DMA Engine support
  3. *
  4. * base is drivers/dma/flsdma.c
  5. *
  6. * Copyright (C) 2011-2012 Guennadi Liakhovetski <g.liakhovetski@gmx.de>
  7. * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
  8. * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
  9. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  10. *
  11. * This is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * - DMA of SuperH does not have Hardware DMA chain mode.
  17. * - MAX DMA size is 16MB.
  18. *
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/dmaengine.h>
  22. #include <linux/err.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/kdebug.h>
  26. #include <linux/module.h>
  27. #include <linux/notifier.h>
  28. #include <linux/of.h>
  29. #include <linux/of_device.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/rculist.h>
  33. #include <linux/sh_dma.h>
  34. #include <linux/slab.h>
  35. #include <linux/spinlock.h>
  36. #include "../dmaengine.h"
  37. #include "shdma.h"
  38. /* DMA registers */
  39. #define SAR 0x00 /* Source Address Register */
  40. #define DAR 0x04 /* Destination Address Register */
  41. #define TCR 0x08 /* Transfer Count Register */
  42. #define CHCR 0x0C /* Channel Control Register */
  43. #define DMAOR 0x40 /* DMA Operation Register */
  44. #define TEND 0x18 /* USB-DMAC */
  45. #define SH_DMAE_DRV_NAME "sh-dma-engine"
  46. /* Default MEMCPY transfer size = 2^2 = 4 bytes */
  47. #define LOG2_DEFAULT_XFER_SIZE 2
  48. #define SH_DMA_SLAVE_NUMBER 256
  49. #define SH_DMA_TCR_MAX (16 * 1024 * 1024 - 1)
  50. /*
  51. * Used for write-side mutual exclusion for the global device list,
  52. * read-side synchronization by way of RCU, and per-controller data.
  53. */
  54. static DEFINE_SPINLOCK(sh_dmae_lock);
  55. static LIST_HEAD(sh_dmae_devices);
  56. /*
  57. * Different DMAC implementations provide different ways to clear DMA channels:
  58. * (1) none - no CHCLR registers are available
  59. * (2) one CHCLR register per channel - 0 has to be written to it to clear
  60. * channel buffers
  61. * (3) one CHCLR per several channels - 1 has to be written to the bit,
  62. * corresponding to the specific channel to reset it
  63. */
  64. static void channel_clear(struct sh_dmae_chan *sh_dc)
  65. {
  66. struct sh_dmae_device *shdev = to_sh_dev(sh_dc);
  67. const struct sh_dmae_channel *chan_pdata = shdev->pdata->channel +
  68. sh_dc->shdma_chan.id;
  69. u32 val = shdev->pdata->chclr_bitwise ? 1 << chan_pdata->chclr_bit : 0;
  70. __raw_writel(val, shdev->chan_reg + chan_pdata->chclr_offset);
  71. }
  72. static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
  73. {
  74. __raw_writel(data, sh_dc->base + reg);
  75. }
  76. static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
  77. {
  78. return __raw_readl(sh_dc->base + reg);
  79. }
  80. static u16 dmaor_read(struct sh_dmae_device *shdev)
  81. {
  82. void __iomem *addr = shdev->chan_reg + DMAOR;
  83. if (shdev->pdata->dmaor_is_32bit)
  84. return __raw_readl(addr);
  85. else
  86. return __raw_readw(addr);
  87. }
  88. static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
  89. {
  90. void __iomem *addr = shdev->chan_reg + DMAOR;
  91. if (shdev->pdata->dmaor_is_32bit)
  92. __raw_writel(data, addr);
  93. else
  94. __raw_writew(data, addr);
  95. }
  96. static void chcr_write(struct sh_dmae_chan *sh_dc, u32 data)
  97. {
  98. struct sh_dmae_device *shdev = to_sh_dev(sh_dc);
  99. __raw_writel(data, sh_dc->base + shdev->chcr_offset);
  100. }
  101. static u32 chcr_read(struct sh_dmae_chan *sh_dc)
