core.c 115 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/stddef.h>
  9. #include <linux/types.h>
  10. #include <linux/init.h>
  11. #include <linux/slab.h>
  12. #include <linux/export.h>
  13. #include <linux/nmi.h>
  14. #include <asm/cpufeature.h>
  15. #include <asm/hardirq.h>
  16. #include <asm/intel-family.h>
  17. #include <asm/apic.h>
  18. #include "../perf_event.h"
  19. /*
  20. * Intel PerfMon, used on Core and later.
  21. */
  22. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  23. {
  24. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  25. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  26. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  27. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  28. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  29. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  30. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  31. [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
  32. };
  33. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  34. {
  35. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  36. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  37. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  38. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  39. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  40. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  41. EVENT_CONSTRAINT_END
  42. };
  43. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  44. {
  45. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  46. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  47. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  48. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  49. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  50. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  51. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  52. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  53. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  54. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  55. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  56. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  57. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  58. EVENT_CONSTRAINT_END
  59. };
  60. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  61. {
  62. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  63. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  64. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  65. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  66. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  67. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  68. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  69. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  70. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  71. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  72. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  73. EVENT_CONSTRAINT_END
  74. };
  75. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  76. {
  77. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  78. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  79. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  80. EVENT_EXTRA_END
  81. };
  82. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  83. {
  84. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  85. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  86. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  87. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  88. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  89. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  90. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  91. EVENT_CONSTRAINT_END
  92. };
  93. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  94. {
  95. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  96. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  97. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  98. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  99. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  100. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  101. INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  102. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  103. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  104. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  105. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  106. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  107. /*
  108. * When HT is off these events can only run on the bottom 4 counters
  109. * When HT is on, they are impacted by the HT bug and require EXCL access
  110. */
  111. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  112. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  113. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  114. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  115. EVENT_CONSTRAINT_END
  116. };
  117. static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
  118. {
  119. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  120. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  121. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  122. INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
  123. INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
  124. INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
  125. INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
  126. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  127. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  128. INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
  129. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  130. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  131. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  132. /*
  133. * When HT is off these events can only run on the bottom 4 counters
  134. * When HT is on, they are impacted by the HT bug and require EXCL access
  135. */
  136. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  137. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  138. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  139. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  140. EVENT_CONSTRAINT_END
  141. };
  142. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  143. {
  144. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  145. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  146. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  147. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  148. EVENT_EXTRA_END
  149. };
  150. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  151. {
  152. EVENT_CONSTRAINT_END
  153. };
  154. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  155. {
  156. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  157. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  158. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  159. EVENT_CONSTRAINT_END
  160. };
  161. static struct event_constraint intel_slm_event_constraints[] __read_mostly =
  162. {
  163. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  164. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  165. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
  166. EVENT_CONSTRAINT_END
  167. };
  168. static struct event_constraint intel_skl_event_constraints[] = {
  169. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  170. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  171. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  172. INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
  173. /*
  174. * when HT is off, these can only run on the bottom 4 counters
  175. */
  176. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
  177. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
  178. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
  179. INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
  180. INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
  181. EVENT_CONSTRAINT_END
  182. };
  183. static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
  184. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
  185. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
  186. EVENT_EXTRA_END
  187. };
  188. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  189. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  190. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
  191. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
  192. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  193. EVENT_EXTRA_END
  194. };
  195. static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
  196. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  197. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  198. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  199. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  200. EVENT_EXTRA_END
  201. };
  202. static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
  203. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  204. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  205. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  206. /*
  207. * Note the low 8 bits eventsel code is not a continuous field, containing
  208. * some #GPing bits. These are masked out.
  209. */
  210. INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
  211. EVENT_EXTRA_END
  212. };
  213. EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
  214. EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
  215. EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
  216. static struct attribute *nhm_events_attrs[] = {
  217. EVENT_PTR(mem_ld_nhm),
  218. NULL,
  219. };
  220. /*
  221. * topdown events for Intel Core CPUs.
  222. *
  223. * The events are all in slots, which is a free slot in a 4 wide
  224. * pipeline. Some events are already reported in slots, for cycle
  225. * events we multiply by the pipeline width (4).
  226. *
  227. * With Hyper Threading on, topdown metrics are either summed or averaged
  228. * between the threads of a core: (count_t0 + count_t1).
  229. *
  230. * For the average case the metric is always scaled to pipeline width,
  231. * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
  232. */
  233. EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
  234. "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
  235. "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
  236. EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
  237. EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
  238. "event=0xe,umask=0x1"); /* uops_issued.any */
  239. EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
  240. "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
  241. EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
  242. "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
  243. EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
  244. "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
  245. "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
  246. EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
  247. "4", "2");
  248. static struct attribute *snb_events_attrs[] = {
  249. EVENT_PTR(mem_ld_snb),
  250. EVENT_PTR(mem_st_snb),
  251. EVENT_PTR(td_slots_issued),
  252. EVENT_PTR(td_slots_retired),
  253. EVENT_PTR(td_fetch_bubbles),
  254. EVENT_PTR(td_total_slots),
  255. EVENT_PTR(td_total_slots_scale),
  256. EVENT_PTR(td_recovery_bubbles),
  257. EVENT_PTR(td_recovery_bubbles_scale),
  258. NULL,
  259. };
  260. static struct event_constraint intel_hsw_event_constraints[] = {
  261. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  262. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  263. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  264. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  265. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  266. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  267. /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  268. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
  269. /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  270. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
  271. /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  272. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
  273. /*
  274. * When HT is off these events can only run on the bottom 4 counters
  275. * When HT is on, they are impacted by the HT bug and require EXCL access
  276. */
  277. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  278. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  279. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  280. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  281. EVENT_CONSTRAINT_END
  282. };
  283. static struct event_constraint intel_bdw_event_constraints[] = {
  284. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  285. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  286. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  287. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  288. INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
  289. /*
  290. * when HT is off, these can only run on the bottom 4 counters
  291. */
  292. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
  293. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
  294. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
  295. INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
  296. EVENT_CONSTRAINT_END
  297. };
  298. static u64 intel_pmu_event_map(int hw_event)
  299. {
  300. return intel_perfmon_event_map[hw_event];
  301. }
  302. /*
  303. * Notes on the events:
  304. * - data reads do not include code reads (comparable to earlier tables)
  305. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  306. * - remote node access includes remote memory, remote cache, remote mmio.
  307. * - prefetches are not included in the counts.
  308. * - icache miss does not include decoded icache
  309. */
  310. #define SKL_DEMAND_DATA_RD BIT_ULL(0)
  311. #define SKL_DEMAND_RFO BIT_ULL(1)
  312. #define SKL_ANY_RESPONSE BIT_ULL(16)
  313. #define SKL_SUPPLIER_NONE BIT_ULL(17)
  314. #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
  315. #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
  316. #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
  317. #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
  318. #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
  319. SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  320. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  321. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  322. #define SKL_SPL_HIT BIT_ULL(30)
  323. #define SKL_SNOOP_NONE BIT_ULL(31)
  324. #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
  325. #define SKL_SNOOP_MISS BIT_ULL(33)
  326. #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
  327. #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  328. #define SKL_SNOOP_HITM BIT_ULL(36)
  329. #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
  330. #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
  331. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  332. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  333. SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
  334. #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
  335. #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
  336. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  337. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  338. SKL_SNOOP_HITM|SKL_SPL_HIT)
  339. #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
  340. #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
  341. #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  342. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  343. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  344. static __initconst const u64 skl_hw_cache_event_ids
  345. [PERF_COUNT_HW_CACHE_MAX]
  346. [PERF_COUNT_HW_CACHE_OP_MAX]
  347. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  348. {
  349. [ C(L1D ) ] = {
  350. [ C(OP_READ) ] = {
  351. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  352. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  353. },
  354. [ C(OP_WRITE) ] = {
  355. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  356. [ C(RESULT_MISS) ] = 0x0,
  357. },
  358. [ C(OP_PREFETCH) ] = {
  359. [ C(RESULT_ACCESS) ] = 0x0,
  360. [ C(RESULT_MISS) ] = 0x0,
  361. },
  362. },
  363. [ C(L1I ) ] = {
  364. [ C(OP_READ) ] = {
  365. [ C(RESULT_ACCESS) ] = 0x0,
  366. [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
  367. },
  368. [ C(OP_WRITE) ] = {
  369. [ C(RESULT_ACCESS) ] = -1,
  370. [ C(RESULT_MISS) ] = -1,
  371. },
  372. [ C(OP_PREFETCH) ] = {
  373. [ C(RESULT_ACCESS) ] = 0x0,
  374. [ C(RESULT_MISS) ] = 0x0,
  375. },
  376. },
  377. [ C(LL ) ] = {
  378. [ C(OP_READ) ] = {
  379. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  380. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  381. },
  382. [ C(OP_WRITE) ] = {
  383. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  384. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  385. },
  386. [ C(OP_PREFETCH) ] = {
  387. [ C(RESULT_ACCESS) ] = 0x0,
  388. [ C(RESULT_MISS) ] = 0x0,
  389. },
  390. },
  391. [ C(DTLB) ] = {
  392. [ C(OP_READ) ] = {
  393. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  394. [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
  395. },
  396. [ C(OP_WRITE) ] = {
  397. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  398. [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
  399. },
  400. [ C(OP_PREFETCH) ] = {
  401. [ C(RESULT_ACCESS) ] = 0x0,
  402. [ C(RESULT_MISS) ] = 0x0,
  403. },
  404. },
  405. [ C(ITLB) ] = {
  406. [ C(OP_READ) ] = {
  407. [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
  408. [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
  409. },
  410. [ C(OP_WRITE) ] = {
  411. [ C(RESULT_ACCESS) ] = -1,
  412. [ C(RESULT_MISS) ] = -1,
  413. },
  414. [ C(OP_PREFETCH) ] = {
  415. [ C(RESULT_ACCESS) ] = -1,
  416. [ C(RESULT_MISS) ] = -1,
  417. },
  418. },
  419. [ C(BPU ) ] = {
  420. [ C(OP_READ) ] = {
  421. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  422. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  423. },
  424. [ C(OP_WRITE) ] = {
  425. [ C(RESULT_ACCESS) ] = -1,
  426. [ C(RESULT_MISS) ] = -1,
  427. },
  428. [ C(OP_PREFETCH) ] = {
  429. [ C(RESULT_ACCESS) ] = -1,
  430. [ C(RESULT_MISS) ] = -1,
  431. },
  432. },
  433. [ C(NODE) ] = {
  434. [ C(OP_READ) ] = {
  435. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  436. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  437. },
  438. [ C(OP_WRITE) ] = {
  439. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  440. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  441. },
  442. [ C(OP_PREFETCH) ] = {
  443. [ C(RESULT_ACCESS) ] = 0x0,
  444. [ C(RESULT_MISS) ] = 0x0,
  445. },
  446. },
  447. };
  448. static __initconst const u64 skl_hw_cache_extra_regs
  449. [PERF_COUNT_HW_CACHE_MAX]
  450. [PERF_COUNT_HW_CACHE_OP_MAX]
  451. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  452. {
  453. [ C(LL ) ] = {
  454. [ C(OP_READ) ] = {
  455. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  456. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  457. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  458. SKL_L3_MISS|SKL_ANY_SNOOP|
  459. SKL_SUPPLIER_NONE,
  460. },
  461. [ C(OP_WRITE) ] = {
  462. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  463. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  464. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  465. SKL_L3_MISS|SKL_ANY_SNOOP|
  466. SKL_SUPPLIER_NONE,
  467. },
  468. [ C(OP_PREFETCH) ] = {
  469. [ C(RESULT_ACCESS) ] = 0x0,
  470. [ C(RESULT_MISS) ] = 0x0,
  471. },
  472. },
  473. [ C(NODE) ] = {
  474. [ C(OP_READ) ] = {
  475. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  476. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  477. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  478. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  479. },
  480. [ C(OP_WRITE) ] = {
  481. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  482. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  483. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  484. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  485. },
  486. [ C(OP_PREFETCH) ] = {
  487. [ C(RESULT_ACCESS) ] = 0x0,
  488. [ C(RESULT_MISS) ] = 0x0,
  489. },
  490. },
  491. };
  492. #define SNB_DMND_DATA_RD (1ULL << 0)
  493. #define SNB_DMND_RFO (1ULL << 1)
  494. #define SNB_DMND_IFETCH (1ULL << 2)
  495. #define SNB_DMND_WB (1ULL << 3)
  496. #define SNB_PF_DATA_RD (1ULL << 4)
  497. #define SNB_PF_RFO (1ULL << 5)
  498. #define SNB_PF_IFETCH (1ULL << 6)
  499. #define SNB_LLC_DATA_RD (1ULL << 7)
  500. #define SNB_LLC_RFO (1ULL << 8)
  501. #define SNB_LLC_IFETCH (1ULL << 9)
  502. #define SNB_BUS_LOCKS (1ULL << 10)
  503. #define SNB_STRM_ST (1ULL << 11)
  504. #define SNB_OTHER (1ULL << 15)
  505. #define SNB_RESP_ANY (1ULL << 16)
  506. #define SNB_NO_SUPP (1ULL << 17)
  507. #define SNB_LLC_HITM (1ULL << 18)
  508. #define SNB_LLC_HITE (1ULL << 19)
  509. #define SNB_LLC_HITS (1ULL << 20)
  510. #define SNB_LLC_HITF (1ULL << 21)
  511. #define SNB_LOCAL (1ULL << 22)
  512. #define SNB_REMOTE (0xffULL << 23)
  513. #define SNB_SNP_NONE (1ULL << 31)
  514. #define SNB_SNP_NOT_NEEDED (1ULL << 32)
  515. #define SNB_SNP_MISS (1ULL << 33)
  516. #define SNB_NO_FWD (1ULL << 34)
  517. #define SNB_SNP_FWD (1ULL << 35)
  518. #define SNB_HITM (1ULL << 36)
  519. #define SNB_NON_DRAM (1ULL << 37)
  520. #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
  521. #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
  522. #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  523. #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
  524. SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
  525. SNB_HITM)
  526. #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
  527. #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
  528. #define SNB_L3_ACCESS SNB_RESP_ANY
  529. #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
  530. static __initconst const u64 snb_hw_cache_extra_regs
  531. [PERF_COUNT_HW_CACHE_MAX]
  532. [PERF_COUNT_HW_CACHE_OP_MAX]
  533. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  534. {
  535. [ C(LL ) ] = {
  536. [ C(OP_READ) ] = {
  537. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
  538. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
  539. },
  540. [ C(OP_WRITE) ] = {
  541. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
  542. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
  543. },
  544. [ C(OP_PREFETCH) ] = {
  545. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
  546. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
  547. },
  548. },
  549. [ C(NODE) ] = {
  550. [ C(OP_READ) ] = {
  551. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
  552. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
  553. },
  554. [ C(OP_WRITE) ] = {
  555. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
  556. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
  557. },
  558. [ C(OP_PREFETCH) ] = {
  559. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
  560. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
  561. },
  562. },
  563. };
  564. static __initconst const u64 snb_hw_cache_event_ids
  565. [PERF_COUNT_HW_CACHE_MAX]
  566. [PERF_COUNT_HW_CACHE_OP_MAX]
  567. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  568. {
  569. [ C(L1D) ] = {
  570. [ C(OP_READ) ] = {
  571. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  572. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  573. },
  574. [ C(OP_WRITE) ] = {
  575. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  576. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  577. },
  578. [ C(OP_PREFETCH) ] = {
  579. [ C(RESULT_ACCESS) ] = 0x0,
  580. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  581. },
  582. },
  583. [ C(L1I ) ] = {
  584. [ C(OP_READ) ] = {
  585. [ C(RESULT_ACCESS) ] = 0x0,
  586. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  587. },
  588. [ C(OP_WRITE) ] = {
  589. [ C(RESULT_ACCESS) ] = -1,
  590. [ C(RESULT_MISS) ] = -1,
  591. },
  592. [ C(OP_PREFETCH) ] = {
  593. [ C(RESULT_ACCESS) ] = 0x0,
  594. [ C(RESULT_MISS) ] = 0x0,
  595. },
  596. },
  597. [ C(LL ) ] = {
  598. [ C(OP_READ) ] = {
  599. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  600. [ C(RESULT_ACCESS) ] = 0x01b7,
  601. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  602. [ C(RESULT_MISS) ] = 0x01b7,
  603. },
  604. [ C(OP_WRITE) ] = {
  605. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  606. [ C(RESULT_ACCESS) ] = 0x01b7,
  607. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  608. [ C(RESULT_MISS) ] = 0x01b7,
  609. },
  610. [ C(OP_PREFETCH) ] = {
  611. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  612. [ C(RESULT_ACCESS) ] = 0x01b7,
  613. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  614. [ C(RESULT_MISS) ] = 0x01b7,
  615. },
  616. },
  617. [ C(DTLB) ] = {
  618. [ C(OP_READ) ] = {
  619. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  620. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  621. },
  622. [ C(OP_WRITE) ] = {
  623. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  624. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  625. },
  626. [ C(OP_PREFETCH) ] = {
  627. [ C(RESULT_ACCESS) ] = 0x0,
  628. [ C(RESULT_MISS) ] = 0x0,
  629. },
  630. },
  631. [ C(ITLB) ] = {
  632. [ C(OP_READ) ] = {
  633. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  634. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  635. },
  636. [ C(OP_WRITE) ] = {
  637. [ C(RESULT_ACCESS) ] = -1,
  638. [ C(RESULT_MISS) ] = -1,
  639. },
  640. [ C(OP_PREFETCH) ] = {
  641. [ C(RESULT_ACCESS) ] = -1,
  642. [ C(RESULT_MISS) ] = -1,
  643. },
  644. },
  645. [ C(BPU ) ] = {
  646. [ C(OP_READ) ] = {
  647. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  648. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  649. },
  650. [ C(OP_WRITE) ] = {
  651. [ C(RESULT_ACCESS) ] = -1,
  652. [ C(RESULT_MISS) ] = -1,
  653. },
  654. [ C(OP_PREFETCH) ] = {
  655. [ C(RESULT_ACCESS) ] = -1,
  656. [ C(RESULT_MISS) ] = -1,
  657. },
  658. },
  659. [ C(NODE) ] = {
  660. [ C(OP_READ) ] = {
  661. [ C(RESULT_ACCESS) ] = 0x01b7,
  662. [ C(RESULT_MISS) ] = 0x01b7,
  663. },
  664. [ C(OP_WRITE) ] = {
  665. [ C(RESULT_ACCESS) ] = 0x01b7,
  666. [ C(RESULT_MISS) ] = 0x01b7,
  667. },
  668. [ C(OP_PREFETCH) ] = {
  669. [ C(RESULT_ACCESS) ] = 0x01b7,
  670. [ C(RESULT_MISS) ] = 0x01b7,
  671. },
  672. },
  673. };
  674. /*
  675. * Notes on the events:
  676. * - data reads do not include code reads (comparable to earlier tables)
  677. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  678. * - remote node access includes remote memory, remote cache, remote mmio.
