sal.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. /*
  2. * System Abstraction Layer (SAL) interface routines.
  3. *
  4. * Copyright (C) 1998, 1999, 2001, 2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/spinlock.h>
  13. #include <linux/string.h>
  14. #include <asm/delay.h>
  15. #include <asm/page.h>
  16. #include <asm/sal.h>
  17. #include <asm/pal.h>
  18. __cacheline_aligned DEFINE_SPINLOCK(sal_lock);
  19. unsigned long sal_platform_features;
  20. unsigned short sal_revision;
  21. unsigned short sal_version;
  22. #define SAL_MAJOR(x) ((x) >> 8)
  23. #define SAL_MINOR(x) ((x) & 0xff)
  24. static struct {
  25. void *addr; /* function entry point */
  26. void *gpval; /* gp value to use */
  27. } pdesc;
  28. static long
  29. default_handler (void)
  30. {
  31. return -1;
  32. }
  33. ia64_sal_handler ia64_sal = (ia64_sal_handler) default_handler;
  34. ia64_sal_desc_ptc_t *ia64_ptc_domain_info;
  35. const char *
  36. ia64_sal_strerror (long status)
  37. {
  38. const char *str;
  39. switch (status) {
  40. case 0: str = "Call completed without error"; break;
  41. case 1: str = "Effect a warm boot of the system to complete "
  42. "the update"; break;
  43. case -1: str = "Not implemented"; break;
  44. case -2: str = "Invalid argument"; break;
  45. case -3: str = "Call completed with error"; break;
  46. case -4: str = "Virtual address not registered"; break;
  47. case -5: str = "No information available"; break;
  48. case -6: str = "Insufficient space to add the entry"; break;
  49. case -7: str = "Invalid entry_addr value"; break;
  50. case -8: str = "Invalid interrupt vector"; break;
  51. case -9: str = "Requested memory not available"; break;
  52. case -10: str = "Unable to write to the NVM device"; break;
  53. case -11: str = "Invalid partition type specified"; break;
  54. case -12: str = "Invalid NVM_Object id specified"; break;
  55. case -13: str = "NVM_Object already has the maximum number "
  56. "of partitions"; break;
  57. case -14: str = "Insufficient space in partition for the "
  58. "requested write sub-function"; break;
  59. case -15: str = "Insufficient data buffer space for the "
  60. "requested read record sub-function"; break;
  61. case -16: str = "Scratch buffer required for the write/delete "
  62. "sub-function"; break;
  63. case -17: str = "Insufficient space in the NVM_Object for the "
  64. "requested create sub-function"; break;
  65. case -18: str = "Invalid value specified in the partition_rec "
  66. "argument"; break;
  67. case -19: str = "Record oriented I/O not supported for this "
  68. "partition"; break;
  69. case -20: str = "Bad format of record to be written or "
  70. "required keyword variable not "
  71. "specified"; break;
  72. default: str = "Unknown SAL status code"; break;
  73. }
  74. return str;
  75. }
  76. void __init
  77. ia64_sal_handler_init (void *entry_point, void *gpval)
  78. {
  79. /* fill in the SAL procedure descriptor and point ia64_sal to it: */
  80. pdesc.addr = entry_point;
  81. pdesc.gpval = gpval;
  82. ia64_sal = (ia64_sal_handler) &pdesc;
  83. }
  84. static void __init
  85. check_versions (struct ia64_sal_systab *systab)
  86. {
  87. sal_revision = (systab->sal_rev_major << 8) | systab->sal_rev_minor;
  88. sal_version = (systab->sal_b_rev_major << 8) | systab->sal_b_rev_minor;
  89. /* Check for broken firmware */
  90. if ((sal_revision == SAL_VERSION_CODE(49, 29))
  91. && (sal_version == SAL_VERSION_CODE(49, 29)))
  92. {
  93. /*
  94. * Old firmware for zx2000 prototypes have this weird version number,
  95. * reset it to something sane.
