123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506 |
- /*
- * Copyright (C) 1995 Linus Torvalds
- * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
- * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
- */
- #include <linux/sched.h> /* test_thread_flag(), ... */
- #include <linux/kdebug.h> /* oops_begin/end, ... */
- #include <linux/extable.h> /* search_exception_tables */
- #include <linux/bootmem.h> /* max_low_pfn */
- #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
- #include <linux/mmiotrace.h> /* kmmio_handler, ... */
- #include <linux/perf_event.h> /* perf_sw_event */
- #include <linux/hugetlb.h> /* hstate_index_to_shift */
- #include <linux/prefetch.h> /* prefetchw */
- #include <linux/context_tracking.h> /* exception_enter(), ... */
- #include <linux/uaccess.h> /* faulthandler_disabled() */
- #include <asm/cpufeature.h> /* boot_cpu_has, ... */
- #include <asm/traps.h> /* dotraplinkage, ... */
- #include <asm/pgalloc.h> /* pgd_*(), ... */
- #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
- #include <asm/fixmap.h> /* VSYSCALL_ADDR */
- #include <asm/vsyscall.h> /* emulate_vsyscall */
- #include <asm/vm86.h> /* struct vm86 */
- #include <asm/mmu_context.h> /* vma_pkey() */
- #define CREATE_TRACE_POINTS
- #include <asm/trace/exceptions.h>
- /*
- * Page fault error code bits:
- *
- * bit 0 == 0: no page found 1: protection fault
- * bit 1 == 0: read access 1: write access
- * bit 2 == 0: kernel-mode access 1: user-mode access
- * bit 3 == 1: use of reserved bit detected
- * bit 4 == 1: fault was an instruction fetch
- * bit 5 == 1: protection keys block access
- */
- enum x86_pf_error_code {
- PF_PROT = 1 << 0,
- PF_WRITE = 1 << 1,
- PF_USER = 1 << 2,
- PF_RSVD = 1 << 3,
- PF_INSTR = 1 << 4,
- PF_PK = 1 << 5,
- };
- /*
- * Returns 0 if mmiotrace is disabled, or if the fault is not
- * handled by mmiotrace:
- */
- static nokprobe_inline int
- kmmio_fault(struct pt_regs *regs, unsigned long addr)
- {
- if (unlikely(is_kmmio_active()))
- if (kmmio_handler(regs, addr) == 1)
- return -1;
- return 0;
- }
- static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
- {
- int ret = 0;
- /* kprobe_running() needs smp_processor_id() */
- if (kprobes_built_in() && !user_mode(regs)) {
- preempt_disable();
- if (kprobe_running() && kprobe_fault_handler(regs, 14))
- ret = 1;
- preempt_enable();
- }
- return ret;
- }
- /*
- * Prefetch quirks:
- *
- * 32-bit mode:
- *
- * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
- * Check that here and ignore it.
- *
- * 64-bit mode:
- *
- * Sometimes the CPU reports invalid exceptions on prefetch.
- * Check that here and ignore it.
- *
- * Opcode checker based on code by Richard Brunner.
- */
- static inline int
- check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
- unsigned char opcode, int *prefetch)
- {
- unsigned char instr_hi = opcode & 0xf0;
- unsigned char instr_lo = opcode & 0x0f;
- switch (instr_hi) {
- case 0x20:
- case 0x30:
- /*
- * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
- * In X86_64 long mode, the CPU will signal invalid
- * opcode if some of these prefixes are present so
- * X86_64 will never get here anyway
- */
- return ((instr_lo & 7) == 0x6);
- #ifdef CONFIG_X86_64
- case 0x40:
- /*
- * In AMD64 long mode 0x40..0x4F are valid REX prefixes
- * Need to figure out under what instruction mode the
- * instruction was issued. Could check the LDT for lm,
- * but for now it's good enough to assume that long
- * mode only uses well known segments or kernel.
- */
- return (!user_mode(regs) || user_64bit_mode(regs));
- #endif
- case 0x60:
- /* 0x64 thru 0x67 are valid prefixes in all modes. */
- return (instr_lo & 0xC) == 0x4;
- case 0xF0:
- /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
- return !instr_lo || (instr_lo>>1) == 1;
- case 0x00:
- /* Prefetch instruction is 0x0F0D or 0x0F18 */
- if (probe_kernel_address(instr, opcode))
- return 0;
- *prefetch = (instr_lo == 0xF) &&
- (opcode == 0x0D || opcode == 0x18);
- return 0;
- default:
- return 0;
- }
- }
- static int
- is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
- {
- unsigned char *max_instr;
- unsigned char *instr;
- int prefetch = 0;
- /*
- * If it was a exec (instruction fetch) fault on NX page, then
- * do not ignore the fault:
- */
- if (error_code & PF_INSTR)
- return 0;
- instr = (void *)convert_ip_to_linear(current, regs);
- max_instr = instr + 15;
- if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
- return 0;
- while (instr < max_instr) {
- unsigned char opcode;
- if (probe_kernel_address(instr, opcode))
- break;
- instr++;
- if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
- break;
- }
- return prefetch;
- }
- /*
- * A protection key fault means that the PKRU value did not allow
- * access to some PTE. Userspace can figure out what PKRU was
- * from the XSAVE state, and this function fills out a field in
- * siginfo so userspace can discover which protection key was set
- * on the PTE.