  679. * - prefetches are not included in the counts because they are not
  680. * reliably counted.
  681. */
  682. #define HSW_DEMAND_DATA_RD BIT_ULL(0)
  683. #define HSW_DEMAND_RFO BIT_ULL(1)
  684. #define HSW_ANY_RESPONSE BIT_ULL(16)
  685. #define HSW_SUPPLIER_NONE BIT_ULL(17)
  686. #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
  687. #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
  688. #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
  689. #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
  690. #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
  691. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  692. HSW_L3_MISS_REMOTE_HOP2P)
  693. #define HSW_SNOOP_NONE BIT_ULL(31)
  694. #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
  695. #define HSW_SNOOP_MISS BIT_ULL(33)
  696. #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
  697. #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  698. #define HSW_SNOOP_HITM BIT_ULL(36)
  699. #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
  700. #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
  701. HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
  702. HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
  703. HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
  704. #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
  705. #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
  706. #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
  707. #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
  708. HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
  709. #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
  710. #define BDW_L3_MISS_LOCAL BIT(26)
  711. #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
  712. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  713. HSW_L3_MISS_REMOTE_HOP2P)
  714. static __initconst const u64 hsw_hw_cache_event_ids
  715. [PERF_COUNT_HW_CACHE_MAX]
  716. [PERF_COUNT_HW_CACHE_OP_MAX]
  717. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  718. {
  719. [ C(L1D ) ] = {
  720. [ C(OP_READ) ] = {
  721. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  722. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  723. },
  724. [ C(OP_WRITE) ] = {
  725. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  726. [ C(RESULT_MISS) ] = 0x0,
  727. },
  728. [ C(OP_PREFETCH) ] = {
  729. [ C(RESULT_ACCESS) ] = 0x0,
  730. [ C(RESULT_MISS) ] = 0x0,
  731. },
  732. },
  733. [ C(L1I ) ] = {
  734. [ C(OP_READ) ] = {
  735. [ C(RESULT_ACCESS) ] = 0x0,
  736. [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
  737. },
  738. [ C(OP_WRITE) ] = {
  739. [ C(RESULT_ACCESS) ] = -1,
  740. [ C(RESULT_MISS) ] = -1,
  741. },
  742. [ C(OP_PREFETCH) ] = {
  743. [ C(RESULT_ACCESS) ] = 0x0,
  744. [ C(RESULT_MISS) ] = 0x0,
  745. },
  746. },
  747. [ C(LL ) ] = {
  748. [ C(OP_READ) ] = {
  749. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  750. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  751. },
  752. [ C(OP_WRITE) ] = {
  753. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  754. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  755. },
  756. [ C(OP_PREFETCH) ] = {
  757. [ C(RESULT_ACCESS) ] = 0x0,
  758. [ C(RESULT_MISS) ] = 0x0,
  759. },
  760. },
  761. [ C(DTLB) ] = {
  762. [ C(OP_READ) ] = {
  763. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  764. [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
  765. },
  766. [ C(OP_WRITE) ] = {
  767. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  768. [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  769. },
  770. [ C(OP_PREFETCH) ] = {
  771. [ C(RESULT_ACCESS) ] = 0x0,
  772. [ C(RESULT_MISS) ] = 0x0,
  773. },
  774. },
  775. [ C(ITLB) ] = {
  776. [ C(OP_READ) ] = {
  777. [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
  778. [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
  779. },
  780. [ C(OP_WRITE) ] = {
  781. [ C(RESULT_ACCESS) ] = -1,
  782. [ C(RESULT_MISS) ] = -1,
  783. },
  784. [ C(OP_PREFETCH) ] = {
  785. [ C(RESULT_ACCESS) ] = -1,
  786. [ C(RESULT_MISS) ] = -1,
  787. },
  788. },
  789. [ C(BPU ) ] = {
  790. [ C(OP_READ) ] = {
  791. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  792. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  793. },
  794. [ C(OP_WRITE) ] = {
  795. [ C(RESULT_ACCESS) ] = -1,
  796. [ C(RESULT_MISS) ] = -1,
  797. },
  798. [ C(OP_PREFETCH) ] = {
  799. [ C(RESULT_ACCESS) ] = -1,
  800. [ C(RESULT_MISS) ] = -1,
  801. },
  802. },
  803. [ C(NODE) ] = {
  804. [ C(OP_READ) ] = {
  805. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  806. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  807. },
  808. [ C(OP_WRITE) ] = {
  809. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  810. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  811. },
  812. [ C(OP_PREFETCH) ] = {
  813. [ C(RESULT_ACCESS) ] = 0x0,
  814. [ C(RESULT_MISS) ] = 0x0,
  815. },
  816. },
  817. };
  818. static __initconst const u64 hsw_hw_cache_extra_regs
  819. [PERF_COUNT_HW_CACHE_MAX]
  820. [PERF_COUNT_HW_CACHE_OP_MAX]
  821. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  822. {
  823. [ C(LL ) ] = {
  824. [ C(OP_READ) ] = {
  825. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  826. HSW_LLC_ACCESS,
  827. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  828. HSW_L3_MISS|HSW_ANY_SNOOP,
  829. },
  830. [ C(OP_WRITE) ] = {
  831. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  832. HSW_LLC_ACCESS,
  833. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  834. HSW_L3_MISS|HSW_ANY_SNOOP,
  835. },
  836. [ C(OP_PREFETCH) ] = {
  837. [ C(RESULT_ACCESS) ] = 0x0,
  838. [ C(RESULT_MISS) ] = 0x0,
  839. },
  840. },
  841. [ C(NODE) ] = {
  842. [ C(OP_READ) ] = {
  843. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  844. HSW_L3_MISS_LOCAL_DRAM|
  845. HSW_SNOOP_DRAM,
  846. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  847. HSW_L3_MISS_REMOTE|
  848. HSW_SNOOP_DRAM,
  849. },
  850. [ C(OP_WRITE) ] = {
  851. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  852. HSW_L3_MISS_LOCAL_DRAM|
  853. HSW_SNOOP_DRAM,
  854. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  855. HSW_L3_MISS_REMOTE|
  856. HSW_SNOOP_DRAM,
  857. },
  858. [ C(OP_PREFETCH) ] = {
  859. [ C(RESULT_ACCESS) ] = 0x0,
  860. [ C(RESULT_MISS) ] = 0x0,
  861. },
  862. },
  863. };
  864. static __initconst const u64 westmere_hw_cache_event_ids
  865. [PERF_COUNT_HW_CACHE_MAX]
  866. [PERF_COUNT_HW_CACHE_OP_MAX]
  867. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  868. {
  869. [ C(L1D) ] = {
  870. [ C(OP_READ) ] = {
  871. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  872. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  873. },
  874. [ C(OP_WRITE) ] = {
  875. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  876. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  877. },
  878. [ C(OP_PREFETCH) ] = {
  879. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  880. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  881. },
  882. },
  883. [ C(L1I ) ] = {
  884. [ C(OP_READ) ] = {
  885. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  886. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  887. },
  888. [ C(OP_WRITE) ] = {
  889. [ C(RESULT_ACCESS) ] = -1,
  890. [ C(RESULT_MISS) ] = -1,
  891. },
  892. [ C(OP_PREFETCH) ] = {
  893. [ C(RESULT_ACCESS) ] = 0x0,
  894. [ C(RESULT_MISS) ] = 0x0,
  895. },
  896. },
  897. [ C(LL ) ] = {
  898. [ C(OP_READ) ] = {
  899. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  900. [ C(RESULT_ACCESS) ] = 0x01b7,
  901. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  902. [ C(RESULT_MISS) ] = 0x01b7,
  903. },
  904. /*
  905. * Use RFO, not WRITEBACK, because a write miss would typically occur
  906. * on RFO.
  907. */
  908. [ C(OP_WRITE) ] = {
  909. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  910. [ C(RESULT_ACCESS) ] = 0x01b7,
  911. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  912. [ C(RESULT_MISS) ] = 0x01b7,
  913. },
  914. [ C(OP_PREFETCH) ] = {
  915. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  916. [ C(RESULT_ACCESS) ] = 0x01b7,
  917. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  918. [ C(RESULT_MISS) ] = 0x01b7,
  919. },
  920. },
  921. [ C(DTLB) ] = {
  922. [ C(OP_READ) ] = {
  923. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  924. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  925. },
  926. [ C(OP_WRITE) ] = {
  927. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  928. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  929. },
  930. [ C(OP_PREFETCH) ] = {
  931. [ C(RESULT_ACCESS) ] = 0x0,
  932. [ C(RESULT_MISS) ] = 0x0,
  933. },
  934. },
  935. [ C(ITLB) ] = {
  936. [ C(OP_READ) ] = {
  937. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  938. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  939. },
  940. [ C(OP_WRITE) ] = {
  941. [ C(RESULT_ACCESS) ] = -1,
  942. [ C(RESULT_MISS) ] = -1,
  943. },
  944. [ C(OP_PREFETCH) ] = {
  945. [ C(RESULT_ACCESS) ] = -1,
  946. [ C(RESULT_MISS) ] = -1,
  947. },
  948. },
  949. [ C(BPU ) ] = {
  950. [ C(OP_READ) ] = {
  951. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  952. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  953. },
  954. [ C(OP_WRITE) ] = {
  955. [ C(RESULT_ACCESS) ] = -1,
  956. [ C(RESULT_MISS) ] = -1,
  957. },
  958. [ C(OP_PREFETCH) ] = {
  959. [ C(RESULT_ACCESS) ] = -1,
  960. [ C(RESULT_MISS) ] = -1,
  961. },
  962. },
  963. [ C(NODE) ] = {
  964. [ C(OP_READ) ] = {
  965. [ C(RESULT_ACCESS) ] = 0x01b7,
  966. [ C(RESULT_MISS) ] = 0x01b7,
  967. },
  968. [ C(OP_WRITE) ] = {
  969. [ C(RESULT_ACCESS) ] = 0x01b7,
  970. [ C(RESULT_MISS) ] = 0x01b7,
  971. },
  972. [ C(OP_PREFETCH) ] = {
  973. [ C(RESULT_ACCESS) ] = 0x01b7,
  974. [ C(RESULT_MISS) ] = 0x01b7,
  975. },
  976. },
  977. };
  978. /*
  979. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  980. * See IA32 SDM Vol 3B 30.6.1.3
  981. */
  982. #define NHM_DMND_DATA_RD (1 << 0)
  983. #define NHM_DMND_RFO (1 << 1)
  984. #define NHM_DMND_IFETCH (1 << 2)
  985. #define NHM_DMND_WB (1 << 3)
  986. #define NHM_PF_DATA_RD (1 << 4)
  987. #define NHM_PF_DATA_RFO (1 << 5)
  988. #define NHM_PF_IFETCH (1 << 6)
  989. #define NHM_OFFCORE_OTHER (1 << 7)
  990. #define NHM_UNCORE_HIT (1 << 8)
  991. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  992. #define NHM_OTHER_CORE_HITM (1 << 10)
  993. /* reserved */
  994. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  995. #define NHM_REMOTE_DRAM (1 << 13)
  996. #define NHM_LOCAL_DRAM (1 << 14)
  997. #define NHM_NON_DRAM (1 << 15)
  998. #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
  999. #define NHM_REMOTE (NHM_REMOTE_DRAM)
  1000. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  1001. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  1002. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  1003. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  1004. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
  1005. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  1006. static __initconst const u64 nehalem_hw_cache_extra_regs
  1007. [PERF_COUNT_HW_CACHE_MAX]
  1008. [PERF_COUNT_HW_CACHE_OP_MAX]
  1009. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1010. {
  1011. [ C(LL ) ] = {
  1012. [ C(OP_READ) ] = {
  1013. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  1014. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  1015. },
  1016. [ C(OP_WRITE) ] = {
  1017. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  1018. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  1019. },
  1020. [ C(OP_PREFETCH) ] = {
  1021. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  1022. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  1023. },
  1024. },
  1025. [ C(NODE) ] = {
  1026. [ C(OP_READ) ] = {
  1027. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
  1028. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
  1029. },
  1030. [ C(OP_WRITE) ] = {
  1031. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
  1032. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
  1033. },
  1034. [ C(OP_PREFETCH) ] = {
  1035. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
  1036. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
  1037. },
  1038. },
  1039. };
  1040. static __initconst const u64 nehalem_hw_cache_event_ids
  1041. [PERF_COUNT_HW_CACHE_MAX]
  1042. [PERF_COUNT_HW_CACHE_OP_MAX]
  1043. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1044. {
  1045. [ C(L1D) ] = {
  1046. [ C(OP_READ) ] = {
  1047. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  1048. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  1049. },
  1050. [ C(OP_WRITE) ] = {
  1051. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  1052. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  1053. },
  1054. [ C(OP_PREFETCH) ] = {
  1055. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  1056. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  1057. },
  1058. },
  1059. [ C(L1I ) ] = {
  1060. [ C(OP_READ) ] = {
  1061. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1062. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1063. },
  1064. [ C(OP_WRITE) ] = {
  1065. [ C(RESULT_ACCESS) ] = -1,
  1066. [ C(RESULT_MISS) ] = -1,
  1067. },
  1068. [ C(OP_PREFETCH) ] = {
  1069. [ C(RESULT_ACCESS) ] = 0x0,
  1070. [ C(RESULT_MISS) ] = 0x0,
  1071. },
  1072. },
  1073. [ C(LL ) ] = {
  1074. [ C(OP_READ) ] = {
  1075. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1076. [ C(RESULT_ACCESS) ] = 0x01b7,
  1077. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  1078. [ C(RESULT_MISS) ] = 0x01b7,
  1079. },
  1080. /*
  1081. * Use RFO, not WRITEBACK, because a write miss would typically occur
  1082. * on RFO.