  102. {
  103. struct sh_dmae_device *shdev = to_sh_dev(sh_dc);
  104. return __raw_readl(sh_dc->base + shdev->chcr_offset);
  105. }
  106. /*
  107. * Reset DMA controller
  108. *
  109. * SH7780 has two DMAOR register
  110. */
  111. static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
  112. {
  113. unsigned short dmaor;
  114. unsigned long flags;
  115. spin_lock_irqsave(&sh_dmae_lock, flags);
  116. dmaor = dmaor_read(shdev);
  117. dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
  118. spin_unlock_irqrestore(&sh_dmae_lock, flags);
  119. }
  120. static int sh_dmae_rst(struct sh_dmae_device *shdev)
  121. {
  122. unsigned short dmaor;
  123. unsigned long flags;
  124. spin_lock_irqsave(&sh_dmae_lock, flags);
  125. dmaor = dmaor_read(shdev) & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME);
  126. if (shdev->pdata->chclr_present) {
  127. int i;
  128. for (i = 0; i < shdev->pdata->channel_num; i++) {
  129. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  130. if (sh_chan)
  131. channel_clear(sh_chan);
  132. }
  133. }
  134. dmaor_write(shdev, dmaor | shdev->pdata->dmaor_init);
  135. dmaor = dmaor_read(shdev);
  136. spin_unlock_irqrestore(&sh_dmae_lock, flags);
  137. if (dmaor & (DMAOR_AE | DMAOR_NMIF)) {
  138. dev_warn(shdev->shdma_dev.dma_dev.dev, "Can't initialize DMAOR.\n");
  139. return -EIO;
  140. }
  141. if (shdev->pdata->dmaor_init & ~dmaor)
  142. dev_warn(shdev->shdma_dev.dma_dev.dev,
  143. "DMAOR=0x%x hasn't latched the initial value 0x%x.\n",
  144. dmaor, shdev->pdata->dmaor_init);
  145. return 0;
  146. }
  147. static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
  148. {
  149. u32 chcr = chcr_read(sh_chan);
  150. if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
  151. return true; /* working */
  152. return false; /* waiting */
  153. }
  154. static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
  155. {
  156. struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
  157. const struct sh_dmae_pdata *pdata = shdev->pdata;
  158. int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
  159. ((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);
  160. if (cnt >= pdata->ts_shift_num)
  161. cnt = 0;
  162. return pdata->ts_shift[cnt];
  163. }
  164. static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
  165. {
  166. struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
  167. const struct sh_dmae_pdata *pdata = shdev->pdata;
  168. int i;
  169. for (i = 0; i < pdata->ts_shift_num; i++)
  170. if (pdata->ts_shift[i] == l2size)
  171. break;
  172. if (i == pdata->ts_shift_num)
  173. i = 0;
  174. return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
  175. ((i << pdata->ts_high_shift) & pdata->ts_high_mask);
  176. }
  177. static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
  178. {
  179. sh_dmae_writel(sh_chan, hw->sar, SAR);
  180. sh_dmae_writel(sh_chan, hw->dar, DAR);
  181. sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
  182. }
  183. static void dmae_start(struct sh_dmae_chan *sh_chan)
  184. {
  185. struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
  186. u32 chcr = chcr_read(sh_chan);
  187. if (shdev->pdata->needs_tend_set)
  188. sh_dmae_writel(sh_chan, 0xFFFFFFFF, TEND);
  189. chcr |= CHCR_DE | shdev->chcr_ie_bit;
  190. chcr_write(sh_chan, chcr & ~CHCR_TE);
  191. }
  192. static void dmae_init(struct sh_dmae_chan *sh_chan)
  193. {
  194. /*
  195. * Default configuration for dual address memory-memory transfer.