- *
- * If we get here, we know that the hardware signaled a PF_PK
- * fault and that there was a VMA once we got in the fault
- * handler. It does *not* guarantee that the VMA we find here
- * was the one that we faulted on.
- *
- * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
- * 2. T1 : set PKRU to deny access to pkey=4, touches page
- * 3. T1 : faults...
- * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
- * 5. T1 : enters fault handler, takes mmap_sem, etc...
- * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
- * faulted on a pte with its pkey=4.
- */
- static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
- u32 *pkey)
- {
- /* This is effectively an #ifdef */
- if (!boot_cpu_has(X86_FEATURE_OSPKE))
- return;
- /* Fault not from Protection Keys: nothing to do */
- if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
- return;
- /*
- * force_sig_info_fault() is called from a number of
- * contexts, some of which have a VMA and some of which
- * do not. The PF_PK handing happens after we have a
- * valid VMA, so we should never reach this without a
- * valid VMA.
- */
- if (!pkey) {
- WARN_ONCE(1, "PKU fault with no VMA passed in");
- info->si_pkey = 0;
- return;
- }
- /*
- * si_pkey should be thought of as a strong hint, but not
- * absolutely guranteed to be 100% accurate because of
- * the race explained above.
- */
- info->si_pkey = *pkey;
- }
- static void
- force_sig_info_fault(int si_signo, int si_code, unsigned long address,
- struct task_struct *tsk, u32 *pkey, int fault)
- {
- unsigned lsb = 0;
- siginfo_t info;
- info.si_signo = si_signo;
- info.si_errno = 0;
- info.si_code = si_code;
- info.si_addr = (void __user *)address;
- if (fault & VM_FAULT_HWPOISON_LARGE)
- lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
- if (fault & VM_FAULT_HWPOISON)
- lsb = PAGE_SHIFT;
- info.si_addr_lsb = lsb;
- fill_sig_info_pkey(si_signo, si_code, &info, pkey);
- force_sig_info(si_signo, &info, tsk);
- }
- DEFINE_SPINLOCK(pgd_lock);
- LIST_HEAD(pgd_list);
- #ifdef CONFIG_X86_32
- static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
- {
- unsigned index = pgd_index(address);
- pgd_t *pgd_k;
- pud_t *pud, *pud_k;
- pmd_t *pmd, *pmd_k;
- pgd += index;
- pgd_k = init_mm.pgd + index;
- if (!pgd_present(*pgd_k))
- return NULL;
- /*
- * set_pgd(pgd, *pgd_k); here would be useless on PAE
- * and redundant with the set_pmd() on non-PAE. As would
- * set_pud.
- */
- pud = pud_offset(pgd, address);
- pud_k = pud_offset(pgd_k, address);
- if (!pud_present(*pud_k))
- return NULL;
- pmd = pmd_offset(pud, address);
- pmd_k = pmd_offset(pud_k, address);
- if (!pmd_present(*pmd_k))
- return NULL;
- if (!pmd_present(*pmd))
- set_pmd(pmd, *pmd_k);
- else
- BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
- return pmd_k;
- }
- void vmalloc_sync_all(void)
- {
- unsigned long address;
- if (SHARED_KERNEL_PMD)
- return;
- for (address = VMALLOC_START & PMD_MASK;
- address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
- address += PMD_SIZE) {
- struct page *page;
- spin_lock(&pgd_lock);
- list_for_each_entry(page, &pgd_list, lru) {
- spinlock_t *pgt_lock;
- pmd_t *ret;
- /* the pgt_lock only for Xen */
- pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
- spin_lock(pgt_lock);
- ret = vmalloc_sync_one(page_address(page), address);
- spin_unlock(pgt_lock);
- if (!ret)
- break;
- }
- spin_unlock(&pgd_lock);
- }
- }
- /*
- * 32-bit:
- *
- * Handle a fault on the vmalloc or module mapping area
- */
- static noinline int vmalloc_fault(unsigned long address)
- {
- unsigned long pgd_paddr;
- pmd_t *pmd_k;
- pte_t *pte_k;
- /* Make sure we are in vmalloc area: */
- if (!(address >= VMALLOC_START && address < VMALLOC_END))
- return -1;
- WARN_ON_ONCE(in_nmi());
- /*
- * Synchronize this task's top level page-table
- * with the 'reference' page table.
- *
- * Do _not_ use "current" here. We might be inside
- * an interrupt in the middle of a task switch..
- */
- pgd_paddr = read_cr3();
- pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
- if (!pmd_k)
- return -1;
- if (pmd_large(*pmd_k))
- return 0;
- pte_k = pte_offset_kernel(pmd_k, address);
- if (!pte_present(*pte_k))
- return -1;
- return 0;
- }
- NOKPROBE_SYMBOL(vmalloc_fault);
- /*
- * Did it hit the DOS screen memory VA from vm86 mode?