  1083. */
  1084. [ C(OP_WRITE) ] = {
  1085. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1086. [ C(RESULT_ACCESS) ] = 0x01b7,
  1087. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1088. [ C(RESULT_MISS) ] = 0x01b7,
  1089. },
  1090. [ C(OP_PREFETCH) ] = {
  1091. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1092. [ C(RESULT_ACCESS) ] = 0x01b7,
  1093. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1094. [ C(RESULT_MISS) ] = 0x01b7,
  1095. },
  1096. },
  1097. [ C(DTLB) ] = {
  1098. [ C(OP_READ) ] = {
  1099. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1100. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  1101. },
  1102. [ C(OP_WRITE) ] = {
  1103. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1104. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  1105. },
  1106. [ C(OP_PREFETCH) ] = {
  1107. [ C(RESULT_ACCESS) ] = 0x0,
  1108. [ C(RESULT_MISS) ] = 0x0,
  1109. },
  1110. },
  1111. [ C(ITLB) ] = {
  1112. [ C(OP_READ) ] = {
  1113. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  1114. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  1115. },
  1116. [ C(OP_WRITE) ] = {
  1117. [ C(RESULT_ACCESS) ] = -1,
  1118. [ C(RESULT_MISS) ] = -1,
  1119. },
  1120. [ C(OP_PREFETCH) ] = {
  1121. [ C(RESULT_ACCESS) ] = -1,
  1122. [ C(RESULT_MISS) ] = -1,
  1123. },
  1124. },
  1125. [ C(BPU ) ] = {
  1126. [ C(OP_READ) ] = {
  1127. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  1128. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  1129. },
  1130. [ C(OP_WRITE) ] = {
  1131. [ C(RESULT_ACCESS) ] = -1,
  1132. [ C(RESULT_MISS) ] = -1,
  1133. },
  1134. [ C(OP_PREFETCH) ] = {
  1135. [ C(RESULT_ACCESS) ] = -1,
  1136. [ C(RESULT_MISS) ] = -1,
  1137. },
  1138. },
  1139. [ C(NODE) ] = {
  1140. [ C(OP_READ) ] = {
  1141. [ C(RESULT_ACCESS) ] = 0x01b7,
  1142. [ C(RESULT_MISS) ] = 0x01b7,
  1143. },
  1144. [ C(OP_WRITE) ] = {
  1145. [ C(RESULT_ACCESS) ] = 0x01b7,
  1146. [ C(RESULT_MISS) ] = 0x01b7,
  1147. },
  1148. [ C(OP_PREFETCH) ] = {
  1149. [ C(RESULT_ACCESS) ] = 0x01b7,
  1150. [ C(RESULT_MISS) ] = 0x01b7,
  1151. },
  1152. },
  1153. };
  1154. static __initconst const u64 core2_hw_cache_event_ids
  1155. [PERF_COUNT_HW_CACHE_MAX]
  1156. [PERF_COUNT_HW_CACHE_OP_MAX]
  1157. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1158. {
  1159. [ C(L1D) ] = {
  1160. [ C(OP_READ) ] = {
  1161. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  1162. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  1163. },
  1164. [ C(OP_WRITE) ] = {
  1165. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  1166. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  1167. },
  1168. [ C(OP_PREFETCH) ] = {
  1169. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  1170. [ C(RESULT_MISS) ] = 0,
  1171. },
  1172. },
  1173. [ C(L1I ) ] = {
  1174. [ C(OP_READ) ] = {
  1175. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  1176. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  1177. },
  1178. [ C(OP_WRITE) ] = {
  1179. [ C(RESULT_ACCESS) ] = -1,
  1180. [ C(RESULT_MISS) ] = -1,
  1181. },
  1182. [ C(OP_PREFETCH) ] = {
  1183. [ C(RESULT_ACCESS) ] = 0,
  1184. [ C(RESULT_MISS) ] = 0,
  1185. },
  1186. },
  1187. [ C(LL ) ] = {
  1188. [ C(OP_READ) ] = {
  1189. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1190. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1191. },
  1192. [ C(OP_WRITE) ] = {
  1193. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1194. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1195. },
  1196. [ C(OP_PREFETCH) ] = {
  1197. [ C(RESULT_ACCESS) ] = 0,
  1198. [ C(RESULT_MISS) ] = 0,
  1199. },
  1200. },
  1201. [ C(DTLB) ] = {
  1202. [ C(OP_READ) ] = {
  1203. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1204. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  1205. },
  1206. [ C(OP_WRITE) ] = {
  1207. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1208. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  1209. },
  1210. [ C(OP_PREFETCH) ] = {
  1211. [ C(RESULT_ACCESS) ] = 0,
  1212. [ C(RESULT_MISS) ] = 0,
  1213. },
  1214. },
  1215. [ C(ITLB) ] = {
  1216. [ C(OP_READ) ] = {
  1217. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1218. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  1219. },
  1220. [ C(OP_WRITE) ] = {
  1221. [ C(RESULT_ACCESS) ] = -1,
  1222. [ C(RESULT_MISS) ] = -1,
  1223. },
  1224. [ C(OP_PREFETCH) ] = {
  1225. [ C(RESULT_ACCESS) ] = -1,
  1226. [ C(RESULT_MISS) ] = -1,
  1227. },
  1228. },
  1229. [ C(BPU ) ] = {
  1230. [ C(OP_READ) ] = {
  1231. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1232. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1233. },
  1234. [ C(OP_WRITE) ] = {
  1235. [ C(RESULT_ACCESS) ] = -1,
  1236. [ C(RESULT_MISS) ] = -1,
  1237. },
  1238. [ C(OP_PREFETCH) ] = {
  1239. [ C(RESULT_ACCESS) ] = -1,
  1240. [ C(RESULT_MISS) ] = -1,
  1241. },
  1242. },
  1243. };
  1244. static __initconst const u64 atom_hw_cache_event_ids
  1245. [PERF_COUNT_HW_CACHE_MAX]
  1246. [PERF_COUNT_HW_CACHE_OP_MAX]
  1247. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1248. {
  1249. [ C(L1D) ] = {
  1250. [ C(OP_READ) ] = {
  1251. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  1252. [ C(RESULT_MISS) ] = 0,
  1253. },
  1254. [ C(OP_WRITE) ] = {
  1255. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  1256. [ C(RESULT_MISS) ] = 0,
  1257. },
  1258. [ C(OP_PREFETCH) ] = {
  1259. [ C(RESULT_ACCESS) ] = 0x0,
  1260. [ C(RESULT_MISS) ] = 0,
  1261. },
  1262. },
  1263. [ C(L1I ) ] = {
  1264. [ C(OP_READ) ] = {
  1265. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1266. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1267. },
  1268. [ C(OP_WRITE) ] = {
  1269. [ C(RESULT_ACCESS) ] = -1,
  1270. [ C(RESULT_MISS) ] = -1,
  1271. },
  1272. [ C(OP_PREFETCH) ] = {
  1273. [ C(RESULT_ACCESS) ] = 0,
  1274. [ C(RESULT_MISS) ] = 0,
  1275. },
  1276. },
  1277. [ C(LL ) ] = {
  1278. [ C(OP_READ) ] = {
  1279. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1280. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1281. },
  1282. [ C(OP_WRITE) ] = {
  1283. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1284. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1285. },
  1286. [ C(OP_PREFETCH) ] = {
  1287. [ C(RESULT_ACCESS) ] = 0,
  1288. [ C(RESULT_MISS) ] = 0,
  1289. },
  1290. },
  1291. [ C(DTLB) ] = {
  1292. [ C(OP_READ) ] = {
  1293. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  1294. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  1295. },
  1296. [ C(OP_WRITE) ] = {
  1297. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  1298. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  1299. },
  1300. [ C(OP_PREFETCH) ] = {
  1301. [ C(RESULT_ACCESS) ] = 0,
  1302. [ C(RESULT_MISS) ] = 0,
  1303. },
  1304. },
  1305. [ C(ITLB) ] = {
  1306. [ C(OP_READ) ] = {
  1307. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1308. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  1309. },
  1310. [ C(OP_WRITE) ] = {
  1311. [ C(RESULT_ACCESS) ] = -1,
  1312. [ C(RESULT_MISS) ] = -1,
  1313. },
  1314. [ C(OP_PREFETCH) ] = {
  1315. [ C(RESULT_ACCESS) ] = -1,
  1316. [ C(RESULT_MISS) ] = -1,
  1317. },
  1318. },
  1319. [ C(BPU ) ] = {
  1320. [ C(OP_READ) ] = {
  1321. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1322. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1323. },
  1324. [ C(OP_WRITE) ] = {
  1325. [ C(RESULT_ACCESS) ] = -1,
  1326. [ C(RESULT_MISS) ] = -1,
  1327. },
  1328. [ C(OP_PREFETCH) ] = {
  1329. [ C(RESULT_ACCESS) ] = -1,
  1330. [ C(RESULT_MISS) ] = -1,
  1331. },
  1332. },
  1333. };
  1334. EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
  1335. EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
  1336. /* no_alloc_cycles.not_delivered */
  1337. EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
  1338. "event=0xca,umask=0x50");
  1339. EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
  1340. /* uops_retired.all */
  1341. EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
  1342. "event=0xc2,umask=0x10");
  1343. /* uops_retired.all */
  1344. EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
  1345. "event=0xc2,umask=0x10");
  1346. static struct attribute *slm_events_attrs[] = {
  1347. EVENT_PTR(td_total_slots_slm),
  1348. EVENT_PTR(td_total_slots_scale_slm),
  1349. EVENT_PTR(td_fetch_bubbles_slm),
  1350. EVENT_PTR(td_fetch_bubbles_scale_slm),
  1351. EVENT_PTR(td_slots_issued_slm),
  1352. EVENT_PTR(td_slots_retired_slm),
  1353. NULL
  1354. };
  1355. static struct extra_reg intel_slm_extra_regs[] __read_mostly =
  1356. {
  1357. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  1358. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
  1359. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
  1360. EVENT_EXTRA_END
  1361. };
  1362. #define SLM_DMND_READ SNB_DMND_DATA_RD
  1363. #define SLM_DMND_WRITE SNB_DMND_RFO
  1364. #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  1365. #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
  1366. #define SLM_LLC_ACCESS SNB_RESP_ANY
  1367. #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
  1368. static __initconst const u64 slm_hw_cache_extra_regs
  1369. [PERF_COUNT_HW_CACHE_MAX]
  1370. [PERF_COUNT_HW_CACHE_OP_MAX]
  1371. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1372. {
  1373. [ C(LL ) ] = {
  1374. [ C(OP_READ) ] = {
  1375. [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
  1376. [ C(RESULT_MISS) ] = 0,
  1377. },
  1378. [ C(OP_WRITE) ] = {
  1379. [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
  1380. [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
  1381. },
  1382. [ C(OP_PREFETCH) ] = {
  1383. [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
  1384. [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
  1385. },
  1386. },
  1387. };
  1388. static __initconst const u64 slm_hw_cache_event_ids
  1389. [PERF_COUNT_HW_CACHE_MAX]
  1390. [PERF_COUNT_HW_CACHE_OP_MAX]
  1391. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1392. {
  1393. [ C(L1D) ] = {
  1394. [ C(OP_READ) ] = {
  1395. [ C(RESULT_ACCESS) ] = 0,
  1396. [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
  1397. },
  1398. [ C(OP_WRITE) ] = {
  1399. [ C(RESULT_ACCESS) ] = 0,
  1400. [ C(RESULT_MISS) ] = 0,
  1401. },
  1402. [ C(OP_PREFETCH) ] = {
  1403. [ C(RESULT_ACCESS) ] = 0,
  1404. [ C(RESULT_MISS) ] = 0,
  1405. },
  1406. },
  1407. [ C(L1I ) ] = {
  1408. [ C(OP_READ) ] = {
  1409. [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
  1410. [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
  1411. },
  1412. [ C(OP_WRITE) ] = {
  1413. [ C(RESULT_ACCESS) ] = -1,
  1414. [ C(RESULT_MISS) ] = -1,
  1415. },
  1416. [ C(OP_PREFETCH) ] = {
  1417. [ C(RESULT_ACCESS) ] = 0,
  1418. [ C(RESULT_MISS) ] = 0,
  1419. },
  1420. },
  1421. [ C(LL ) ] = {
  1422. [ C(OP_READ) ] = {
  1423. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1424. [ C(RESULT_ACCESS) ] = 0x01b7,
  1425. [ C(RESULT_MISS) ] = 0,
  1426. },
  1427. [ C(OP_WRITE) ] = {
  1428. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1429. [ C(RESULT_ACCESS) ] = 0x01b7,
  1430. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1431. [ C(RESULT_MISS) ] = 0x01b7,
  1432. },
  1433. [ C(OP_PREFETCH) ] = {
  1434. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1435. [ C(RESULT_ACCESS) ] = 0x01b7,
  1436. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1437. [ C(RESULT_MISS) ] = 0x01b7,
  1438. },
  1439. },
  1440. [ C(DTLB) ] = {
  1441. [ C(OP_READ) ] = {
  1442. [ C(RESULT_ACCESS) ] = 0,
  1443. [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
  1444. },
  1445. [ C(OP_WRITE) ] = {
  1446. [ C(RESULT_ACCESS) ] = 0,
  1447. [ C(RESULT_MISS) ] = 0,
  1448. },
  1449. [ C(OP_PREFETCH) ] = {
  1450. [ C(RESULT_ACCESS) ] = 0,
  1451. [ C(RESULT_MISS) ] = 0,
  1452. },
  1453. },
  1454. [ C(ITLB) ] = {
  1455. [ C(OP_READ) ] = {
  1456. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1457. [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
  1458. },
  1459. [ C(OP_WRITE) ] = {
  1460. [ C(RESULT_ACCESS) ] = -1,
  1461. [ C(RESULT_MISS) ] = -1,
  1462. },
  1463. [ C(OP_PREFETCH) ] = {
  1464. [ C(RESULT_ACCESS) ] = -1,
  1465. [ C(RESULT_MISS) ] = -1,
  1466. },
  1467. },
  1468. [ C(BPU ) ] = {
  1469. [ C(OP_READ) ] = {
  1470. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1471. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1472. },
  1473. [ C(OP_WRITE) ] = {
  1474. [ C(RESULT_ACCESS) ] = -1,
  1475. [ C(RESULT_MISS) ] = -1,
  1476. },
  1477. [ C(OP_PREFETCH) ] = {
  1478. [ C(RESULT_ACCESS) ] = -1,
  1479. [ C(RESULT_MISS) ] = -1,
  1480. },
  1481. },
  1482. };
  1483. static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
  1484. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  1485. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
  1486. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
  1487. EVENT_EXTRA_END
  1488. };
  1489. #define GLM_DEMAND_DATA_RD BIT_ULL(0)
  1490. #define GLM_DEMAND_RFO BIT_ULL(1)
  1491. #define GLM_ANY_RESPONSE BIT_ULL(16)
  1492. #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
  1493. #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
  1494. #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
  1495. #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  1496. #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
  1497. #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
  1498. #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
  1499. static __initconst const u64 glm_hw_cache_event_ids
  1500. [PERF_COUNT_HW_CACHE_MAX]
  1501. [PERF_COUNT_HW_CACHE_OP_MAX]
  1502. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1503. [C(L1D)] = {
  1504. [C(OP_READ)] = {
  1505. [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  1506. [C(RESULT_MISS)] = 0x0,
  1507. },
  1508. [C(OP_WRITE)] = {
  1509. [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  1510. [C(RESULT_MISS)] = 0x0,
  1511. },
  1512. [C(OP_PREFETCH)] = {
  1513. [C(RESULT_ACCESS)] = 0x0,
  1514. [C(RESULT_MISS)] = 0x0,
  1515. },
  1516. },
  1517. [C(L1I)] = {
  1518. [C(OP_READ)] = {
  1519. [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
  1520. [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
  1521. },
  1522. [C(OP_WRITE)] = {
  1523. [C(RESULT_ACCESS)] = -1,
  1524. [C(RESULT_MISS)] = -1,
  1525. },
  1526. [C(OP_PREFETCH)] = {
  1527. [C(RESULT_ACCESS)] = 0x0,
  1528. [C(RESULT_MISS)] = 0x0,
  1529. },