  196. */
  197. u32 chcr = DM_INC | SM_INC | RS_AUTO | log2size_to_chcr(sh_chan,
  198. LOG2_DEFAULT_XFER_SIZE);
  199. sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
  200. chcr_write(sh_chan, chcr);
  201. }
  202. static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
  203. {
  204. /* If DMA is active, cannot set CHCR. TODO: remove this superfluous check */
  205. if (dmae_is_busy(sh_chan))
  206. return -EBUSY;
  207. sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
  208. chcr_write(sh_chan, val);
  209. return 0;
  210. }
  211. static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
  212. {
  213. struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
  214. const struct sh_dmae_pdata *pdata = shdev->pdata;
  215. const struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->shdma_chan.id];
  216. void __iomem *addr = shdev->dmars;
  217. unsigned int shift = chan_pdata->dmars_bit;
  218. if (dmae_is_busy(sh_chan))
  219. return -EBUSY;
  220. if (pdata->no_dmars)
  221. return 0;
  222. /* in the case of a missing DMARS resource use first memory window */
  223. if (!addr)
  224. addr = shdev->chan_reg;
  225. addr += chan_pdata->dmars;
  226. __raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
  227. addr);
  228. return 0;
  229. }
  230. static void sh_dmae_start_xfer(struct shdma_chan *schan,
  231. struct shdma_desc *sdesc)
  232. {
  233. struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
  234. shdma_chan);
  235. struct sh_dmae_desc *sh_desc = container_of(sdesc,
  236. struct sh_dmae_desc, shdma_desc);
  237. dev_dbg(sh_chan->shdma_chan.dev, "Queue #%d to %d: %u@%x -> %x\n",
  238. sdesc->async_tx.cookie, sh_chan->shdma_chan.id,
  239. sh_desc->hw.tcr, sh_desc->hw.sar, sh_desc->hw.dar);
  240. /* Get the ld start address from ld_queue */
  241. dmae_set_reg(sh_chan, &sh_desc->hw);
  242. dmae_start(sh_chan);
  243. }
  244. static bool sh_dmae_channel_busy(struct shdma_chan *schan)
  245. {
  246. struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
  247. shdma_chan);
  248. return dmae_is_busy(sh_chan);
  249. }
  250. static void sh_dmae_setup_xfer(struct shdma_chan *schan,
  251. int slave_id)
  252. {
  253. struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
  254. shdma_chan);
  255. if (slave_id >= 0) {
  256. const struct sh_dmae_slave_config *cfg =
  257. sh_chan->config;
  258. dmae_set_dmars(sh_chan, cfg->mid_rid);
  259. dmae_set_chcr(sh_chan, cfg->chcr);
  260. } else {
  261. dmae_init(sh_chan);
  262. }
  263. }
  264. /*
  265. * Find a slave channel configuration from the contoller list by either a slave
  266. * ID in the non-DT case, or by a MID/RID value in the DT case
  267. */
  268. static const struct sh_dmae_slave_config *dmae_find_slave(
  269. struct sh_dmae_chan *sh_chan, int match)
  270. {
  271. struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
  272. const struct sh_dmae_pdata *pdata = shdev->pdata;
  273. const struct sh_dmae_slave_config *cfg;
  274. int i;
  275. if (!sh_chan->shdma_chan.dev->of_node) {
  276. if (match >= SH_DMA_SLAVE_NUMBER)
  277. return NULL;
  278. for (i = 0, cfg = pdata->slave; i < pdata->slave_num; i++, cfg++)
  279. if (cfg->slave_id == match)
  280. return cfg;
  281. } else {
  282. for (i = 0, cfg = pdata->slave; i < pdata->slave_num; i++, cfg++)
  283. if (cfg->mid_rid == match) {
  284. sh_chan->shdma_chan.slave_id = i;
  285. return cfg;
  286. }
  287. }
  288. return NULL;
  289. }
  290. static int sh_dmae_set_slave(struct shdma_chan *schan,
  291. int slave_id, dma_addr_t slave_addr, bool try)
  292. {
  293. struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
  294. shdma_chan);
  295. const struct sh_dmae_slave_config *cfg = dmae_find_slave(sh_chan, slave_id);
  296. if (!cfg)