- */
- static inline void
- check_v8086_mode(struct pt_regs *regs, unsigned long address,
- struct task_struct *tsk)
- {
- #ifdef CONFIG_VM86
- unsigned long bit;
- if (!v8086_mode(regs) || !tsk->thread.vm86)
- return;
- bit = (address - 0xA0000) >> PAGE_SHIFT;
- if (bit < 32)
- tsk->thread.vm86->screen_bitmap |= 1 << bit;
- #endif
- }
- static bool low_pfn(unsigned long pfn)
- {
- return pfn < max_low_pfn;
- }
- static void dump_pagetable(unsigned long address)
- {
- pgd_t *base = __va(read_cr3());
- pgd_t *pgd = &base[pgd_index(address)];
- pmd_t *pmd;
- pte_t *pte;
- #ifdef CONFIG_X86_PAE
- printk("*pdpt = %016Lx ", pgd_val(*pgd));
- if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
- goto out;
- #endif
- pmd = pmd_offset(pud_offset(pgd, address), address);
- printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
- /*
- * We must not directly access the pte in the highpte
- * case if the page table is located in highmem.
- * And let's rather not kmap-atomic the pte, just in case
- * it's allocated already:
- */
- if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
- goto out;
- pte = pte_offset_kernel(pmd, address);
- printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
- out:
- printk("\n");
- }
- #else /* CONFIG_X86_64: */
- void vmalloc_sync_all(void)
- {
- sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
- }
- /*
- * 64-bit:
- *
- * Handle a fault on the vmalloc area
- */
- static noinline int vmalloc_fault(unsigned long address)
- {
- pgd_t *pgd, *pgd_ref;
- pud_t *pud, *pud_ref;
- pmd_t *pmd, *pmd_ref;
- pte_t *pte, *pte_ref;
- /* Make sure we are in vmalloc area: */
- if (!(address >= VMALLOC_START && address < VMALLOC_END))
- return -1;
- WARN_ON_ONCE(in_nmi());
- /*
- * Copy kernel mappings over when needed. This can also
- * happen within a race in page table update. In the later
- * case just flush:
- */
- pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
- pgd_ref = pgd_offset_k(address);
- if (pgd_none(*pgd_ref))
- return -1;
- if (pgd_none(*pgd)) {
- set_pgd(pgd, *pgd_ref);
- arch_flush_lazy_mmu_mode();
- } else {
- BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
- }
- /*
- * Below here mismatches are bugs because these lower tables
- * are shared:
- */
- pud = pud_offset(pgd, address);
- pud_ref = pud_offset(pgd_ref, address);
- if (pud_none(*pud_ref))
- return -1;
- if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
- BUG();
- if (pud_large(*pud))
- return 0;
- pmd = pmd_offset(pud, address);
- pmd_ref = pmd_offset(pud_ref, address);
- if (pmd_none(*pmd_ref))
- return -1;
- if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
- BUG();
- if (pmd_large(*pmd))
- return 0;
- pte_ref = pte_offset_kernel(pmd_ref, address);
- if (!pte_present(*pte_ref))
- return -1;
- pte = pte_offset_kernel(pmd, address);
- /*
- * Don't use pte_page here, because the mappings can point
- * outside mem_map, and the NUMA hash lookup cannot handle
- * that:
- */
- if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
- BUG();
- return 0;
- }
- NOKPROBE_SYMBOL(vmalloc_fault);
- #ifdef CONFIG_CPU_SUP_AMD
- static const char errata93_warning[] =
- KERN_ERR
- "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
- "******* Working around it, but it may cause SEGVs or burn power.\n"
- "******* Please consider a BIOS update.\n"
- "******* Disabling USB legacy in the BIOS may also help.\n";
- #endif
- /*
- * No vm86 mode in 64-bit mode:
- */
- static inline void
- check_v8086_mode(struct pt_regs *regs, unsigned long address,
- struct task_struct *tsk)
- {
- }
- static int bad_address(void *p)
- {
- unsigned long dummy;
- return probe_kernel_address((unsigned long *)p, dummy);
- }
- static void dump_pagetable(unsigned long address)
- {
- pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
- pgd_t *pgd = base + pgd_index(address);
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- if (bad_address(pgd))
- goto bad;
- printk("PGD %lx ", pgd_val(*pgd));
- if (!pgd_present(*pgd))
- goto out;
- pud = pud_offset(pgd, address);
- if (bad_address(pud))
- goto bad;
- printk("PUD %lx ", pud_val(*pud));
- if (!pud_present(*pud) || pud_large(*pud))
- goto out;
- pmd = pmd_offset(pud, address);
- if (bad_address(pmd))
- goto bad;
- printk("PMD %lx ", pmd_val(*pmd));
- if (!pmd_present(*pmd) || pmd_large(*pmd))
- goto out;
- pte = pte_offset_kernel(pmd, address);
- if (bad_address(pte))
- goto bad;
- printk("PTE %lx", pte_val(*pte));
- out:
- printk("\n");
- return;
- bad:
- printk("BAD\n");
- }
- #endif /* CONFIG_X86_64 */
- /*
- * Workaround for K8 erratum #93 & buggy BIOS.