  1530. },
  1531. [C(LL)] = {
  1532. [C(OP_READ)] = {
  1533. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1534. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1535. },
  1536. [C(OP_WRITE)] = {
  1537. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1538. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1539. },
  1540. [C(OP_PREFETCH)] = {
  1541. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1542. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1543. },
  1544. },
  1545. [C(DTLB)] = {
  1546. [C(OP_READ)] = {
  1547. [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  1548. [C(RESULT_MISS)] = 0x0,
  1549. },
  1550. [C(OP_WRITE)] = {
  1551. [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  1552. [C(RESULT_MISS)] = 0x0,
  1553. },
  1554. [C(OP_PREFETCH)] = {
  1555. [C(RESULT_ACCESS)] = 0x0,
  1556. [C(RESULT_MISS)] = 0x0,
  1557. },
  1558. },
  1559. [C(ITLB)] = {
  1560. [C(OP_READ)] = {
  1561. [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
  1562. [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
  1563. },
  1564. [C(OP_WRITE)] = {
  1565. [C(RESULT_ACCESS)] = -1,
  1566. [C(RESULT_MISS)] = -1,
  1567. },
  1568. [C(OP_PREFETCH)] = {
  1569. [C(RESULT_ACCESS)] = -1,
  1570. [C(RESULT_MISS)] = -1,
  1571. },
  1572. },
  1573. [C(BPU)] = {
  1574. [C(OP_READ)] = {
  1575. [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  1576. [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  1577. },
  1578. [C(OP_WRITE)] = {
  1579. [C(RESULT_ACCESS)] = -1,
  1580. [C(RESULT_MISS)] = -1,
  1581. },
  1582. [C(OP_PREFETCH)] = {
  1583. [C(RESULT_ACCESS)] = -1,
  1584. [C(RESULT_MISS)] = -1,
  1585. },
  1586. },
  1587. };
  1588. static __initconst const u64 glm_hw_cache_extra_regs
  1589. [PERF_COUNT_HW_CACHE_MAX]
  1590. [PERF_COUNT_HW_CACHE_OP_MAX]
  1591. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1592. [C(LL)] = {
  1593. [C(OP_READ)] = {
  1594. [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
  1595. GLM_LLC_ACCESS,
  1596. [C(RESULT_MISS)] = GLM_DEMAND_READ|
  1597. GLM_LLC_MISS,
  1598. },
  1599. [C(OP_WRITE)] = {
  1600. [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
  1601. GLM_LLC_ACCESS,
  1602. [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
  1603. GLM_LLC_MISS,
  1604. },
  1605. [C(OP_PREFETCH)] = {
  1606. [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
  1607. GLM_LLC_ACCESS,
  1608. [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
  1609. GLM_LLC_MISS,
  1610. },
  1611. },
  1612. };
  1613. #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
  1614. #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
  1615. #define KNL_MCDRAM_LOCAL BIT_ULL(21)
  1616. #define KNL_MCDRAM_FAR BIT_ULL(22)
  1617. #define KNL_DDR_LOCAL BIT_ULL(23)
  1618. #define KNL_DDR_FAR BIT_ULL(24)
  1619. #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
  1620. KNL_DDR_LOCAL | KNL_DDR_FAR)
  1621. #define KNL_L2_READ SLM_DMND_READ
  1622. #define KNL_L2_WRITE SLM_DMND_WRITE
  1623. #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
  1624. #define KNL_L2_ACCESS SLM_LLC_ACCESS
  1625. #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
  1626. KNL_DRAM_ANY | SNB_SNP_ANY | \
  1627. SNB_NON_DRAM)
  1628. static __initconst const u64 knl_hw_cache_extra_regs
  1629. [PERF_COUNT_HW_CACHE_MAX]
  1630. [PERF_COUNT_HW_CACHE_OP_MAX]
  1631. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1632. [C(LL)] = {
  1633. [C(OP_READ)] = {
  1634. [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
  1635. [C(RESULT_MISS)] = 0,
  1636. },
  1637. [C(OP_WRITE)] = {
  1638. [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
  1639. [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
  1640. },
  1641. [C(OP_PREFETCH)] = {
  1642. [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
  1643. [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
  1644. },
  1645. },
  1646. };
  1647. /*
  1648. * Used from PMIs where the LBRs are already disabled.
  1649. *
  1650. * This function could be called consecutively. It is required to remain in
  1651. * disabled state if called consecutively.
  1652. *
  1653. * During consecutive calls, the same disable value will be written to related
  1654. * registers, so the PMU state remains unchanged.
  1655. *
  1656. * intel_bts events don't coexist with intel PMU's BTS events because of
  1657. * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
  1658. * disabled around intel PMU's event batching etc, only inside the PMI handler.
  1659. */
  1660. static void __intel_pmu_disable_all(void)
  1661. {
  1662. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1663. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1664. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  1665. intel_pmu_disable_bts();
  1666. intel_pmu_pebs_disable_all();
  1667. }
  1668. static void intel_pmu_disable_all(void)
  1669. {
  1670. __intel_pmu_disable_all();
  1671. intel_pmu_lbr_disable_all();
  1672. }
  1673. static void __intel_pmu_enable_all(int added, bool pmi)
  1674. {
  1675. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1676. intel_pmu_pebs_enable_all();
  1677. intel_pmu_lbr_enable_all(pmi);
  1678. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  1679. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  1680. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  1681. struct perf_event *event =
  1682. cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
  1683. if (WARN_ON_ONCE(!event))
  1684. return;
  1685. intel_pmu_enable_bts(event->hw.config);
  1686. }
  1687. }
  1688. static void intel_pmu_enable_all(int added)
  1689. {
  1690. __intel_pmu_enable_all(added, false);
  1691. }
  1692. /*
  1693. * Workaround for:
  1694. * Intel Errata AAK100 (model 26)
  1695. * Intel Errata AAP53 (model 30)
  1696. * Intel Errata BD53 (model 44)
  1697. *
  1698. * The official story:
  1699. * These chips need to be 'reset' when adding counters by programming the
  1700. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  1701. * in sequence on the same PMC or on different PMCs.
  1702. *
  1703. * In practise it appears some of these events do in fact count, and
  1704. * we need to programm all 4 events.
  1705. */
  1706. static void intel_pmu_nhm_workaround(void)
  1707. {
  1708. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1709. static const unsigned long nhm_magic[4] = {
  1710. 0x4300B5,
  1711. 0x4300D2,
  1712. 0x4300B1,
  1713. 0x4300B1
  1714. };
  1715. struct perf_event *event;
  1716. int i;
  1717. /*
  1718. * The Errata requires below steps:
  1719. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  1720. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  1721. * the corresponding PMCx;
  1722. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  1723. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  1724. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  1725. */
  1726. /*
  1727. * The real steps we choose are a little different from above.
  1728. * A) To reduce MSR operations, we don't run step 1) as they
  1729. * are already cleared before this function is called;
  1730. * B) Call x86_perf_event_update to save PMCx before configuring
  1731. * PERFEVTSELx with magic number;
  1732. * C) With step 5), we do clear only when the PERFEVTSELx is
  1733. * not used currently.
  1734. * D) Call x86_perf_event_set_period to restore PMCx;
  1735. */
  1736. /* We always operate 4 pairs of PERF Counters */
  1737. for (i = 0; i < 4; i++) {
  1738. event = cpuc->events[i];
  1739. if (event)
  1740. x86_perf_event_update(event);
  1741. }
  1742. for (i = 0; i < 4; i++) {
  1743. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  1744. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  1745. }
  1746. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  1747. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  1748. for (i = 0; i < 4; i++) {
  1749. event = cpuc->events[i];
  1750. if (event) {
  1751. x86_perf_event_set_period(event);
  1752. __x86_pmu_enable_event(&event->hw,
  1753. ARCH_PERFMON_EVENTSEL_ENABLE);
  1754. } else
  1755. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  1756. }
  1757. }
  1758. static void intel_pmu_nhm_enable_all(int added)
  1759. {
  1760. if (added)
  1761. intel_pmu_nhm_workaround();
  1762. intel_pmu_enable_all(added);
  1763. }
  1764. static inline u64 intel_pmu_get_status(void)
  1765. {
  1766. u64 status;
  1767. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  1768. return status;
  1769. }
  1770. static inline void intel_pmu_ack_status(u64 ack)
  1771. {
  1772. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  1773. }
  1774. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  1775. {
  1776. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1777. u64 ctrl_val, mask;
  1778. mask = 0xfULL << (idx * 4);
  1779. rdmsrl(hwc->config_base, ctrl_val);
  1780. ctrl_val &= ~mask;
  1781. wrmsrl(hwc->config_base, ctrl_val);
  1782. }
  1783. static inline bool event_is_checkpointed(struct perf_event *event)
  1784. {
  1785. return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
  1786. }
  1787. static void intel_pmu_disable_event(struct perf_event *event)
  1788. {
  1789. struct hw_perf_event *hwc = &event->hw;
  1790. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1791. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1792. intel_pmu_disable_bts();
  1793. intel_pmu_drain_bts_buffer();
  1794. return;
  1795. }
  1796. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  1797. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  1798. cpuc->intel_cp_status &= ~(1ull << hwc->idx);
  1799. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1800. intel_pmu_disable_fixed(hwc);
  1801. return;
  1802. }
  1803. x86_pmu_disable_event(event);
  1804. if (unlikely(event->attr.precise_ip))
  1805. intel_pmu_pebs_disable(event);
  1806. }
  1807. static void intel_pmu_del_event(struct perf_event *event)
  1808. {
  1809. if (needs_branch_stack(event))
  1810. intel_pmu_lbr_del(event);
  1811. if (event->attr.precise_ip)
  1812. intel_pmu_pebs_del(event);
  1813. }
  1814. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  1815. {
  1816. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1817. u64 ctrl_val, bits, mask;
  1818. /*
  1819. * Enable IRQ generation (0x8),
  1820. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  1821. * if requested:
  1822. */
  1823. bits = 0x8ULL;
  1824. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  1825. bits |= 0x2;
  1826. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  1827. bits |= 0x1;
  1828. /*
  1829. * ANY bit is supported in v3 and up
  1830. */
  1831. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  1832. bits |= 0x4;
  1833. bits <<= (idx * 4);
  1834. mask = 0xfULL << (idx * 4);
  1835. rdmsrl(hwc->config_base, ctrl_val);
  1836. ctrl_val &= ~mask;
  1837. ctrl_val |= bits;
  1838. wrmsrl(hwc->config_base, ctrl_val);
  1839. }
  1840. static void intel_pmu_enable_event(struct perf_event *event)
  1841. {
  1842. struct hw_perf_event *hwc = &event->hw;
  1843. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1844. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1845. if (!__this_cpu_read(cpu_hw_events.enabled))
  1846. return;
  1847. intel_pmu_enable_bts(hwc->config);
  1848. return;
  1849. }
  1850. if (event->attr.exclude_host)
  1851. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  1852. if (event->attr.exclude_guest)
  1853. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  1854. if (unlikely(event_is_checkpointed(event)))
  1855. cpuc->intel_cp_status |= (1ull << hwc->idx);
  1856. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1857. intel_pmu_enable_fixed(hwc);
  1858. return;
  1859. }
  1860. if (unlikely(event->attr.precise_ip))
  1861. intel_pmu_pebs_enable(event);
  1862. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1863. }
  1864. static void intel_pmu_add_event(struct perf_event *event)
  1865. {
  1866. if (event->attr.precise_ip)
  1867. intel_pmu_pebs_add(event);
  1868. if (needs_branch_stack(event))
  1869. intel_pmu_lbr_add(event);
  1870. }
  1871. /*
  1872. * Save and restart an expired event. Called by NMI contexts,
  1873. * so it has to be careful about preempting normal event ops:
  1874. */
  1875. int intel_pmu_save_and_restart(struct perf_event *event)
  1876. {
  1877. x86_perf_event_update(event);
  1878. /*
  1879. * For a checkpointed counter always reset back to 0. This
  1880. * avoids a situation where the counter overflows, aborts the
  1881. * transaction and is then set back to shortly before the
  1882. * overflow, and overflows and aborts again.
  1883. */
  1884. if (unlikely(event_is_checkpointed(event))) {
  1885. /* No race with NMIs because the counter should not be armed */
  1886. wrmsrl(event->hw.event_base, 0);
  1887. local64_set(&event->hw.prev_count, 0);
  1888. }
  1889. return x86_perf_event_set_period(event);
  1890. }
  1891. static void intel_pmu_reset(void)
  1892. {
  1893. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  1894. unsigned long flags;
  1895. int idx;
  1896. if (!x86_pmu.num_counters)
  1897. return;
  1898. local_irq_save(flags);
  1899. pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
  1900. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1901. wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
  1902. wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
  1903. }
  1904. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  1905. wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  1906. if (ds)
  1907. ds->bts_index = ds->bts_buffer_base;
  1908. /* Ack all overflows and disable fixed counters */
  1909. if (x86_pmu.version >= 2) {
  1910. intel_pmu_ack_status(intel_pmu_get_status());
  1911. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1912. }
  1913. /* Reset LBRs and LBR freezing */
  1914. if (x86_pmu.lbr_nr) {
  1915. update_debugctlmsr(get_debugctlmsr() &
  1916. ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
  1917. }
  1918. local_irq_restore(flags);
  1919. }
  1920. /*
  1921. * This handler is triggered by the local APIC, so the APIC IRQ handling
  1922. * rules apply:
  1923. */
  1924. static int intel_pmu_handle_irq(struct pt_regs *regs)
  1925. {
  1926. struct perf_sample_data data;
  1927. struct cpu_hw_events *cpuc;
  1928. int bit, loops;
  1929. u64 status;
  1930. int handled;
  1931. int pmu_enabled;
  1932. cpuc = this_cpu_ptr(&cpu_hw_events);
  1933. /*
  1934. * Save the PMU state.