  297. return -ENXIO;
  298. if (!try) {
  299. sh_chan->config = cfg;
  300. sh_chan->slave_addr = slave_addr ? : cfg->addr;
  301. }
  302. return 0;
  303. }
  304. static void dmae_halt(struct sh_dmae_chan *sh_chan)
  305. {
  306. struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
  307. u32 chcr = chcr_read(sh_chan);
  308. chcr &= ~(CHCR_DE | CHCR_TE | shdev->chcr_ie_bit);
  309. chcr_write(sh_chan, chcr);
  310. }
  311. static int sh_dmae_desc_setup(struct shdma_chan *schan,
  312. struct shdma_desc *sdesc,
  313. dma_addr_t src, dma_addr_t dst, size_t *len)
  314. {
  315. struct sh_dmae_desc *sh_desc = container_of(sdesc,
  316. struct sh_dmae_desc, shdma_desc);
  317. if (*len > schan->max_xfer_len)
  318. *len = schan->max_xfer_len;
  319. sh_desc->hw.sar = src;
  320. sh_desc->hw.dar = dst;
  321. sh_desc->hw.tcr = *len;
  322. return 0;
  323. }
  324. static void sh_dmae_halt(struct shdma_chan *schan)
  325. {
  326. struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
  327. shdma_chan);
  328. dmae_halt(sh_chan);
  329. }
  330. static bool sh_dmae_chan_irq(struct shdma_chan *schan, int irq)
  331. {
  332. struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
  333. shdma_chan);
  334. if (!(chcr_read(sh_chan) & CHCR_TE))
  335. return false;
  336. /* DMA stop */
  337. dmae_halt(sh_chan);
  338. return true;
  339. }
  340. static size_t sh_dmae_get_partial(struct shdma_chan *schan,
  341. struct shdma_desc *sdesc)
  342. {
  343. struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
  344. shdma_chan);
  345. struct sh_dmae_desc *sh_desc = container_of(sdesc,
  346. struct sh_dmae_desc, shdma_desc);
  347. return sh_desc->hw.tcr -
  348. (sh_dmae_readl(sh_chan, TCR) << sh_chan->xmit_shift);
  349. }
  350. /* Called from error IRQ or NMI */
  351. static bool sh_dmae_reset(struct sh_dmae_device *shdev)
  352. {
  353. bool ret;
  354. /* halt the dma controller */
  355. sh_dmae_ctl_stop(shdev);
  356. /* We cannot detect, which channel caused the error, have to reset all */
  357. ret = shdma_reset(&shdev->shdma_dev);
  358. sh_dmae_rst(shdev);
  359. return ret;
  360. }
  361. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  362. static irqreturn_t sh_dmae_err(int irq, void *data)
  363. {
  364. struct sh_dmae_device *shdev = data;
  365. if (!(dmaor_read(shdev) & DMAOR_AE))
  366. return IRQ_NONE;
  367. sh_dmae_reset(shdev);
  368. return IRQ_HANDLED;
  369. }
  370. #endif
  371. static bool sh_dmae_desc_completed(struct shdma_chan *schan,
  372. struct shdma_desc *sdesc)
  373. {
  374. struct sh_dmae_chan *sh_chan = container_of(schan,
  375. struct sh_dmae_chan, shdma_chan);
  376. struct sh_dmae_desc *sh_desc = container_of(sdesc,
  377. struct sh_dmae_desc, shdma_desc);
  378. u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
  379. u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
  380. return (sdesc->direction == DMA_DEV_TO_MEM &&
  381. (sh_desc->hw.dar + sh_desc->hw.tcr) == dar_buf) ||
  382. (sdesc->direction != DMA_DEV_TO_MEM &&
  383. (sh_desc->hw.sar + sh_desc->hw.tcr) == sar_buf);
  384. }
  385. static bool sh_dmae_nmi_notify(struct sh_dmae_device *shdev)
  386. {
  387. /* Fast path out if NMIF is not asserted for this controller */
  388. if ((dmaor_read(shdev) & DMAOR_NMIF) == 0)
  389. return false;
  390. return sh_dmae_reset(shdev);
  391. }
  392. static int sh_dmae_nmi_handler(struct notifier_block *self,
  393. unsigned long cmd, void *data)
  394. {
  395. struct sh_dmae_device *shdev;
  396. int ret = NOTIFY_DONE;
  397. bool triggered;
  398. /*
  399. * Only concern ourselves with NMI events.
  400. *
  401. * Normally we would check the die chain value, but as this needs
  402. * to be architecture independent, check for NMI context instead.