- *
- * BIOS SMM functions are required to use a specific workaround
- * to avoid corruption of the 64bit RIP register on C stepping K8.
- *
- * A lot of BIOS that didn't get tested properly miss this.
- *
- * The OS sees this as a page fault with the upper 32bits of RIP cleared.
- * Try to work around it here.
- *
- * Note we only handle faults in kernel here.
- * Does nothing on 32-bit.
- */
- static int is_errata93(struct pt_regs *regs, unsigned long address)
- {
- #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
- if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
- || boot_cpu_data.x86 != 0xf)
- return 0;
- if (address != regs->ip)
- return 0;
- if ((address >> 32) != 0)
- return 0;
- address |= 0xffffffffUL << 32;
- if ((address >= (u64)_stext && address <= (u64)_etext) ||
- (address >= MODULES_VADDR && address <= MODULES_END)) {
- printk_once(errata93_warning);
- regs->ip = address;
- return 1;
- }
- #endif
- return 0;
- }
- /*
- * Work around K8 erratum #100 K8 in compat mode occasionally jumps
- * to illegal addresses >4GB.
- *
- * We catch this in the page fault handler because these addresses
- * are not reachable. Just detect this case and return. Any code
- * segment in LDT is compatibility mode.
- */
- static int is_errata100(struct pt_regs *regs, unsigned long address)
- {
- #ifdef CONFIG_X86_64
- if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
- return 1;
- #endif
- return 0;
- }
- static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
- {
- #ifdef CONFIG_X86_F00F_BUG
- unsigned long nr;
- /*
- * Pentium F0 0F C7 C8 bug workaround:
- */
- if (boot_cpu_has_bug(X86_BUG_F00F)) {
- nr = (address - idt_descr.address) >> 3;
- if (nr == 6) {
- do_invalid_op(regs, 0);
- return 1;
- }
- }
- #endif
- return 0;
- }
- static const char nx_warning[] = KERN_CRIT
- "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
- static const char smep_warning[] = KERN_CRIT
- "unable to execute userspace code (SMEP?) (uid: %d)\n";
- static void
- show_fault_oops(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- if (!oops_may_print())
- return;
- if (error_code & PF_INSTR) {
- unsigned int level;
- pgd_t *pgd;
- pte_t *pte;
- pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
- pgd += pgd_index(address);
- pte = lookup_address_in_pgd(pgd, address, &level);
- if (pte && pte_present(*pte) && !pte_exec(*pte))
- printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
- if (pte && pte_present(*pte) && pte_exec(*pte) &&
- (pgd_flags(*pgd) & _PAGE_USER) &&
- (__read_cr4() & X86_CR4_SMEP))
- printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
- }
- printk(KERN_ALERT "BUG: unable to handle kernel ");
- if (address < PAGE_SIZE)
- printk(KERN_CONT "NULL pointer dereference");
- else
- printk(KERN_CONT "paging request");
- printk(KERN_CONT " at %p\n", (void *) address);
- printk(KERN_ALERT "IP:");
- printk_address(regs->ip);
- dump_pagetable(address);
- }
- static noinline void
- pgtable_bad(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- struct task_struct *tsk;
- unsigned long flags;
- int sig;
- flags = oops_begin();
- tsk = current;
- sig = SIGKILL;
- printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
- tsk->comm, address);
- dump_pagetable(address);
- tsk->thread.cr2 = address;
- tsk->thread.trap_nr = X86_TRAP_PF;
- tsk->thread.error_code = error_code;
- if (__die("Bad pagetable", regs, error_code))
- sig = 0;
- oops_end(flags, regs, sig);
- }
- static noinline void
- no_context(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, int signal, int si_code)
- {
- struct task_struct *tsk = current;
- unsigned long flags;
- int sig;
- /* Are we prepared to handle this kernel fault? */
- if (fixup_exception(regs, X86_TRAP_PF)) {
- /*
- * Any interrupt that takes a fault gets the fixup. This makes
- * the below recursive fault logic only apply to a faults from
- * task context.
- */
- if (in_interrupt())
- return;
- /*
- * Per the above we're !in_interrupt(), aka. task context.
- *
- * In this case we need to make sure we're not recursively
- * faulting through the emulate_vsyscall() logic.
- */
- if (current->thread.sig_on_uaccess_err && signal) {
- tsk->thread.trap_nr = X86_TRAP_PF;
- tsk->thread.error_code = error_code | PF_USER;
- tsk->thread.cr2 = address;
- /* XXX: hwpoison faults will set the wrong code. */
- force_sig_info_fault(signal, si_code, address,
- tsk, NULL, 0);
- }
- /*
- * Barring that, we can do the fixup and be happy.