  1935. * It needs to be restored when leaving the handler.
  1936. */
  1937. pmu_enabled = cpuc->enabled;
  1938. /*
  1939. * No known reason to not always do late ACK,
  1940. * but just in case do it opt-in.
  1941. */
  1942. if (!x86_pmu.late_ack)
  1943. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1944. intel_bts_disable_local();
  1945. cpuc->enabled = 0;
  1946. __intel_pmu_disable_all();
  1947. handled = intel_pmu_drain_bts_buffer();
  1948. handled += intel_bts_interrupt();
  1949. status = intel_pmu_get_status();
  1950. if (!status)
  1951. goto done;
  1952. loops = 0;
  1953. again:
  1954. intel_pmu_lbr_read();
  1955. intel_pmu_ack_status(status);
  1956. if (++loops > 100) {
  1957. static bool warned = false;
  1958. if (!warned) {
  1959. WARN(1, "perfevents: irq loop stuck!\n");
  1960. perf_event_print_debug();
  1961. warned = true;
  1962. }
  1963. intel_pmu_reset();
  1964. goto done;
  1965. }
  1966. inc_irq_stat(apic_perf_irqs);
  1967. /*
  1968. * Ignore a range of extra bits in status that do not indicate
  1969. * overflow by themselves.
  1970. */
  1971. status &= ~(GLOBAL_STATUS_COND_CHG |
  1972. GLOBAL_STATUS_ASIF |
  1973. GLOBAL_STATUS_LBRS_FROZEN);
  1974. if (!status)
  1975. goto done;
  1976. /*
  1977. * PEBS overflow sets bit 62 in the global status register
  1978. */
  1979. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  1980. handled++;
  1981. x86_pmu.drain_pebs(regs);
  1982. /*
  1983. * There are cases where, even though, the PEBS ovfl bit is set
  1984. * in GLOBAL_OVF_STATUS, the PEBS events may also have their
  1985. * overflow bits set for their counters. We must clear them
  1986. * here because they have been processed as exact samples in
  1987. * the drain_pebs() routine. They must not be processed again
  1988. * in the for_each_bit_set() loop for regular samples below.
  1989. */
  1990. status &= ~cpuc->pebs_enabled;
  1991. status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
  1992. }
  1993. /*
  1994. * Intel PT
  1995. */
  1996. if (__test_and_clear_bit(55, (unsigned long *)&status)) {
  1997. handled++;
  1998. intel_pt_interrupt();
  1999. }
  2000. /*
  2001. * Checkpointed counters can lead to 'spurious' PMIs because the
  2002. * rollback caused by the PMI will have cleared the overflow status
  2003. * bit. Therefore always force probe these counters.
  2004. */
  2005. status |= cpuc->intel_cp_status;
  2006. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  2007. struct perf_event *event = cpuc->events[bit];
  2008. handled++;
  2009. if (!test_bit(bit, cpuc->active_mask))
  2010. continue;
  2011. if (!intel_pmu_save_and_restart(event))
  2012. continue;
  2013. perf_sample_data_init(&data, 0, event->hw.last_period);
  2014. if (has_branch_stack(event))
  2015. data.br_stack = &cpuc->lbr_stack;
  2016. if (perf_event_overflow(event, &data, regs))
  2017. x86_pmu_stop(event, 0);
  2018. }
  2019. /*
  2020. * Repeat if there is more work to be done:
  2021. */
  2022. status = intel_pmu_get_status();
  2023. if (status)
  2024. goto again;
  2025. done:
  2026. /* Only restore PMU state when it's active. See x86_pmu_disable(). */
  2027. cpuc->enabled = pmu_enabled;
  2028. if (pmu_enabled)
  2029. __intel_pmu_enable_all(0, true);
  2030. intel_bts_enable_local();
  2031. /*
  2032. * Only unmask the NMI after the overflow counters
  2033. * have been reset. This avoids spurious NMIs on
  2034. * Haswell CPUs.
  2035. */
  2036. if (x86_pmu.late_ack)
  2037. apic_write(APIC_LVTPC, APIC_DM_NMI);
  2038. return handled;
  2039. }
  2040. static struct event_constraint *
  2041. intel_bts_constraints(struct perf_event *event)
  2042. {
  2043. struct hw_perf_event *hwc = &event->hw;
  2044. unsigned int hw_event, bts_event;
  2045. if (event->attr.freq)
  2046. return NULL;
  2047. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  2048. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  2049. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  2050. return &bts_constraint;
  2051. return NULL;
  2052. }
  2053. static int intel_alt_er(int idx, u64 config)
  2054. {
  2055. int alt_idx = idx;
  2056. if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
  2057. return idx;
  2058. if (idx == EXTRA_REG_RSP_0)
  2059. alt_idx = EXTRA_REG_RSP_1;
  2060. if (idx == EXTRA_REG_RSP_1)
  2061. alt_idx = EXTRA_REG_RSP_0;
  2062. if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
  2063. return idx;
  2064. return alt_idx;
  2065. }
  2066. static void intel_fixup_er(struct perf_event *event, int idx)
  2067. {
  2068. event->hw.extra_reg.idx = idx;
  2069. if (idx == EXTRA_REG_RSP_0) {
  2070. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  2071. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
  2072. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  2073. } else if (idx == EXTRA_REG_RSP_1) {
  2074. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  2075. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
  2076. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  2077. }
  2078. }
  2079. /*
  2080. * manage allocation of shared extra msr for certain events
  2081. *
  2082. * sharing can be:
  2083. * per-cpu: to be shared between the various events on a single PMU
  2084. * per-core: per-cpu + shared by HT threads
  2085. */
  2086. static struct event_constraint *
  2087. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  2088. struct perf_event *event,
  2089. struct hw_perf_event_extra *reg)
  2090. {
  2091. struct event_constraint *c = &emptyconstraint;
  2092. struct er_account *era;
  2093. unsigned long flags;
  2094. int idx = reg->idx;
  2095. /*
  2096. * reg->alloc can be set due to existing state, so for fake cpuc we
  2097. * need to ignore this, otherwise we might fail to allocate proper fake
  2098. * state for this extra reg constraint. Also see the comment below.
  2099. */
  2100. if (reg->alloc && !cpuc->is_fake)
  2101. return NULL; /* call x86_get_event_constraint() */
  2102. again:
  2103. era = &cpuc->shared_regs->regs[idx];
  2104. /*
  2105. * we use spin_lock_irqsave() to avoid lockdep issues when
  2106. * passing a fake cpuc
  2107. */
  2108. raw_spin_lock_irqsave(&era->lock, flags);
  2109. if (!atomic_read(&era->ref) || era->config == reg->config) {
  2110. /*
  2111. * If its a fake cpuc -- as per validate_{group,event}() we
  2112. * shouldn't touch event state and we can avoid doing so
  2113. * since both will only call get_event_constraints() once
  2114. * on each event, this avoids the need for reg->alloc.
  2115. *
  2116. * Not doing the ER fixup will only result in era->reg being
  2117. * wrong, but since we won't actually try and program hardware
  2118. * this isn't a problem either.
  2119. */
  2120. if (!cpuc->is_fake) {
  2121. if (idx != reg->idx)
  2122. intel_fixup_er(event, idx);
  2123. /*
  2124. * x86_schedule_events() can call get_event_constraints()
  2125. * multiple times on events in the case of incremental
  2126. * scheduling(). reg->alloc ensures we only do the ER
  2127. * allocation once.
  2128. */
  2129. reg->alloc = 1;
  2130. }
  2131. /* lock in msr value */
  2132. era->config = reg->config;
  2133. era->reg = reg->reg;
  2134. /* one more user */
  2135. atomic_inc(&era->ref);
  2136. /*
  2137. * need to call x86_get_event_constraint()
  2138. * to check if associated event has constraints
  2139. */
  2140. c = NULL;
  2141. } else {
  2142. idx = intel_alt_er(idx, reg->config);
  2143. if (idx != reg->idx) {
  2144. raw_spin_unlock_irqrestore(&era->lock, flags);
  2145. goto again;
  2146. }
  2147. }
  2148. raw_spin_unlock_irqrestore(&era->lock, flags);
  2149. return c;
  2150. }
  2151. static void
  2152. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  2153. struct hw_perf_event_extra *reg)
  2154. {
  2155. struct er_account *era;
  2156. /*
  2157. * Only put constraint if extra reg was actually allocated. Also takes
  2158. * care of event which do not use an extra shared reg.
  2159. *
  2160. * Also, if this is a fake cpuc we shouldn't touch any event state
  2161. * (reg->alloc) and we don't care about leaving inconsistent cpuc state
  2162. * either since it'll be thrown out.
  2163. */
  2164. if (!reg->alloc || cpuc->is_fake)
  2165. return;
  2166. era = &cpuc->shared_regs->regs[reg->idx];
  2167. /* one fewer user */
  2168. atomic_dec(&era->ref);
  2169. /* allocate again next time */
  2170. reg->alloc = 0;
  2171. }
  2172. static struct event_constraint *
  2173. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  2174. struct perf_event *event)
  2175. {
  2176. struct event_constraint *c = NULL, *d;
  2177. struct hw_perf_event_extra *xreg, *breg;
  2178. xreg = &event->hw.extra_reg;
  2179. if (xreg->idx != EXTRA_REG_NONE) {
  2180. c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
  2181. if (c == &emptyconstraint)
  2182. return c;
  2183. }
  2184. breg = &event->hw.branch_reg;
  2185. if (breg->idx != EXTRA_REG_NONE) {
  2186. d = __intel_shared_reg_get_constraints(cpuc, event, breg);
  2187. if (d == &emptyconstraint) {
  2188. __intel_shared_reg_put_constraints(cpuc, xreg);
  2189. c = d;
  2190. }
  2191. }
  2192. return c;
  2193. }
  2194. struct event_constraint *
  2195. x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2196. struct perf_event *event)
  2197. {
  2198. struct event_constraint *c;
  2199. if (x86_pmu.event_constraints) {
  2200. for_each_event_constraint(c, x86_pmu.event_constraints) {
  2201. if ((event->hw.config & c->cmask) == c->code) {
  2202. event->hw.flags |= c->flags;
  2203. return c;
  2204. }
  2205. }
  2206. }
  2207. return &unconstrained;
  2208. }
  2209. static struct event_constraint *
  2210. __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2211. struct perf_event *event)
  2212. {
  2213. struct event_constraint *c;
  2214. c = intel_bts_constraints(event);
  2215. if (c)
  2216. return c;
  2217. c = intel_shared_regs_constraints(cpuc, event);
  2218. if (c)
  2219. return c;
  2220. c = intel_pebs_constraints(event);
  2221. if (c)
  2222. return c;
  2223. return x86_get_event_constraints(cpuc, idx, event);
  2224. }
  2225. static void
  2226. intel_start_scheduling(struct cpu_hw_events *cpuc)
  2227. {
  2228. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2229. struct intel_excl_states *xl;
  2230. int tid = cpuc->excl_thread_id;
  2231. /*
  2232. * nothing needed if in group validation mode
  2233. */
  2234. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2235. return;
  2236. /*
  2237. * no exclusion needed
  2238. */
  2239. if (WARN_ON_ONCE(!excl_cntrs))
  2240. return;
  2241. xl = &excl_cntrs->states[tid];
  2242. xl->sched_started = true;
  2243. /*
  2244. * lock shared state until we are done scheduling
  2245. * in stop_event_scheduling()
  2246. * makes scheduling appear as a transaction
  2247. */
  2248. raw_spin_lock(&excl_cntrs->lock);
  2249. }
  2250. static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
  2251. {
  2252. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2253. struct event_constraint *c = cpuc->event_constraint[idx];
  2254. struct intel_excl_states *xl;
  2255. int tid = cpuc->excl_thread_id;
  2256. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2257. return;
  2258. if (WARN_ON_ONCE(!excl_cntrs))
  2259. return;
  2260. if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
  2261. return;
  2262. xl = &excl_cntrs->states[tid];
  2263. lockdep_assert_held(&excl_cntrs->lock);
  2264. if (c->flags & PERF_X86_EVENT_EXCL)
  2265. xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
  2266. else
  2267. xl->state[cntr] = INTEL_EXCL_SHARED;
  2268. }
  2269. static void
  2270. intel_stop_scheduling(struct cpu_hw_events *cpuc)
  2271. {
  2272. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2273. struct intel_excl_states *xl;
  2274. int tid = cpuc->excl_thread_id;
  2275. /*
  2276. * nothing needed if in group validation mode
  2277. */
  2278. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2279. return;
  2280. /*
  2281. * no exclusion needed
  2282. */
  2283. if (WARN_ON_ONCE(!excl_cntrs))
  2284. return;
  2285. xl = &excl_cntrs->states[tid];
  2286. xl->sched_started = false;
  2287. /*
  2288. * release shared state lock (acquired in intel_start_scheduling())
  2289. */
  2290. raw_spin_unlock(&excl_cntrs->lock);
  2291. }
  2292. static struct event_constraint *
  2293. intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
  2294. int idx, struct event_constraint *c)
  2295. {
  2296. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2297. struct intel_excl_states *xlo;
  2298. int tid = cpuc->excl_thread_id;
  2299. int is_excl, i;
  2300. /*
  2301. * validating a group does not require
  2302. * enforcing cross-thread exclusion
  2303. */
  2304. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2305. return c;
  2306. /*
  2307. * no exclusion needed
  2308. */
  2309. if (WARN_ON_ONCE(!excl_cntrs))
  2310. return c;
  2311. /*
  2312. * because we modify the constraint, we need
  2313. * to make a copy. Static constraints come
  2314. * from static const tables.
  2315. *
  2316. * only needed when constraint has not yet
  2317. * been cloned (marked dynamic)
  2318. */
  2319. if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
  2320. struct event_constraint *cx;
  2321. /*
  2322. * grab pre-allocated constraint entry
  2323. */
  2324. cx = &cpuc->constraint_list[idx];
  2325. /*
  2326. * initialize dynamic constraint
  2327. * with static constraint
  2328. */
  2329. *cx = *c;
  2330. /*
  2331. * mark constraint as dynamic, so we
  2332. * can free it later on
  2333. */
  2334. cx->flags |= PERF_X86_EVENT_DYNAMIC;
  2335. c = cx;
  2336. }
  2337. /*
  2338. * From here on, the constraint is dynamic.