  403. */
  404. if (!in_nmi())
  405. return NOTIFY_DONE;
  406. rcu_read_lock();
  407. list_for_each_entry_rcu(shdev, &sh_dmae_devices, node) {
  408. /*
  409. * Only stop if one of the controllers has NMIF asserted,
  410. * we do not want to interfere with regular address error
  411. * handling or NMI events that don't concern the DMACs.
  412. */
  413. triggered = sh_dmae_nmi_notify(shdev);
  414. if (triggered == true)
  415. ret = NOTIFY_OK;
  416. }
  417. rcu_read_unlock();
  418. return ret;
  419. }
  420. static struct notifier_block sh_dmae_nmi_notifier __read_mostly = {
  421. .notifier_call = sh_dmae_nmi_handler,
  422. /* Run before NMI debug handler and KGDB */
  423. .priority = 1,
  424. };
  425. static int sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
  426. int irq, unsigned long flags)
  427. {
  428. const struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
  429. struct shdma_dev *sdev = &shdev->shdma_dev;
  430. struct platform_device *pdev = to_platform_device(sdev->dma_dev.dev);
  431. struct sh_dmae_chan *sh_chan;
  432. struct shdma_chan *schan;
  433. int err;
  434. sh_chan = devm_kzalloc(sdev->dma_dev.dev, sizeof(struct sh_dmae_chan),
  435. GFP_KERNEL);
  436. if (!sh_chan)
  437. return -ENOMEM;
  438. schan = &sh_chan->shdma_chan;
  439. schan->max_xfer_len = SH_DMA_TCR_MAX + 1;
  440. shdma_chan_probe(sdev, schan, id);
  441. sh_chan->base = shdev->chan_reg + chan_pdata->offset;
  442. /* set up channel irq */
  443. if (pdev->id >= 0)
  444. snprintf(sh_chan->dev_id, sizeof(sh_chan->dev_id),
  445. "sh-dmae%d.%d", pdev->id, id);
  446. else
  447. snprintf(sh_chan->dev_id, sizeof(sh_chan->dev_id),
  448. "sh-dma%d", id);
  449. err = shdma_request_irq(schan, irq, flags, sh_chan->dev_id);
  450. if (err) {
  451. dev_err(sdev->dma_dev.dev,
  452. "DMA channel %d request_irq error %d\n",
  453. id, err);
  454. goto err_no_irq;
  455. }
  456. shdev->chan[id] = sh_chan;
  457. return 0;
  458. err_no_irq:
  459. /* remove from dmaengine device node */
  460. shdma_chan_remove(schan);
  461. return err;
  462. }
  463. static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
  464. {
  465. struct shdma_chan *schan;
  466. int i;
  467. shdma_for_each_chan(schan, &shdev->shdma_dev, i) {
  468. BUG_ON(!schan);
  469. shdma_chan_remove(schan);
  470. }
  471. }
  472. #ifdef CONFIG_PM
  473. static int sh_dmae_runtime_suspend(struct device *dev)
  474. {
  475. struct sh_dmae_device *shdev = dev_get_drvdata(dev);
  476. sh_dmae_ctl_stop(shdev);
  477. return 0;
  478. }
  479. static int sh_dmae_runtime_resume(struct device *dev)
  480. {
  481. struct sh_dmae_device *shdev = dev_get_drvdata(dev);
  482. return sh_dmae_rst(shdev);
  483. }
  484. #endif
  485. #ifdef CONFIG_PM_SLEEP
  486. static int sh_dmae_suspend(struct device *dev)
  487. {
  488. struct sh_dmae_device *shdev = dev_get_drvdata(dev);
  489. sh_dmae_ctl_stop(shdev);
  490. return 0;
  491. }
  492. static int sh_dmae_resume(struct device *dev)
  493. {
  494. struct sh_dmae_device *shdev = dev_get_drvdata(dev);
  495. int i, ret;
  496. ret = sh_dmae_rst(shdev);
  497. if (ret < 0)
  498. dev_err(dev, "Failed to reset!\n");
  499. for (i = 0; i < shdev->pdata->channel_num; i++) {
  500. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  501. if (!sh_chan->shdma_chan.desc_num)
  502. continue;
  503. if (sh_chan->shdma_chan.slave_id >= 0) {
  504. const struct sh_dmae_slave_config *cfg = sh_chan->config;
  505. dmae_set_dmars(sh_chan, cfg->mid_rid);
  506. dmae_set_chcr(sh_chan, cfg->chcr);
  507. } else {
  508. dmae_init(sh_chan);
  509. }
  510. }
  511. return 0;
  512. }
  513. #endif
  514. static const struct dev_pm_ops sh_dmae_pm = {
  515. SET_SYSTEM_SLEEP_PM_OPS(sh_dmae_suspend, sh_dmae_resume)
  516. SET_RUNTIME_PM_OPS(sh_dmae_runtime_suspend, sh_dmae_runtime_resume,
  517. NULL)
  518. };
  519. static dma_addr_t sh_dmae_slave_addr(struct shdma_chan *schan)
  520. {
  521. struct sh_dmae_chan *sh_chan = container_of(schan,
  522. struct sh_dmae_chan, shdma_chan);
  523. /*
  524. * Implicit BUG_ON(!sh_chan->config)
  525. * This is an exclusive slave DMA operation, may only be called after a
  526. * successful slave configuration.