- */
- return;
- }
- #ifdef CONFIG_VMAP_STACK
- /*
- * Stack overflow? During boot, we can fault near the initial
- * stack in the direct map, but that's not an overflow -- check
- * that we're in vmalloc space to avoid this.
- */
- if (is_vmalloc_addr((void *)address) &&
- (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
- address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
- register void *__sp asm("rsp");
- unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
- /*
- * We're likely to be running with very little stack space
- * left. It's plausible that we'd hit this condition but
- * double-fault even before we get this far, in which case
- * we're fine: the double-fault handler will deal with it.
- *
- * We don't want to make it all the way into the oops code
- * and then double-fault, though, because we're likely to
- * break the console driver and lose most of the stack dump.
- */
- asm volatile ("movq %[stack], %%rsp\n\t"
- "call handle_stack_overflow\n\t"
- "1: jmp 1b"
- : "+r" (__sp)
- : "D" ("kernel stack overflow (page fault)"),
- "S" (regs), "d" (address),
- [stack] "rm" (stack));
- unreachable();
- }
- #endif
- /*
- * 32-bit:
- *
- * Valid to do another page fault here, because if this fault
- * had been triggered by is_prefetch fixup_exception would have
- * handled it.
- *
- * 64-bit:
- *
- * Hall of shame of CPU/BIOS bugs.
- */
- if (is_prefetch(regs, error_code, address))
- return;
- if (is_errata93(regs, address))
- return;
- /*
- * Oops. The kernel tried to access some bad page. We'll have to
- * terminate things with extreme prejudice:
- */
- flags = oops_begin();
- show_fault_oops(regs, error_code, address);
- if (task_stack_end_corrupted(tsk))
- printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
- tsk->thread.cr2 = address;
- tsk->thread.trap_nr = X86_TRAP_PF;
- tsk->thread.error_code = error_code;
- sig = SIGKILL;
- if (__die("Oops", regs, error_code))
- sig = 0;
- /* Executive summary in case the body of the oops scrolled away */
- printk(KERN_DEFAULT "CR2: %016lx\n", address);
- oops_end(flags, regs, sig);
- }
- /*
- * Print out info about fatal segfaults, if the show_unhandled_signals
- * sysctl is set:
- */
- static inline void
- show_signal_msg(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, struct task_struct *tsk)
- {
- if (!unhandled_signal(tsk, SIGSEGV))
- return;
- if (!printk_ratelimit())
- return;
- printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
- task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
- tsk->comm, task_pid_nr(tsk), address,
- (void *)regs->ip, (void *)regs->sp, error_code);
- print_vma_addr(KERN_CONT " in ", regs->ip);
- printk(KERN_CONT "\n");
- }
- static void
- __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, u32 *pkey, int si_code)
- {
- struct task_struct *tsk = current;
- /* User mode accesses just cause a SIGSEGV */
- if (error_code & PF_USER) {
- /*
- * It's possible to have interrupts off here:
- */
- local_irq_enable();
- /*
- * Valid to do another page fault here because this one came
- * from user space:
- */
- if (is_prefetch(regs, error_code, address))
- return;
- if (is_errata100(regs, address))
- return;
- #ifdef CONFIG_X86_64
- /*
- * Instruction fetch faults in the vsyscall page might need
- * emulation.
- */
- if (unlikely((error_code & PF_INSTR) &&
- ((address & ~0xfff) == VSYSCALL_ADDR))) {
- if (emulate_vsyscall(regs, address))
- return;
- }
- #endif
- /*
- * To avoid leaking information about the kernel page table
- * layout, pretend that user-mode accesses to kernel addresses
- * are always protection faults.
- */
- if (address >= TASK_SIZE_MAX)
- error_code |= PF_PROT;
- if (likely(show_unhandled_signals))
- show_signal_msg(regs, error_code, address, tsk);
- tsk->thread.cr2 = address;
- tsk->thread.error_code = error_code;
- tsk->thread.trap_nr = X86_TRAP_PF;
- force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
- return;
- }
- if (is_f00f_bug(regs, address))
- return;
- no_context(regs, error_code, address, SIGSEGV, si_code);
- }
- static noinline void
- bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, u32 *pkey)
- {
- __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
- }
- static void
- __bad_area(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, struct vm_area_struct *vma, int si_code)
- {
- struct mm_struct *mm = current->mm;
- u32 pkey;
- if (vma)
- pkey = vma_pkey(vma);
- /*
- * Something tried to access memory that isn't in our memory map..
- * Fix it, but check if it's kernel or user first..
- */
- up_read(&mm->mmap_sem);
- __bad_area_nosemaphore(regs, error_code, address,
- (vma) ? &pkey : NULL, si_code);
- }
- static noinline void
- bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
- {
- __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
- }
- static inline bool bad_area_access_from_pkeys(unsigned long error_code,
- struct vm_area_struct *vma)
- {
- /* This code is always called on the current mm */
- bool foreign = false;
- if (!boot_cpu_has(X86_FEATURE_OSPKE))
- return false;
- if (error_code & PF_PK)
- return true;
- /* this checks permission keys on the VMA: */
- if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
- (error_code & PF_INSTR), foreign))
- return true;
- return false;
- }
- static noinline void
- bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, struct vm_area_struct *vma)
- {
- /*
- * This OSPKE check is not strictly necessary at runtime.