  2339. * Either it was just allocated above, or it
  2340. * was allocated during a earlier invocation
  2341. * of this function
  2342. */
  2343. /*
  2344. * state of sibling HT
  2345. */
  2346. xlo = &excl_cntrs->states[tid ^ 1];
  2347. /*
  2348. * event requires exclusive counter access
  2349. * across HT threads
  2350. */
  2351. is_excl = c->flags & PERF_X86_EVENT_EXCL;
  2352. if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
  2353. event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
  2354. if (!cpuc->n_excl++)
  2355. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
  2356. }
  2357. /*
  2358. * Modify static constraint with current dynamic
  2359. * state of thread
  2360. *
  2361. * EXCLUSIVE: sibling counter measuring exclusive event
  2362. * SHARED : sibling counter measuring non-exclusive event
  2363. * UNUSED : sibling counter unused
  2364. */
  2365. for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
  2366. /*
  2367. * exclusive event in sibling counter
  2368. * our corresponding counter cannot be used
  2369. * regardless of our event
  2370. */
  2371. if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
  2372. __clear_bit(i, c->idxmsk);
  2373. /*
  2374. * if measuring an exclusive event, sibling
  2375. * measuring non-exclusive, then counter cannot
  2376. * be used
  2377. */
  2378. if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
  2379. __clear_bit(i, c->idxmsk);
  2380. }
  2381. /*
  2382. * recompute actual bit weight for scheduling algorithm
  2383. */
  2384. c->weight = hweight64(c->idxmsk64);
  2385. /*
  2386. * if we return an empty mask, then switch
  2387. * back to static empty constraint to avoid
  2388. * the cost of freeing later on
  2389. */
  2390. if (c->weight == 0)
  2391. c = &emptyconstraint;
  2392. return c;
  2393. }
  2394. static struct event_constraint *
  2395. intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2396. struct perf_event *event)
  2397. {
  2398. struct event_constraint *c1 = NULL;
  2399. struct event_constraint *c2;
  2400. if (idx >= 0) /* fake does < 0 */
  2401. c1 = cpuc->event_constraint[idx];
  2402. /*
  2403. * first time only
  2404. * - static constraint: no change across incremental scheduling calls
  2405. * - dynamic constraint: handled by intel_get_excl_constraints()
  2406. */
  2407. c2 = __intel_get_event_constraints(cpuc, idx, event);
  2408. if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
  2409. bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
  2410. c1->weight = c2->weight;
  2411. c2 = c1;
  2412. }
  2413. if (cpuc->excl_cntrs)
  2414. return intel_get_excl_constraints(cpuc, event, idx, c2);
  2415. return c2;
  2416. }
  2417. static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
  2418. struct perf_event *event)
  2419. {
  2420. struct hw_perf_event *hwc = &event->hw;
  2421. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2422. int tid = cpuc->excl_thread_id;
  2423. struct intel_excl_states *xl;
  2424. /*
  2425. * nothing needed if in group validation mode
  2426. */
  2427. if (cpuc->is_fake)
  2428. return;
  2429. if (WARN_ON_ONCE(!excl_cntrs))
  2430. return;
  2431. if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
  2432. hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
  2433. if (!--cpuc->n_excl)
  2434. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
  2435. }
  2436. /*
  2437. * If event was actually assigned, then mark the counter state as
  2438. * unused now.
  2439. */
  2440. if (hwc->idx >= 0) {
  2441. xl = &excl_cntrs->states[tid];
  2442. /*
  2443. * put_constraint may be called from x86_schedule_events()
  2444. * which already has the lock held so here make locking
  2445. * conditional.
  2446. */
  2447. if (!xl->sched_started)
  2448. raw_spin_lock(&excl_cntrs->lock);
  2449. xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
  2450. if (!xl->sched_started)
  2451. raw_spin_unlock(&excl_cntrs->lock);
  2452. }
  2453. }
  2454. static void
  2455. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  2456. struct perf_event *event)
  2457. {
  2458. struct hw_perf_event_extra *reg;
  2459. reg = &event->hw.extra_reg;
  2460. if (reg->idx != EXTRA_REG_NONE)
  2461. __intel_shared_reg_put_constraints(cpuc, reg);
  2462. reg = &event->hw.branch_reg;
  2463. if (reg->idx != EXTRA_REG_NONE)
  2464. __intel_shared_reg_put_constraints(cpuc, reg);
  2465. }
  2466. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  2467. struct perf_event *event)
  2468. {
  2469. intel_put_shared_regs_event_constraints(cpuc, event);
  2470. /*
  2471. * is PMU has exclusive counter restrictions, then
  2472. * all events are subject to and must call the
  2473. * put_excl_constraints() routine
  2474. */
  2475. if (cpuc->excl_cntrs)
  2476. intel_put_excl_constraints(cpuc, event);
  2477. }
  2478. static void intel_pebs_aliases_core2(struct perf_event *event)
  2479. {
  2480. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2481. /*
  2482. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2483. * (0x003c) so that we can use it with PEBS.
  2484. *
  2485. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2486. * PEBS capable. However we can use INST_RETIRED.ANY_P
  2487. * (0x00c0), which is a PEBS capable event, to get the same
  2488. * count.
  2489. *
  2490. * INST_RETIRED.ANY_P counts the number of cycles that retires
  2491. * CNTMASK instructions. By setting CNTMASK to a value (16)
  2492. * larger than the maximum number of instructions that can be
  2493. * retired per cycle (4) and then inverting the condition, we
  2494. * count all cycles that retire 16 or less instructions, which
  2495. * is every cycle.
  2496. *
  2497. * Thereby we gain a PEBS capable cycle counter.
  2498. */
  2499. u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
  2500. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2501. event->hw.config = alt_config;
  2502. }
  2503. }
  2504. static void intel_pebs_aliases_snb(struct perf_event *event)
  2505. {
  2506. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2507. /*
  2508. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2509. * (0x003c) so that we can use it with PEBS.
  2510. *
  2511. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2512. * PEBS capable. However we can use UOPS_RETIRED.ALL
  2513. * (0x01c2), which is a PEBS capable event, to get the same
  2514. * count.
  2515. *
  2516. * UOPS_RETIRED.ALL counts the number of cycles that retires
  2517. * CNTMASK micro-ops. By setting CNTMASK to a value (16)
  2518. * larger than the maximum number of micro-ops that can be
  2519. * retired per cycle (4) and then inverting the condition, we
  2520. * count all cycles that retire 16 or less micro-ops, which
  2521. * is every cycle.
  2522. *
  2523. * Thereby we gain a PEBS capable cycle counter.
  2524. */
  2525. u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
  2526. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2527. event->hw.config = alt_config;
  2528. }
  2529. }
  2530. static void intel_pebs_aliases_precdist(struct perf_event *event)
  2531. {
  2532. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2533. /*
  2534. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2535. * (0x003c) so that we can use it with PEBS.
  2536. *
  2537. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2538. * PEBS capable. However we can use INST_RETIRED.PREC_DIST
  2539. * (0x01c0), which is a PEBS capable event, to get the same
  2540. * count.
  2541. *
  2542. * The PREC_DIST event has special support to minimize sample
  2543. * shadowing effects. One drawback is that it can be
  2544. * only programmed on counter 1, but that seems like an
  2545. * acceptable trade off.
  2546. */
  2547. u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
  2548. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2549. event->hw.config = alt_config;
  2550. }
  2551. }
  2552. static void intel_pebs_aliases_ivb(struct perf_event *event)
  2553. {
  2554. if (event->attr.precise_ip < 3)
  2555. return intel_pebs_aliases_snb(event);
  2556. return intel_pebs_aliases_precdist(event);
  2557. }
  2558. static void intel_pebs_aliases_skl(struct perf_event *event)
  2559. {
  2560. if (event->attr.precise_ip < 3)
  2561. return intel_pebs_aliases_core2(event);
  2562. return intel_pebs_aliases_precdist(event);
  2563. }
  2564. static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
  2565. {
  2566. unsigned long flags = x86_pmu.free_running_flags;
  2567. if (event->attr.use_clockid)
  2568. flags &= ~PERF_SAMPLE_TIME;
  2569. return flags;
  2570. }
  2571. static int intel_pmu_hw_config(struct perf_event *event)
  2572. {
  2573. int ret = x86_pmu_hw_config(event);
  2574. if (ret)
  2575. return ret;
  2576. if (event->attr.precise_ip) {
  2577. if (!event->attr.freq) {
  2578. event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
  2579. if (!(event->attr.sample_type &
  2580. ~intel_pmu_free_running_flags(event)))
  2581. event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
  2582. }
  2583. if (x86_pmu.pebs_aliases)
  2584. x86_pmu.pebs_aliases(event);
  2585. }
  2586. if (needs_branch_stack(event)) {
  2587. ret = intel_pmu_setup_lbr_filter(event);
  2588. if (ret)
  2589. return ret;
  2590. /*
  2591. * BTS is set up earlier in this path, so don't account twice
  2592. */
  2593. if (!intel_pmu_has_bts(event)) {
  2594. /* disallow lbr if conflicting events are present */
  2595. if (x86_add_exclusive(x86_lbr_exclusive_lbr))
  2596. return -EBUSY;
  2597. event->destroy = hw_perf_lbr_event_destroy;
  2598. }
  2599. }
  2600. if (event->attr.type != PERF_TYPE_RAW)
  2601. return 0;
  2602. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  2603. return 0;
  2604. if (x86_pmu.version < 3)
  2605. return -EINVAL;
  2606. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2607. return -EACCES;
  2608. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  2609. return 0;
  2610. }
  2611. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  2612. {
  2613. if (x86_pmu.guest_get_msrs)
  2614. return x86_pmu.guest_get_msrs(nr);
  2615. *nr = 0;
  2616. return NULL;
  2617. }
  2618. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  2619. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  2620. {
  2621. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2622. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2623. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  2624. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  2625. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  2626. /*
  2627. * If PMU counter has PEBS enabled it is not enough to disable counter
  2628. * on a guest entry since PEBS memory write can overshoot guest entry
  2629. * and corrupt guest memory. Disabling PEBS solves the problem.
  2630. */
  2631. arr[1].msr = MSR_IA32_PEBS_ENABLE;
  2632. arr[1].host = cpuc->pebs_enabled;
  2633. arr[1].guest = 0;
  2634. *nr = 2;
  2635. return arr;
  2636. }
  2637. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  2638. {
  2639. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2640. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2641. int idx;
  2642. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2643. struct perf_event *event = cpuc->events[idx];
  2644. arr[idx].msr = x86_pmu_config_addr(idx);
  2645. arr[idx].host = arr[idx].guest = 0;
  2646. if (!test_bit(idx, cpuc->active_mask))
  2647. continue;
  2648. arr[idx].host = arr[idx].guest =
  2649. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  2650. if (event->attr.exclude_host)
  2651. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2652. else if (event->attr.exclude_guest)
  2653. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2654. }
  2655. *nr = x86_pmu.num_counters;
  2656. return arr;
  2657. }
  2658. static void core_pmu_enable_event(struct perf_event *event)
  2659. {
  2660. if (!event->attr.exclude_host)
  2661. x86_pmu_enable_event(event);
  2662. }
  2663. static void core_pmu_enable_all(int added)
  2664. {
  2665. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2666. int idx;
  2667. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2668. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  2669. if (!test_bit(idx, cpuc->active_mask) ||
  2670. cpuc->events[idx]->attr.exclude_host)
  2671. continue;
  2672. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  2673. }
  2674. }
  2675. static int hsw_hw_config(struct perf_event *event)
  2676. {
  2677. int ret = intel_pmu_hw_config(event);
  2678. if (ret)
  2679. return ret;
  2680. if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
  2681. return 0;
  2682. event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
  2683. /*
  2684. * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
  2685. * PEBS or in ANY thread mode. Since the results are non-sensical forbid
  2686. * this combination.
  2687. */
  2688. if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
  2689. ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
  2690. event->attr.precise_ip > 0))
  2691. return -EOPNOTSUPP;
  2692. if (event_is_checkpointed(event)) {
  2693. /*
  2694. * Sampling of checkpointed events can cause situations where
  2695. * the CPU constantly aborts because of a overflow, which is
  2696. * then checkpointed back and ignored. Forbid checkpointing
  2697. * for sampling.
  2698. *
  2699. * But still allow a long sampling period, so that perf stat
  2700. * from KVM works.
  2701. */
  2702. if (event->attr.sample_period > 0 &&
  2703. event->attr.sample_period < 0x7fffffff)
  2704. return -EOPNOTSUPP;
  2705. }
  2706. return 0;
  2707. }
  2708. static struct event_constraint counter2_constraint =
  2709. EVENT_CONSTRAINT(0, 0x4, 0);
  2710. static struct event_constraint *
  2711. hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2712. struct perf_event *event)
  2713. {
  2714. struct event_constraint *c;
  2715. c = intel_get_event_constraints(cpuc, idx, event);
  2716. /* Handle special quirk on in_tx_checkpointed only in counter 2 */
  2717. if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
  2718. if (c->idxmsk64 & (1U << 2))
  2719. return &counter2_constraint;
  2720. return &emptyconstraint;
  2721. }
  2722. return c;
  2723. }
  2724. /*
  2725. * Broadwell:
  2726. *
  2727. * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
  2728. * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
  2729. * the two to enforce a minimum period of 128 (the smallest value that has bits
  2730. * 0-5 cleared and >= 100).
  2731. *
  2732. * Because of how the code in x86_perf_event_set_period() works, the truncation
  2733. * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
  2734. * to make up for the 'lost' events due to carrying the 'error' in period_left.
  2735. *
  2736. * Therefore the effective (average) period matches the requested period,
  2737. * despite coarser hardware granularity.
  2738. */
  2739. static u64 bdw_limit_period(struct perf_event *event, u64 left)
  2740. {
  2741. if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
  2742. X86_CONFIG(.event=0xc0, .umask=0x01)) {
  2743. if (left < 128)
  2744. left = 128;
  2745. left &= ~0x3fULL;
  2746. }
  2747. return left;
  2748. }
  2749. PMU_FORMAT_ATTR(event, "config:0-7" );
  2750. PMU_FORMAT_ATTR(umask, "config:8-15" );
  2751. PMU_FORMAT_ATTR(edge, "config:18" );
  2752. PMU_FORMAT_ATTR(pc, "config:19" );
  2753. PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
  2754. PMU_FORMAT_ATTR(inv, "config:23" );
  2755. PMU_FORMAT_ATTR(cmask, "config:24-31" );
  2756. PMU_FORMAT_ATTR(in_tx, "config:32");
  2757. PMU_FORMAT_ATTR(in_tx_cp, "config:33");
  2758. static struct attribute *intel_arch_formats_attr[] = {
  2759. &format_attr_event.attr,
  2760. &format_attr_umask.attr,
  2761. &format_attr_edge.attr,
  2762. &format_attr_pc.attr,
  2763. &format_attr_inv.attr,
  2764. &format_attr_cmask.attr,
  2765. NULL,
  2766. };
  2767. ssize_t intel_event_sysfs_show(char *page, u64 config)
  2768. {
  2769. u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
  2770. return x86_event_sysfs_show(page, config, event);
  2771. }
  2772. struct intel_shared_regs *allocate_shared_regs(int cpu)
  2773. {
  2774. struct intel_shared_regs *regs;
  2775. int i;
  2776. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  2777. GFP_KERNEL, cpu_to_node(cpu));
  2778. if (regs) {
  2779. /*
  2780. * initialize the locks to keep lockdep happy
  2781. */
  2782. for (i = 0; i < EXTRA_REG_MAX; i++)
  2783. raw_spin_lock_init(&regs->regs[i].lock);
  2784. regs->core_id = -1;
  2785. }
  2786. return regs;
  2787. }
  2788. static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
  2789. {
  2790. struct intel_excl_cntrs *c;
  2791. c = kzalloc_node(sizeof(struct intel_excl_cntrs),
  2792. GFP_KERNEL, cpu_to_node(cpu));
  2793. if (c) {
  2794. raw_spin_lock_init(&c->lock);
  2795. c->core_id = -1;
  2796. }
  2797. return c;
  2798. }
  2799. static int intel_pmu_cpu_prepare(int cpu)
  2800. {
  2801. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2802. if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
  2803. cpuc->shared_regs = allocate_shared_regs(cpu);
  2804. if (!cpuc->shared_regs)
  2805. goto err;
  2806. }
  2807. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2808. size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
  2809. cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
  2810. if (!cpuc->constraint_list)
  2811. goto err_shared_regs;
  2812. cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
  2813. if (!cpuc->excl_cntrs)
  2814. goto err_constraint_list;
  2815. cpuc->excl_thread_id = 0;
  2816. }
  2817. return 0;
  2818. err_constraint_list:
  2819. kfree(cpuc->constraint_list);
  2820. cpuc->constraint_list = NULL;
  2821. err_shared_regs:
  2822. kfree(cpuc->shared_regs);
  2823. cpuc->shared_regs = NULL;
  2824. err:
  2825. return -ENOMEM;
  2826. }
  2827. static void intel_pmu_cpu_starting(int cpu)
  2828. {
  2829. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2830. int core_id = topology_core_id(cpu);
  2831. int i;
  2832. init_debug_store_on_cpu(cpu);
  2833. /*
  2834. * Deal with CPUs that don't clear their LBRs on power-up.