  527. */
  528. return sh_chan->slave_addr;
  529. }
  530. static struct shdma_desc *sh_dmae_embedded_desc(void *buf, int i)
  531. {
  532. return &((struct sh_dmae_desc *)buf)[i].shdma_desc;
  533. }
  534. static const struct shdma_ops sh_dmae_shdma_ops = {
  535. .desc_completed = sh_dmae_desc_completed,
  536. .halt_channel = sh_dmae_halt,
  537. .channel_busy = sh_dmae_channel_busy,
  538. .slave_addr = sh_dmae_slave_addr,
  539. .desc_setup = sh_dmae_desc_setup,
  540. .set_slave = sh_dmae_set_slave,
  541. .setup_xfer = sh_dmae_setup_xfer,
  542. .start_xfer = sh_dmae_start_xfer,
  543. .embedded_desc = sh_dmae_embedded_desc,
  544. .chan_irq = sh_dmae_chan_irq,
  545. .get_partial = sh_dmae_get_partial,
  546. };
  547. static const struct of_device_id sh_dmae_of_match[] = {
  548. {.compatible = "renesas,shdma-r8a73a4", .data = r8a73a4_shdma_devid,},
  549. {}
  550. };
  551. MODULE_DEVICE_TABLE(of, sh_dmae_of_match);
  552. static int sh_dmae_probe(struct platform_device *pdev)
  553. {
  554. const enum dma_slave_buswidth widths =
  555. DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES |
  556. DMA_SLAVE_BUSWIDTH_4_BYTES | DMA_SLAVE_BUSWIDTH_8_BYTES |
  557. DMA_SLAVE_BUSWIDTH_16_BYTES | DMA_SLAVE_BUSWIDTH_32_BYTES;
  558. const struct sh_dmae_pdata *pdata;
  559. unsigned long chan_flag[SH_DMAE_MAX_CHANNELS] = {};
  560. int chan_irq[SH_DMAE_MAX_CHANNELS];
  561. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  562. unsigned long irqflags = 0;
  563. int errirq;
  564. #endif
  565. int err, i, irq_cnt = 0, irqres = 0, irq_cap = 0;
  566. struct sh_dmae_device *shdev;
  567. struct dma_device *dma_dev;
  568. struct resource *chan, *dmars, *errirq_res, *chanirq_res;
  569. if (pdev->dev.of_node)
  570. pdata = of_device_get_match_data(&pdev->dev);
  571. else
  572. pdata = dev_get_platdata(&pdev->dev);
  573. /* get platform data */
  574. if (!pdata || !pdata->channel_num)
  575. return -ENODEV;
  576. chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  577. /* DMARS area is optional */
  578. dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  579. /*
  580. * IRQ resources:
  581. * 1. there always must be at least one IRQ IO-resource. On SH4 it is
  582. * the error IRQ, in which case it is the only IRQ in this resource:
  583. * start == end. If it is the only IRQ resource, all channels also
  584. * use the same IRQ.