- * But, doing it this way allows compiler optimizations
- * if pkeys are compiled out.
- */
- if (bad_area_access_from_pkeys(error_code, vma))
- __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
- else
- __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
- }
- static void
- do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
- u32 *pkey, unsigned int fault)
- {
- struct task_struct *tsk = current;
- int code = BUS_ADRERR;
- /* Kernel mode? Handle exceptions or die: */
- if (!(error_code & PF_USER)) {
- no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
- return;
- }
- /* User-space => ok to do another page fault: */
- if (is_prefetch(regs, error_code, address))
- return;
- tsk->thread.cr2 = address;
- tsk->thread.error_code = error_code;
- tsk->thread.trap_nr = X86_TRAP_PF;
- #ifdef CONFIG_MEMORY_FAILURE
- if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
- printk(KERN_ERR
- "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
- tsk->comm, tsk->pid, address);
- code = BUS_MCEERR_AR;
- }
- #endif
- force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
- }
- static noinline void
- mm_fault_error(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, u32 *pkey, unsigned int fault)
- {
- if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
- no_context(regs, error_code, address, 0, 0);
- return;
- }
- if (fault & VM_FAULT_OOM) {
- /* Kernel mode? Handle exceptions or die: */
- if (!(error_code & PF_USER)) {
- no_context(regs, error_code, address,
- SIGSEGV, SEGV_MAPERR);
- return;
- }
- /*
- * We ran out of memory, call the OOM killer, and return the
- * userspace (which will retry the fault, or kill us if we got
- * oom-killed):
- */
- pagefault_out_of_memory();
- } else {
- if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
- VM_FAULT_HWPOISON_LARGE))
- do_sigbus(regs, error_code, address, pkey, fault);
- else if (fault & VM_FAULT_SIGSEGV)
- bad_area_nosemaphore(regs, error_code, address, pkey);
- else
- BUG();
- }
- }
- static int spurious_fault_check(unsigned long error_code, pte_t *pte)
- {
- if ((error_code & PF_WRITE) && !pte_write(*pte))
- return 0;
- if ((error_code & PF_INSTR) && !pte_exec(*pte))
- return 0;
- /*
- * Note: We do not do lazy flushing on protection key
- * changes, so no spurious fault will ever set PF_PK.
- */
- if ((error_code & PF_PK))
- return 1;
- return 1;
- }
- /*
- * Handle a spurious fault caused by a stale TLB entry.
- *
- * This allows us to lazily refresh the TLB when increasing the
- * permissions of a kernel page (RO -> RW or NX -> X). Doing it
- * eagerly is very expensive since that implies doing a full
- * cross-processor TLB flush, even if no stale TLB entries exist
- * on other processors.
- *
- * Spurious faults may only occur if the TLB contains an entry with
- * fewer permission than the page table entry. Non-present (P = 0)
- * and reserved bit (R = 1) faults are never spurious.
- *
- * There are no security implications to leaving a stale TLB when
- * increasing the permissions on a page.
- *
- * Returns non-zero if a spurious fault was handled, zero otherwise.
- *
- * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
- * (Optional Invalidation).
- */
- static noinline int
- spurious_fault(unsigned long error_code, unsigned long address)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- int ret;
- /*
- * Only writes to RO or instruction fetches from NX may cause
- * spurious faults.
- *
- * These could be from user or supervisor accesses but the TLB
- * is only lazily flushed after a kernel mapping protection
- * change, so user accesses are not expected to cause spurious
- * faults.
- */
- if (error_code != (PF_WRITE | PF_PROT)
- && error_code != (PF_INSTR | PF_PROT))
- return 0;
- pgd = init_mm.pgd + pgd_index(address);
- if (!pgd_present(*pgd))
- return 0;
- pud = pud_offset(pgd, address);
- if (!pud_present(*pud))
- return 0;
- if (pud_large(*pud))
- return spurious_fault_check(error_code, (pte_t *) pud);
- pmd = pmd_offset(pud, address);
- if (!pmd_present(*pmd))
- return 0;
- if (pmd_large(*pmd))
- return spurious_fault_check(error_code, (pte_t *) pmd);
- pte = pte_offset_kernel(pmd, address);
- if (!pte_present(*pte))
- return 0;
- ret = spurious_fault_check(error_code, pte);
- if (!ret)
- return 0;
- /*
- * Make sure we have permissions in PMD.
- * If not, then there's a bug in the page tables:
- */
- ret = spurious_fault_check(error_code, (pte_t *) pmd);
- WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
- return ret;
- }
- NOKPROBE_SYMBOL(spurious_fault);
- int show_unhandled_signals = 1;
- static inline int
- access_error(unsigned long error_code, struct vm_area_struct *vma)
- {
- /* This is only called for the current mm, so: */
- bool foreign = false;
- /*
- * Read or write was blocked by protection keys. This is
- * always an unconditional error and can never result in
- * a follow-up action to resolve the fault, like a COW.