  2835. */
  2836. intel_pmu_lbr_reset();
  2837. cpuc->lbr_sel = NULL;
  2838. if (!cpuc->shared_regs)
  2839. return;
  2840. if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
  2841. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2842. struct intel_shared_regs *pc;
  2843. pc = per_cpu(cpu_hw_events, i).shared_regs;
  2844. if (pc && pc->core_id == core_id) {
  2845. cpuc->kfree_on_online[0] = cpuc->shared_regs;
  2846. cpuc->shared_regs = pc;
  2847. break;
  2848. }
  2849. }
  2850. cpuc->shared_regs->core_id = core_id;
  2851. cpuc->shared_regs->refcnt++;
  2852. }
  2853. if (x86_pmu.lbr_sel_map)
  2854. cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
  2855. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2856. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2857. struct cpu_hw_events *sibling;
  2858. struct intel_excl_cntrs *c;
  2859. sibling = &per_cpu(cpu_hw_events, i);
  2860. c = sibling->excl_cntrs;
  2861. if (c && c->core_id == core_id) {
  2862. cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
  2863. cpuc->excl_cntrs = c;
  2864. if (!sibling->excl_thread_id)
  2865. cpuc->excl_thread_id = 1;
  2866. break;
  2867. }
  2868. }
  2869. cpuc->excl_cntrs->core_id = core_id;
  2870. cpuc->excl_cntrs->refcnt++;
  2871. }
  2872. }
  2873. static void free_excl_cntrs(int cpu)
  2874. {
  2875. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2876. struct intel_excl_cntrs *c;
  2877. c = cpuc->excl_cntrs;
  2878. if (c) {
  2879. if (c->core_id == -1 || --c->refcnt == 0)
  2880. kfree(c);
  2881. cpuc->excl_cntrs = NULL;
  2882. kfree(cpuc->constraint_list);
  2883. cpuc->constraint_list = NULL;
  2884. }
  2885. }
  2886. static void intel_pmu_cpu_dying(int cpu)
  2887. {
  2888. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2889. struct intel_shared_regs *pc;
  2890. pc = cpuc->shared_regs;
  2891. if (pc) {
  2892. if (pc->core_id == -1 || --pc->refcnt == 0)
  2893. kfree(pc);
  2894. cpuc->shared_regs = NULL;
  2895. }
  2896. free_excl_cntrs(cpu);
  2897. fini_debug_store_on_cpu(cpu);
  2898. }
  2899. static void intel_pmu_sched_task(struct perf_event_context *ctx,
  2900. bool sched_in)
  2901. {
  2902. if (x86_pmu.pebs_active)
  2903. intel_pmu_pebs_sched_task(ctx, sched_in);
  2904. if (x86_pmu.lbr_nr)
  2905. intel_pmu_lbr_sched_task(ctx, sched_in);
  2906. }
  2907. PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
  2908. PMU_FORMAT_ATTR(ldlat, "config1:0-15");
  2909. PMU_FORMAT_ATTR(frontend, "config1:0-23");
  2910. static struct attribute *intel_arch3_formats_attr[] = {
  2911. &format_attr_event.attr,
  2912. &format_attr_umask.attr,
  2913. &format_attr_edge.attr,
  2914. &format_attr_pc.attr,
  2915. &format_attr_any.attr,
  2916. &format_attr_inv.attr,
  2917. &format_attr_cmask.attr,
  2918. &format_attr_in_tx.attr,
  2919. &format_attr_in_tx_cp.attr,
  2920. &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
  2921. &format_attr_ldlat.attr, /* PEBS load latency */
  2922. NULL,
  2923. };
  2924. static struct attribute *skl_format_attr[] = {
  2925. &format_attr_frontend.attr,
  2926. NULL,
  2927. };
  2928. static __initconst const struct x86_pmu core_pmu = {
  2929. .name = "core",
  2930. .handle_irq = x86_pmu_handle_irq,
  2931. .disable_all = x86_pmu_disable_all,
  2932. .enable_all = core_pmu_enable_all,
  2933. .enable = core_pmu_enable_event,
  2934. .disable = x86_pmu_disable_event,
  2935. .hw_config = x86_pmu_hw_config,
  2936. .schedule_events = x86_schedule_events,
  2937. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2938. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2939. .event_map = intel_pmu_event_map,
  2940. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2941. .apic = 1,
  2942. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2943. /*
  2944. * Intel PMCs cannot be accessed sanely above 32-bit width,
  2945. * so we install an artificial 1<<31 period regardless of
  2946. * the generic event period:
  2947. */
  2948. .max_period = (1ULL<<31) - 1,
  2949. .get_event_constraints = intel_get_event_constraints,
  2950. .put_event_constraints = intel_put_event_constraints,
  2951. .event_constraints = intel_core_event_constraints,
  2952. .guest_get_msrs = core_guest_get_msrs,
  2953. .format_attrs = intel_arch_formats_attr,
  2954. .events_sysfs_show = intel_event_sysfs_show,
  2955. /*
  2956. * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
  2957. * together with PMU version 1 and thus be using core_pmu with
  2958. * shared_regs. We need following callbacks here to allocate
  2959. * it properly.
  2960. */
  2961. .cpu_prepare = intel_pmu_cpu_prepare,
  2962. .cpu_starting = intel_pmu_cpu_starting,
  2963. .cpu_dying = intel_pmu_cpu_dying,
  2964. };
  2965. static __initconst const struct x86_pmu intel_pmu = {
  2966. .name = "Intel",
  2967. .handle_irq = intel_pmu_handle_irq,
  2968. .disable_all = intel_pmu_disable_all,
  2969. .enable_all = intel_pmu_enable_all,
  2970. .enable = intel_pmu_enable_event,
  2971. .disable = intel_pmu_disable_event,
  2972. .add = intel_pmu_add_event,
  2973. .del = intel_pmu_del_event,
  2974. .hw_config = intel_pmu_hw_config,
  2975. .schedule_events = x86_schedule_events,
  2976. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2977. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2978. .event_map = intel_pmu_event_map,
  2979. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2980. .apic = 1,
  2981. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2982. /*
  2983. * Intel PMCs cannot be accessed sanely above 32 bit width,
  2984. * so we install an artificial 1<<31 period regardless of
  2985. * the generic event period:
  2986. */
  2987. .max_period = (1ULL << 31) - 1,
  2988. .get_event_constraints = intel_get_event_constraints,
  2989. .put_event_constraints = intel_put_event_constraints,
  2990. .pebs_aliases = intel_pebs_aliases_core2,
  2991. .format_attrs = intel_arch3_formats_attr,
  2992. .events_sysfs_show = intel_event_sysfs_show,
  2993. .cpu_prepare = intel_pmu_cpu_prepare,
  2994. .cpu_starting = intel_pmu_cpu_starting,
  2995. .cpu_dying = intel_pmu_cpu_dying,
  2996. .guest_get_msrs = intel_guest_get_msrs,
  2997. .sched_task = intel_pmu_sched_task,
  2998. };
  2999. static __init void intel_clovertown_quirk(void)
  3000. {
  3001. /*
  3002. * PEBS is unreliable due to:
  3003. *
  3004. * AJ67 - PEBS may experience CPL leaks
  3005. * AJ68 - PEBS PMI may be delayed by one event
  3006. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  3007. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  3008. *
  3009. * AJ67 could be worked around by restricting the OS/USR flags.
  3010. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  3011. *
  3012. * AJ106 could possibly be worked around by not allowing LBR
  3013. * usage from PEBS, including the fixup.
  3014. * AJ68 could possibly be worked around by always programming
  3015. * a pebs_event_reset[0] value and coping with the lost events.
  3016. *
  3017. * But taken together it might just make sense to not enable PEBS on
  3018. * these chips.
  3019. */
  3020. pr_warn("PEBS disabled due to CPU errata\n");
  3021. x86_pmu.pebs = 0;
  3022. x86_pmu.pebs_constraints = NULL;
  3023. }
  3024. static int intel_snb_pebs_broken(int cpu)
  3025. {
  3026. u32 rev = UINT_MAX; /* default to broken for unknown models */
  3027. switch (cpu_data(cpu).x86_model) {
  3028. case INTEL_FAM6_SANDYBRIDGE:
  3029. rev = 0x28;
  3030. break;
  3031. case INTEL_FAM6_SANDYBRIDGE_X:
  3032. switch (cpu_data(cpu).x86_stepping) {
  3033. case 6: rev = 0x618; break;
  3034. case 7: rev = 0x70c; break;
  3035. }
  3036. }
  3037. return (cpu_data(cpu).microcode < rev);
  3038. }
  3039. static void intel_snb_check_microcode(void)
  3040. {
  3041. int pebs_broken = 0;
  3042. int cpu;
  3043. get_online_cpus();
  3044. for_each_online_cpu(cpu) {
  3045. if ((pebs_broken = intel_snb_pebs_broken(cpu)))
  3046. break;
  3047. }
  3048. put_online_cpus();
  3049. if (pebs_broken == x86_pmu.pebs_broken)
  3050. return;
  3051. /*
  3052. * Serialized by the microcode lock..
  3053. */
  3054. if (x86_pmu.pebs_broken) {
  3055. pr_info("PEBS enabled due to microcode update\n");
  3056. x86_pmu.pebs_broken = 0;
  3057. } else {
  3058. pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
  3059. x86_pmu.pebs_broken = 1;
  3060. }
  3061. }
  3062. static bool is_lbr_from(unsigned long msr)
  3063. {
  3064. unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
  3065. return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
  3066. }
  3067. /*
  3068. * Under certain circumstances, access certain MSR may cause #GP.
  3069. * The function tests if the input MSR can be safely accessed.
  3070. */
  3071. static bool check_msr(unsigned long msr, u64 mask)
  3072. {
  3073. u64 val_old, val_new, val_tmp;
  3074. /*
  3075. * Read the current value, change it and read it back to see if it
  3076. * matches, this is needed to detect certain hardware emulators
  3077. * (qemu/kvm) that don't trap on the MSR access and always return 0s.
  3078. */
  3079. if (rdmsrl_safe(msr, &val_old))
  3080. return false;
  3081. /*
  3082. * Only change the bits which can be updated by wrmsrl.
  3083. */
  3084. val_tmp = val_old ^ mask;
  3085. if (is_lbr_from(msr))
  3086. val_tmp = lbr_from_signext_quirk_wr(val_tmp);
  3087. if (wrmsrl_safe(msr, val_tmp) ||
  3088. rdmsrl_safe(msr, &val_new))
  3089. return false;
  3090. /*
  3091. * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
  3092. * should equal rdmsrl()'s even with the quirk.
  3093. */
  3094. if (val_new != val_tmp)
  3095. return false;
  3096. if (is_lbr_from(msr))
  3097. val_old = lbr_from_signext_quirk_wr(val_old);
  3098. /* Here it's sure that the MSR can be safely accessed.
  3099. * Restore the old value and return.
  3100. */
  3101. wrmsrl(msr, val_old);
  3102. return true;
  3103. }
  3104. static __init void intel_sandybridge_quirk(void)
  3105. {
  3106. x86_pmu.check_microcode = intel_snb_check_microcode;
  3107. intel_snb_check_microcode();
  3108. }
  3109. static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
  3110. { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
  3111. { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
  3112. { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
  3113. { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
  3114. { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
  3115. { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
  3116. { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
  3117. };
  3118. static __init void intel_arch_events_quirk(void)
  3119. {
  3120. int bit;
  3121. /* disable event that reported as not presend by cpuid */
  3122. for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
  3123. intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
  3124. pr_warn("CPUID marked event: \'%s\' unavailable\n",
  3125. intel_arch_events_map[bit].name);
  3126. }
  3127. }
  3128. static __init void intel_nehalem_quirk(void)
  3129. {
  3130. union cpuid10_ebx ebx;
  3131. ebx.full = x86_pmu.events_maskl;
  3132. if (ebx.split.no_branch_misses_retired) {
  3133. /*
  3134. * Erratum AAJ80 detected, we work it around by using
  3135. * the BR_MISP_EXEC.ANY event. This will over-count
  3136. * branch-misses, but it's still much better than the
  3137. * architectural event which is often completely bogus:
  3138. */
  3139. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  3140. ebx.split.no_branch_misses_retired = 0;
  3141. x86_pmu.events_maskl = ebx.full;
  3142. pr_info("CPU erratum AAJ80 worked around\n");
  3143. }
  3144. }
  3145. /*
  3146. * enable software workaround for errata:
  3147. * SNB: BJ122
  3148. * IVB: BV98
  3149. * HSW: HSD29
  3150. *
  3151. * Only needed when HT is enabled. However detecting
  3152. * if HT is enabled is difficult (model specific). So instead,
  3153. * we enable the workaround in the early boot, and verify if
  3154. * it is needed in a later initcall phase once we have valid
  3155. * topology information to check if HT is actually enabled
  3156. */
  3157. static __init void intel_ht_bug(void)
  3158. {
  3159. x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
  3160. x86_pmu.start_scheduling = intel_start_scheduling;
  3161. x86_pmu.commit_scheduling = intel_commit_scheduling;
  3162. x86_pmu.stop_scheduling = intel_stop_scheduling;
  3163. }
  3164. EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
  3165. EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
  3166. /* Haswell special events */
  3167. EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
  3168. EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
  3169. EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
  3170. EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
  3171. EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
  3172. EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
  3173. EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
  3174. EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
  3175. EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
  3176. EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
  3177. EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
  3178. EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
  3179. static struct attribute *hsw_events_attrs[] = {
  3180. EVENT_PTR(tx_start),
  3181. EVENT_PTR(tx_commit),
  3182. EVENT_PTR(tx_abort),
  3183. EVENT_PTR(tx_capacity),
  3184. EVENT_PTR(tx_conflict),
  3185. EVENT_PTR(el_start),
  3186. EVENT_PTR(el_commit),
  3187. EVENT_PTR(el_abort),
  3188. EVENT_PTR(el_capacity),
  3189. EVENT_PTR(el_conflict),
  3190. EVENT_PTR(cycles_t),
  3191. EVENT_PTR(cycles_ct),
  3192. EVENT_PTR(mem_ld_hsw),
  3193. EVENT_PTR(mem_st_hsw),
  3194. EVENT_PTR(td_slots_issued),
  3195. EVENT_PTR(td_slots_retired),
  3196. EVENT_PTR(td_fetch_bubbles),
  3197. EVENT_PTR(td_total_slots),
  3198. EVENT_PTR(td_total_slots_scale),
  3199. EVENT_PTR(td_recovery_bubbles),
  3200. EVENT_PTR(td_recovery_bubbles_scale),
  3201. NULL
  3202. };
  3203. __init int intel_pmu_init(void)
  3204. {
  3205. union cpuid10_edx edx;
  3206. union cpuid10_eax eax;
  3207. union cpuid10_ebx ebx;
  3208. struct event_constraint *c;
  3209. unsigned int unused;
  3210. struct extra_reg *er;
  3211. int version, i;
  3212. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  3213. switch (boot_cpu_data.x86) {
  3214. case 0x6:
  3215. return p6_pmu_init();
  3216. case 0xb:
  3217. return knc_pmu_init();
  3218. case 0xf:
  3219. return p4_pmu_init();
  3220. }
  3221. return -ENODEV;
  3222. }
  3223. /*
  3224. * Check whether the Architectural PerfMon supports
  3225. * Branch Misses Retired hw_event or not.