  585. * 2. DMA channel IRQ resources can be specified one per resource or in
  586. * ranges (start != end)
  587. * 3. iff all events (channels and, optionally, error) on this
  588. * controller use the same IRQ, only one IRQ resource can be
  589. * specified, otherwise there must be one IRQ per channel, even if
  590. * some of them are equal
  591. * 4. if all IRQs on this controller are equal or if some specific IRQs
  592. * specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
  593. * requested with the IRQF_SHARED flag
  594. */
  595. errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  596. if (!chan || !errirq_res)
  597. return -ENODEV;
  598. shdev = devm_kzalloc(&pdev->dev, sizeof(struct sh_dmae_device),
  599. GFP_KERNEL);
  600. if (!shdev)
  601. return -ENOMEM;
  602. dma_dev = &shdev->shdma_dev.dma_dev;
  603. shdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan);
  604. if (IS_ERR(shdev->chan_reg))
  605. return PTR_ERR(shdev->chan_reg);
  606. if (dmars) {
  607. shdev->dmars = devm_ioremap_resource(&pdev->dev, dmars);
  608. if (IS_ERR(shdev->dmars))
  609. return PTR_ERR(shdev->dmars);
  610. }
  611. dma_dev->src_addr_widths = widths;
  612. dma_dev->dst_addr_widths = widths;
  613. dma_dev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
  614. dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
  615. if (!pdata->slave_only)
  616. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  617. if (pdata->slave && pdata->slave_num)
  618. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  619. /* Default transfer size of 32 bytes requires 32-byte alignment */
  620. dma_dev->copy_align = LOG2_DEFAULT_XFER_SIZE;
  621. shdev->shdma_dev.ops = &sh_dmae_shdma_ops;
  622. shdev->shdma_dev.desc_size = sizeof(struct sh_dmae_desc);
  623. err = shdma_init(&pdev->dev, &shdev->shdma_dev,
  624. pdata->channel_num);
  625. if (err < 0)
  626. goto eshdma;
  627. /* platform data */
  628. shdev->pdata = pdata;
  629. if (pdata->chcr_offset)
  630. shdev->chcr_offset = pdata->chcr_offset;
  631. else
  632. shdev->chcr_offset = CHCR;
  633. if (pdata->chcr_ie_bit)
  634. shdev->chcr_ie_bit = pdata->chcr_ie_bit;
  635. else
  636. shdev->chcr_ie_bit = CHCR_IE;
  637. platform_set_drvdata(pdev, shdev);
  638. pm_runtime_enable(&pdev->dev);
  639. err = pm_runtime_get_sync(&pdev->dev);
  640. if (err < 0)
  641. dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
  642. spin_lock_irq(&sh_dmae_lock);
  643. list_add_tail_rcu(&shdev->node, &sh_dmae_devices);
  644. spin_unlock_irq(&sh_dmae_lock);
  645. /* reset dma controller - only needed as a test */
  646. err = sh_dmae_rst(shdev);
  647. if (err)
  648. goto rst_err;
  649. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  650. chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
  651. if (!chanirq_res)
  652. chanirq_res = errirq_res;
  653. else
  654. irqres++;
  655. if (chanirq_res == errirq_res ||
  656. (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
  657. irqflags = IRQF_SHARED;
  658. errirq = errirq_res->start;
  659. err = devm_request_irq(&pdev->dev, errirq, sh_dmae_err, irqflags,
  660. "DMAC Address Error", shdev);
  661. if (err) {
  662. dev_err(&pdev->dev,
  663. "DMA failed requesting irq #%d, error %d\n",
  664. errirq, err);
  665. goto eirq_err;
  666. }
  667. #else
  668. chanirq_res = errirq_res;
  669. #endif /* CONFIG_CPU_SH4 || CONFIG_ARCH_SHMOBILE */
  670. if (chanirq_res->start == chanirq_res->end &&
  671. !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