- */
- if (error_code & PF_PK)
- return 1;
- /*
- * Make sure to check the VMA so that we do not perform
- * faults just to hit a PF_PK as soon as we fill in a
- * page.
- */
- if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
- (error_code & PF_INSTR), foreign))
- return 1;
- if (error_code & PF_WRITE) {
- /* write, present and write, not present: */
- if (unlikely(!(vma->vm_flags & VM_WRITE)))
- return 1;
- return 0;
- }
- /* read, present: */
- if (unlikely(error_code & PF_PROT))
- return 1;
- /* read, not present: */
- if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
- return 1;
- return 0;
- }
- static int fault_in_kernel_space(unsigned long address)
- {
- return address >= TASK_SIZE_MAX;
- }
- static inline bool smap_violation(int error_code, struct pt_regs *regs)
- {
- if (!IS_ENABLED(CONFIG_X86_SMAP))
- return false;
- if (!static_cpu_has(X86_FEATURE_SMAP))
- return false;
- if (error_code & PF_USER)
- return false;
- if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
- return false;
- return true;
- }
- /*
- * This routine handles page faults. It determines the address,
- * and the problem, and then passes it off to one of the appropriate
- * routines.
- *
- * This function must have noinline because both callers
- * {,trace_}do_page_fault() have notrace on. Having this an actual function
- * guarantees there's a function trace entry.
- */
- static noinline void
- __do_page_fault(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- struct mm_struct *mm;
- int fault, major = 0;
- unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
- u32 pkey;
- tsk = current;
- mm = tsk->mm;
- /*
- * Detect and handle instructions that would cause a page fault for
- * both a tracked kernel page and a userspace page.
- */
- if (kmemcheck_active(regs))
- kmemcheck_hide(regs);
- prefetchw(&mm->mmap_sem);
- if (unlikely(kmmio_fault(regs, address)))
- return;
- /*
- * We fault-in kernel-space virtual memory on-demand. The
- * 'reference' page table is init_mm.pgd.
- *
- * NOTE! We MUST NOT take any locks for this case. We may
- * be in an interrupt or a critical region, and should
- * only copy the information from the master page table,
- * nothing more.
- *
- * This verifies that the fault happens in kernel space
- * (error_code & 4) == 0, and that the fault was not a
- * protection error (error_code & 9) == 0.
- */
- if (unlikely(fault_in_kernel_space(address))) {
- if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
- if (vmalloc_fault(address) >= 0)
- return;
- if (kmemcheck_fault(regs, address, error_code))
- return;
- }
- /* Can handle a stale RO->RW TLB: */
- if (spurious_fault(error_code, address))
- return;
- /* kprobes don't want to hook the spurious faults: */
- if (kprobes_fault(regs))
- return;
- /*
- * Don't take the mm semaphore here. If we fixup a prefetch
- * fault we could otherwise deadlock:
- */
- bad_area_nosemaphore(regs, error_code, address, NULL);
- return;
- }
- /* kprobes don't want to hook the spurious faults: */
- if (unlikely(kprobes_fault(regs)))
- return;
- if (unlikely(error_code & PF_RSVD))
- pgtable_bad(regs, error_code, address);
- if (unlikely(smap_violation(error_code, regs))) {
- bad_area_nosemaphore(regs, error_code, address, NULL);
- return;
- }
- /*
- * If we're in an interrupt, have no user context or are running
- * in a region with pagefaults disabled then we must not take the fault
- */
- if (unlikely(faulthandler_disabled() || !mm)) {
- bad_area_nosemaphore(regs, error_code, address, NULL);
- return;
- }
- /*
- * It's safe to allow irq's after cr2 has been saved and the
- * vmalloc fault has been handled.
- *
- * User-mode registers count as a user access even for any
- * potential system fault or CPU buglet:
- */
- if (user_mode(regs)) {
- local_irq_enable();
- error_code |= PF_USER;
- flags |= FAULT_FLAG_USER;
- } else {
- if (regs->flags & X86_EFLAGS_IF)
- local_irq_enable();
- }
- perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
- if (error_code & PF_WRITE)
- flags |= FAULT_FLAG_WRITE;
- if (error_code & PF_INSTR)
- flags |= FAULT_FLAG_INSTRUCTION;
- /*
- * When running in the kernel we expect faults to occur only to
- * addresses in user space. All other faults represent errors in
- * the kernel and should generate an OOPS. Unfortunately, in the
- * case of an erroneous fault occurring in a code path which already
- * holds mmap_sem we will deadlock attempting to validate the fault
- * against the address space. Luckily the kernel only validly
- * references user space from well defined areas of code, which are
- * listed in the exceptions table.