  3226. */
  3227. cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
  3228. if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
  3229. return -ENODEV;
  3230. version = eax.split.version_id;
  3231. if (version < 2)
  3232. x86_pmu = core_pmu;
  3233. else
  3234. x86_pmu = intel_pmu;
  3235. x86_pmu.version = version;
  3236. x86_pmu.num_counters = eax.split.num_counters;
  3237. x86_pmu.cntval_bits = eax.split.bit_width;
  3238. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  3239. x86_pmu.events_maskl = ebx.full;
  3240. x86_pmu.events_mask_len = eax.split.mask_length;
  3241. x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
  3242. /*
  3243. * Quirk: v2 perfmon does not report fixed-purpose events, so
  3244. * assume at least 3 events, when not running in a hypervisor:
  3245. */
  3246. if (version > 1) {
  3247. int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
  3248. x86_pmu.num_counters_fixed =
  3249. max((int)edx.split.num_counters_fixed, assume);
  3250. }
  3251. if (boot_cpu_has(X86_FEATURE_PDCM)) {
  3252. u64 capabilities;
  3253. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  3254. x86_pmu.intel_cap.capabilities = capabilities;
  3255. }
  3256. intel_ds_init();
  3257. x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
  3258. /*
  3259. * Install the hw-cache-events table:
  3260. */
  3261. switch (boot_cpu_data.x86_model) {
  3262. case INTEL_FAM6_CORE_YONAH:
  3263. pr_cont("Core events, ");
  3264. break;
  3265. case INTEL_FAM6_CORE2_MEROM:
  3266. x86_add_quirk(intel_clovertown_quirk);
  3267. case INTEL_FAM6_CORE2_MEROM_L:
  3268. case INTEL_FAM6_CORE2_PENRYN:
  3269. case INTEL_FAM6_CORE2_DUNNINGTON:
  3270. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  3271. sizeof(hw_cache_event_ids));
  3272. intel_pmu_lbr_init_core();
  3273. x86_pmu.event_constraints = intel_core2_event_constraints;
  3274. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  3275. pr_cont("Core2 events, ");
  3276. break;
  3277. case INTEL_FAM6_NEHALEM:
  3278. case INTEL_FAM6_NEHALEM_EP:
  3279. case INTEL_FAM6_NEHALEM_EX:
  3280. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  3281. sizeof(hw_cache_event_ids));
  3282. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3283. sizeof(hw_cache_extra_regs));
  3284. intel_pmu_lbr_init_nhm();
  3285. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  3286. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  3287. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3288. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  3289. x86_pmu.cpu_events = nhm_events_attrs;
  3290. /* UOPS_ISSUED.STALLED_CYCLES */
  3291. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3292. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3293. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3294. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3295. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3296. intel_pmu_pebs_data_source_nhm();
  3297. x86_add_quirk(intel_nehalem_quirk);
  3298. pr_cont("Nehalem events, ");
  3299. break;
  3300. case INTEL_FAM6_ATOM_PINEVIEW:
  3301. case INTEL_FAM6_ATOM_LINCROFT:
  3302. case INTEL_FAM6_ATOM_PENWELL:
  3303. case INTEL_FAM6_ATOM_CLOVERVIEW:
  3304. case INTEL_FAM6_ATOM_CEDARVIEW:
  3305. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  3306. sizeof(hw_cache_event_ids));
  3307. intel_pmu_lbr_init_atom();
  3308. x86_pmu.event_constraints = intel_gen_event_constraints;
  3309. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  3310. x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
  3311. pr_cont("Atom events, ");
  3312. break;
  3313. case INTEL_FAM6_ATOM_SILVERMONT1:
  3314. case INTEL_FAM6_ATOM_SILVERMONT2:
  3315. case INTEL_FAM6_ATOM_AIRMONT:
  3316. memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
  3317. sizeof(hw_cache_event_ids));
  3318. memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
  3319. sizeof(hw_cache_extra_regs));
  3320. intel_pmu_lbr_init_slm();
  3321. x86_pmu.event_constraints = intel_slm_event_constraints;
  3322. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3323. x86_pmu.extra_regs = intel_slm_extra_regs;
  3324. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3325. x86_pmu.cpu_events = slm_events_attrs;
  3326. pr_cont("Silvermont events, ");
  3327. break;
  3328. case INTEL_FAM6_ATOM_GOLDMONT:
  3329. case INTEL_FAM6_ATOM_DENVERTON:
  3330. memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
  3331. sizeof(hw_cache_event_ids));
  3332. memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
  3333. sizeof(hw_cache_extra_regs));
  3334. intel_pmu_lbr_init_skl();
  3335. x86_pmu.event_constraints = intel_slm_event_constraints;
  3336. x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
  3337. x86_pmu.extra_regs = intel_glm_extra_regs;
  3338. /*
  3339. * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
  3340. * for precise cycles.
  3341. * :pp is identical to :ppp
  3342. */
  3343. x86_pmu.pebs_aliases = NULL;
  3344. x86_pmu.pebs_prec_dist = true;
  3345. x86_pmu.lbr_pt_coexist = true;
  3346. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3347. pr_cont("Goldmont events, ");
  3348. break;
  3349. case INTEL_FAM6_WESTMERE:
  3350. case INTEL_FAM6_WESTMERE_EP:
  3351. case INTEL_FAM6_WESTMERE_EX:
  3352. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  3353. sizeof(hw_cache_event_ids));
  3354. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3355. sizeof(hw_cache_extra_regs));
  3356. intel_pmu_lbr_init_nhm();
  3357. x86_pmu.event_constraints = intel_westmere_event_constraints;
  3358. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3359. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  3360. x86_pmu.extra_regs = intel_westmere_extra_regs;
  3361. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3362. x86_pmu.cpu_events = nhm_events_attrs;
  3363. /* UOPS_ISSUED.STALLED_CYCLES */
  3364. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3365. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3366. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3367. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3368. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3369. intel_pmu_pebs_data_source_nhm();
  3370. pr_cont("Westmere events, ");
  3371. break;
  3372. case INTEL_FAM6_SANDYBRIDGE:
  3373. case INTEL_FAM6_SANDYBRIDGE_X:
  3374. x86_add_quirk(intel_sandybridge_quirk);
  3375. x86_add_quirk(intel_ht_bug);
  3376. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3377. sizeof(hw_cache_event_ids));
  3378. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3379. sizeof(hw_cache_extra_regs));
  3380. intel_pmu_lbr_init_snb();
  3381. x86_pmu.event_constraints = intel_snb_event_constraints;
  3382. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  3383. x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
  3384. if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
  3385. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3386. else
  3387. x86_pmu.extra_regs = intel_snb_extra_regs;
  3388. /* all extra regs are per-cpu when HT is on */
  3389. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3390. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3391. x86_pmu.cpu_events = snb_events_attrs;
  3392. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3393. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3394. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3395. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  3396. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3397. X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
  3398. pr_cont("SandyBridge events, ");
  3399. break;
  3400. case INTEL_FAM6_IVYBRIDGE:
  3401. case INTEL_FAM6_IVYBRIDGE_X:
  3402. x86_add_quirk(intel_ht_bug);
  3403. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3404. sizeof(hw_cache_event_ids));
  3405. /* dTLB-load-misses on IVB is different than SNB */
  3406. hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
  3407. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3408. sizeof(hw_cache_extra_regs));
  3409. intel_pmu_lbr_init_snb();
  3410. x86_pmu.event_constraints = intel_ivb_event_constraints;
  3411. x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
  3412. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3413. x86_pmu.pebs_prec_dist = true;
  3414. if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
  3415. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3416. else
  3417. x86_pmu.extra_regs = intel_snb_extra_regs;
  3418. /* all extra regs are per-cpu when HT is on */
  3419. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3420. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3421. x86_pmu.cpu_events = snb_events_attrs;
  3422. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3423. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3424. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3425. pr_cont("IvyBridge events, ");
  3426. break;
  3427. case INTEL_FAM6_HASWELL_CORE:
  3428. case INTEL_FAM6_HASWELL_X:
  3429. case INTEL_FAM6_HASWELL_ULT:
  3430. case INTEL_FAM6_HASWELL_GT3E:
  3431. x86_add_quirk(intel_ht_bug);
  3432. x86_pmu.late_ack = true;
  3433. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3434. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3435. intel_pmu_lbr_init_hsw();
  3436. x86_pmu.event_constraints = intel_hsw_event_constraints;
  3437. x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
  3438. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3439. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3440. x86_pmu.pebs_prec_dist = true;
  3441. /* all extra regs are per-cpu when HT is on */
  3442. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3443. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3444. x86_pmu.hw_config = hsw_hw_config;
  3445. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3446. x86_pmu.cpu_events = hsw_events_attrs;
  3447. x86_pmu.lbr_double_abort = true;
  3448. pr_cont("Haswell events, ");
  3449. break;
  3450. case INTEL_FAM6_BROADWELL_CORE:
  3451. case INTEL_FAM6_BROADWELL_XEON_D:
  3452. case INTEL_FAM6_BROADWELL_GT3E:
  3453. case INTEL_FAM6_BROADWELL_X:
  3454. x86_pmu.late_ack = true;
  3455. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3456. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3457. /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
  3458. hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
  3459. BDW_L3_MISS|HSW_SNOOP_DRAM;
  3460. hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
  3461. HSW_SNOOP_DRAM;
  3462. hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
  3463. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3464. hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
  3465. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3466. intel_pmu_lbr_init_hsw();
  3467. x86_pmu.event_constraints = intel_bdw_event_constraints;
  3468. x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
  3469. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3470. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3471. x86_pmu.pebs_prec_dist = true;
  3472. /* all extra regs are per-cpu when HT is on */
  3473. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3474. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3475. x86_pmu.hw_config = hsw_hw_config;
  3476. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3477. x86_pmu.cpu_events = hsw_events_attrs;
  3478. x86_pmu.limit_period = bdw_limit_period;
  3479. pr_cont("Broadwell events, ");
  3480. break;
  3481. case INTEL_FAM6_XEON_PHI_KNL:
  3482. case INTEL_FAM6_XEON_PHI_KNM:
  3483. memcpy(hw_cache_event_ids,
  3484. slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3485. memcpy(hw_cache_extra_regs,
  3486. knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3487. intel_pmu_lbr_init_knl();
  3488. x86_pmu.event_constraints = intel_slm_event_constraints;
  3489. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3490. x86_pmu.extra_regs = intel_knl_extra_regs;
  3491. /* all extra regs are per-cpu when HT is on */
  3492. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3493. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3494. pr_cont("Knights Landing/Mill events, ");
  3495. break;
  3496. case INTEL_FAM6_SKYLAKE_MOBILE:
  3497. case INTEL_FAM6_SKYLAKE_DESKTOP:
  3498. case INTEL_FAM6_SKYLAKE_X:
  3499. case INTEL_FAM6_KABYLAKE_MOBILE:
  3500. case INTEL_FAM6_KABYLAKE_DESKTOP:
  3501. x86_pmu.late_ack = true;
  3502. memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3503. memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3504. intel_pmu_lbr_init_skl();
  3505. /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
  3506. event_attr_td_recovery_bubbles.event_str_noht =
  3507. "event=0xd,umask=0x1,cmask=1";
  3508. event_attr_td_recovery_bubbles.event_str_ht =
  3509. "event=0xd,umask=0x1,cmask=1,any=1";
  3510. x86_pmu.event_constraints = intel_skl_event_constraints;
  3511. x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
  3512. x86_pmu.extra_regs = intel_skl_extra_regs;
  3513. x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
  3514. x86_pmu.pebs_prec_dist = true;
  3515. /* all extra regs are per-cpu when HT is on */
  3516. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3517. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3518. x86_pmu.hw_config = hsw_hw_config;
  3519. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3520. x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
  3521. skl_format_attr);
  3522. WARN_ON(!x86_pmu.format_attrs);
  3523. x86_pmu.cpu_events = hsw_events_attrs;
  3524. pr_cont("Skylake events, ");
  3525. break;
  3526. default:
  3527. switch (x86_pmu.version) {
  3528. case 1:
  3529. x86_pmu.event_constraints = intel_v1_event_constraints;
  3530. pr_cont("generic architected perfmon v1, ");
  3531. break;
  3532. default:
  3533. /*
  3534. * default constraints for v2 and up
  3535. */
  3536. x86_pmu.event_constraints = intel_gen_event_constraints;
  3537. pr_cont("generic architected perfmon, ");
  3538. break;
  3539. }
  3540. }
  3541. if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
  3542. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  3543. x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
  3544. x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
  3545. }
  3546. x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
  3547. if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
  3548. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  3549. x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
  3550. x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
  3551. }
  3552. x86_pmu.intel_ctrl |=
  3553. ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
  3554. if (x86_pmu.event_constraints) {
  3555. /*
  3556. * event on fixed counter2 (REF_CYCLES) only works on this
  3557. * counter, so do not extend mask to generic counters
  3558. */
  3559. for_each_event_constraint(c, x86_pmu.event_constraints) {
  3560. if (c->cmask == FIXED_EVENT_FLAGS
  3561. && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
  3562. c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
  3563. }
  3564. c->idxmsk64 &=
  3565. ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
  3566. c->weight = hweight64(c->idxmsk64);
  3567. }
  3568. }
  3569. /*
  3570. * Access LBR MSR may cause #GP under certain circumstances.
  3571. * E.g. KVM doesn't support LBR MSR
  3572. * Check all LBT MSR here.
  3573. * Disable LBR access if any LBR MSRs can not be accessed.
  3574. */
  3575. if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
  3576. x86_pmu.lbr_nr = 0;
  3577. for (i = 0; i < x86_pmu.lbr_nr; i++) {
  3578. if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
  3579. check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
  3580. x86_pmu.lbr_nr = 0;
  3581. }
  3582. if (x86_pmu.lbr_nr)
  3583. pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
  3584. /*
  3585. * Access extra MSR may cause #GP under certain circumstances.
  3586. * E.g. KVM doesn't support offcore event
  3587. * Check all extra_regs here.
  3588. */
  3589. if (x86_pmu.extra_regs) {
  3590. for (er = x86_pmu.extra_regs; er->msr; er++) {
  3591. er->extra_msr_access = check_msr(er->msr, 0x11UL);
  3592. /* Disable LBR select mapping */
  3593. if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
  3594. x86_pmu.lbr_sel_map = NULL;
  3595. }
  3596. }
  3597. /* Support full width counters using alternative MSR range */
  3598. if (x86_pmu.intel_cap.full_width_write) {
  3599. x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
  3600. x86_pmu.perfctr = MSR_IA32_PMC0;
  3601. pr_cont("full-width counters, ");
  3602. }
  3603. return 0;
  3604. }
  3605. /*
  3606. * HT bug: phase 2 init
  3607. * Called once we have valid topology information to check
  3608. * whether or not HT is enabled
  3609. * If HT is off, then we disable the workaround
  3610. */
  3611. static __init int fixup_ht_bug(void)
  3612. {
  3613. int c;
  3614. /*
  3615. * problem not present on this CPU model, nothing to do
  3616. */
  3617. if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
  3618. return 0;
  3619. if (topology_max_smt_threads() > 1) {
  3620. pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
  3621. return 0;
  3622. }
  3623. if (lockup_detector_suspend() != 0) {
  3624. pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
  3625. return 0;
  3626. }
  3627. x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
  3628. x86_pmu.start_scheduling = NULL;
  3629. x86_pmu.commit_scheduling = NULL;
  3630. x86_pmu.stop_scheduling = NULL;
  3631. lockup_detector_resume();
  3632. get_online_cpus();
  3633. for_each_online_cpu(c) {
  3634. free_excl_cntrs(c);
  3635. }
  3636. put_online_cpus();
  3637. pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
  3638. return 0;
  3639. }
  3640. subsys_initcall(fixup_ht_bug)