  672. /* Special case - all multiplexed */
  673. for (; irq_cnt < pdata->channel_num; irq_cnt++) {
  674. if (irq_cnt < SH_DMAE_MAX_CHANNELS) {
  675. chan_irq[irq_cnt] = chanirq_res->start;
  676. chan_flag[irq_cnt] = IRQF_SHARED;
  677. } else {
  678. irq_cap = 1;
  679. break;
  680. }
  681. }
  682. } else {
  683. do {
  684. for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
  685. if (irq_cnt >= SH_DMAE_MAX_CHANNELS) {
  686. irq_cap = 1;
  687. break;
  688. }
  689. if ((errirq_res->flags & IORESOURCE_BITS) ==
  690. IORESOURCE_IRQ_SHAREABLE)
  691. chan_flag[irq_cnt] = IRQF_SHARED;
  692. else
  693. chan_flag[irq_cnt] = 0;
  694. dev_dbg(&pdev->dev,
  695. "Found IRQ %d for channel %d\n",
  696. i, irq_cnt);
  697. chan_irq[irq_cnt++] = i;
  698. }
  699. if (irq_cnt >= SH_DMAE_MAX_CHANNELS)
  700. break;
  701. chanirq_res = platform_get_resource(pdev,
  702. IORESOURCE_IRQ, ++irqres);
  703. } while (irq_cnt < pdata->channel_num && chanirq_res);
  704. }
  705. /* Create DMA Channel */
  706. for (i = 0; i < irq_cnt; i++) {
  707. err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
  708. if (err)
  709. goto chan_probe_err;
  710. }
  711. if (irq_cap)
  712. dev_notice(&pdev->dev, "Attempting to register %d DMA "
  713. "channels when a maximum of %d are supported.\n",
  714. pdata->channel_num, SH_DMAE_MAX_CHANNELS);
  715. pm_runtime_put(&pdev->dev);
  716. err = dma_async_device_register(&shdev->shdma_dev.dma_dev);
  717. if (err < 0)
  718. goto edmadevreg;
  719. return err;
  720. edmadevreg:
  721. pm_runtime_get(&pdev->dev);
  722. chan_probe_err:
  723. sh_dmae_chan_remove(shdev);
  724. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  725. eirq_err:
  726. #endif
  727. rst_err:
  728. spin_lock_irq(&sh_dmae_lock);
  729. list_del_rcu(&shdev->node);
  730. spin_unlock_irq(&sh_dmae_lock);
  731. pm_runtime_put(&pdev->dev);
  732. pm_runtime_disable(&pdev->dev);
  733. shdma_cleanup(&shdev->shdma_dev);
  734. eshdma:
  735. synchronize_rcu();
  736. return err;
  737. }
  738. static int sh_dmae_remove(struct platform_device *pdev)
  739. {
  740. struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
  741. struct dma_device *dma_dev = &shdev->shdma_dev.dma_dev;
  742. dma_async_device_unregister(dma_dev);
  743. spin_lock_irq(&sh_dmae_lock);
  744. list_del_rcu(&shdev->node);
  745. spin_unlock_irq(&sh_dmae_lock);
  746. pm_runtime_disable(&pdev->dev);
  747. sh_dmae_chan_remove(shdev);
  748. shdma_cleanup(&shdev->shdma_dev);
  749. synchronize_rcu();
  750. return 0;
  751. }
  752. static struct platform_driver sh_dmae_driver = {
  753. .driver = {
  754. .pm = &sh_dmae_pm,
  755. .name = SH_DMAE_DRV_NAME,
  756. .of_match_table = sh_dmae_of_match,
  757. },
  758. .remove = sh_dmae_remove,
  759. };
  760. static int __init sh_dmae_init(void)
  761. {
  762. /* Wire up NMI handling */
  763. int err = register_die_notifier(&sh_dmae_nmi_notifier);
  764. if (err)
  765. return err;
  766. return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
  767. }
  768. module_init(sh_dmae_init);
  769. static void __exit sh_dmae_exit(void)
  770. {
  771. platform_driver_unregister(&sh_dmae_driver);
  772. unregister_die_notifier(&sh_dmae_nmi_notifier);
  773. }
  774. module_exit(sh_dmae_exit);
  775. MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
  776. MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
  777. MODULE_LICENSE("GPL");
  778. MODULE_ALIAS("platform:" SH_DMAE_DRV_NAME);