- *
- * As the vast majority of faults will be valid we will only perform
- * the source reference check when there is a possibility of a
- * deadlock. Attempt to lock the address space, if we cannot we then
- * validate the source. If this is invalid we can skip the address
- * space check, thus avoiding the deadlock:
- */
- if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
- if ((error_code & PF_USER) == 0 &&
- !search_exception_tables(regs->ip)) {
- bad_area_nosemaphore(regs, error_code, address, NULL);
- return;
- }
- retry:
- down_read(&mm->mmap_sem);
- } else {
- /*
- * The above down_read_trylock() might have succeeded in
- * which case we'll have missed the might_sleep() from
- * down_read():
- */
- might_sleep();
- }
- vma = find_vma(mm, address);
- if (unlikely(!vma)) {
- bad_area(regs, error_code, address);
- return;
- }
- if (likely(vma->vm_start <= address))
- goto good_area;
- if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
- bad_area(regs, error_code, address);
- return;
- }
- if (error_code & PF_USER) {
- /*
- * Accessing the stack below %sp is always a bug.
- * The large cushion allows instructions like enter
- * and pusha to work. ("enter $65535, $31" pushes
- * 32 pointers and then decrements %sp by 65535.)
- */
- if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
- bad_area(regs, error_code, address);
- return;
- }
- }
- if (unlikely(expand_stack(vma, address))) {
- bad_area(regs, error_code, address);
- return;
- }
- /*
- * Ok, we have a good vm_area for this memory access, so
- * we can handle it..
- */
- good_area:
- if (unlikely(access_error(error_code, vma))) {
- bad_area_access_error(regs, error_code, address, vma);
- return;
- }
- /*
- * If for any reason at all we couldn't handle the fault,
- * make sure we exit gracefully rather than endlessly redo
- * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
- * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
- *
- * Note that handle_userfault() may also release and reacquire mmap_sem
- * (and not return with VM_FAULT_RETRY), when returning to userland to
- * repeat the page fault later with a VM_FAULT_NOPAGE retval
- * (potentially after handling any pending signal during the return to
- * userland). The return to userland is identified whenever
- * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
- * Thus we have to be careful about not touching vma after handling the
- * fault, so we read the pkey beforehand.
- */
- pkey = vma_pkey(vma);
- fault = handle_mm_fault(vma, address, flags);
- major |= fault & VM_FAULT_MAJOR;
- /*
- * If we need to retry the mmap_sem has already been released,
- * and if there is a fatal signal pending there is no guarantee
- * that we made any progress. Handle this case first.
- */
- if (unlikely(fault & VM_FAULT_RETRY)) {
- /* Retry at most once */
- if (flags & FAULT_FLAG_ALLOW_RETRY) {
- flags &= ~FAULT_FLAG_ALLOW_RETRY;
- flags |= FAULT_FLAG_TRIED;
- if (!fatal_signal_pending(tsk))
- goto retry;
- }
- /* User mode? Just return to handle the fatal exception */
- if (flags & FAULT_FLAG_USER)
- return;
- /* Not returning to user mode? Handle exceptions or die: */
- no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
- return;
- }
- up_read(&mm->mmap_sem);
- if (unlikely(fault & VM_FAULT_ERROR)) {
- mm_fault_error(regs, error_code, address, &pkey, fault);
- return;
- }
- /*
- * Major/minor page fault accounting. If any of the events
- * returned VM_FAULT_MAJOR, we account it as a major fault.
- */
- if (major) {
- tsk->maj_flt++;
- perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
- } else {
- tsk->min_flt++;
- perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
- }
- check_v8086_mode(regs, address, tsk);
- }
- NOKPROBE_SYMBOL(__do_page_fault);
- dotraplinkage void notrace
- do_page_fault(struct pt_regs *regs, unsigned long error_code)
- {
- unsigned long address = read_cr2(); /* Get the faulting address */
- enum ctx_state prev_state;
- /*
- * We must have this function tagged with __kprobes, notrace and call
- * read_cr2() before calling anything else. To avoid calling any kind
- * of tracing machinery before we've observed the CR2 value.
- *
- * exception_{enter,exit}() contain all sorts of tracepoints.
- */
- prev_state = exception_enter();
- __do_page_fault(regs, error_code, address);
- exception_exit(prev_state);
- }
- NOKPROBE_SYMBOL(do_page_fault);
- #ifdef CONFIG_TRACING
- static nokprobe_inline void
- trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
- unsigned long error_code)
- {
- if (user_mode(regs))
- trace_page_fault_user(address, regs, error_code);
- else
- trace_page_fault_kernel(address, regs, error_code);
- }
- dotraplinkage void notrace
- trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
- {
- /*
- * The exception_enter and tracepoint processing could
- * trigger another page faults (user space callchain
- * reading) and destroy the original cr2 value, so read
- * the faulting address now.
- */
- unsigned long address = read_cr2();
- enum ctx_state prev_state;
- prev_state = exception_enter();
- trace_page_fault_entries(address, regs, error_code);
- __do_page_fault(regs, error_code, address);
- exception_exit(prev_state);
- }
- NOKPROBE_SYMBOL(trace_do_page_fault);
- #endif /* CONFIG_TRACING */
|