  96. */
  97. sal_revision = SAL_VERSION_CODE(2, 8);
  98. sal_version = SAL_VERSION_CODE(0, 0);
  99. }
  100. if (ia64_platform_is("sn2") && (sal_revision == SAL_VERSION_CODE(2, 9)))
  101. /*
  102. * SGI Altix has hard-coded version 2.9 in their prom
  103. * but they actually implement 3.2, so let's fix it here.
  104. */
  105. sal_revision = SAL_VERSION_CODE(3, 2);
  106. }
  107. static void __init
  108. sal_desc_entry_point (void *p)
  109. {
  110. struct ia64_sal_desc_entry_point *ep = p;
  111. ia64_pal_handler_init(__va(ep->pal_proc));
  112. ia64_sal_handler_init(__va(ep->sal_proc), __va(ep->gp));
  113. }
  114. #ifdef CONFIG_SMP
  115. static void __init
  116. set_smp_redirect (int flag)
  117. {
  118. #ifndef CONFIG_HOTPLUG_CPU
  119. if (no_int_routing)
  120. smp_int_redirect &= ~flag;
  121. else
  122. smp_int_redirect |= flag;
  123. #else
  124. /*
  125. * For CPU Hotplug we dont want to do any chipset supported
  126. * interrupt redirection. The reason is this would require that
  127. * All interrupts be stopped and hard bind the irq to a cpu.
  128. * Later when the interrupt is fired we need to set the redir hint
  129. * on again in the vector. This is cumbersome for something that the
  130. * user mode irq balancer will solve anyways.
  131. */
  132. no_int_routing=1;
  133. smp_int_redirect &= ~flag;
  134. #endif
  135. }
  136. #else
  137. #define set_smp_redirect(flag) do { } while (0)
  138. #endif
  139. static void __init
  140. sal_desc_platform_feature (void *p)
  141. {
  142. struct ia64_sal_desc_platform_feature *pf = p;
  143. sal_platform_features = pf->feature_mask;
  144. printk(KERN_INFO "SAL Platform features:");
  145. if (!sal_platform_features) {
  146. printk(" None\n");
  147. return;
  148. }
  149. if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_BUS_LOCK)
  150. printk(" BusLock");
  151. if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT) {
  152. printk(" IRQ_Redirection");
  153. set_smp_redirect(SMP_IRQ_REDIRECTION);
  154. }
  155. if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT) {
  156. printk(" IPI_Redirection");
  157. set_smp_redirect(SMP_IPI_REDIRECTION);
  158. }
  159. if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)
  160. printk(" ITC_Drift");
  161. printk("\n");
  162. }
  163. #ifdef CONFIG_SMP
  164. static void __init
  165. sal_desc_ap_wakeup (void *p)
  166. {
  167. struct ia64_sal_desc_ap_wakeup *ap = p;
  168. switch (ap->mechanism) {
  169. case IA64_SAL_AP_EXTERNAL_INT:
  170. ap_wakeup_vector = ap->vector;
  171. printk(KERN_INFO "SAL: AP wakeup using external interrupt "
  172. "vector 0x%lx\n", ap_wakeup_vector);
  173. break;
  174. default:
  175. printk(KERN_ERR "SAL: AP wakeup mechanism unsupported!\n");
  176. break;
  177. }
  178. }
  179. static void __init
  180. chk_nointroute_opt(void)
  181. {
  182. char *cp;
  183. for (cp = boot_command_line; *cp; ) {
  184. if (memcmp(cp, "nointroute", 10) == 0) {
  185. no_int_routing = 1;
  186. printk ("no_int_routing on\n");
  187. break;
  188. } else {
  189. while (*cp != ' ' && *cp)
  190. ++cp;
  191. while (*cp == ' ')
  192. ++cp;
  193. }
  194. }
  195. }
  196. #else
  197. static void __init sal_desc_ap_wakeup(void *p) { }
  198. #endif
  199. /*
  200. * HP rx5670 firmware polls for interrupts during SAL_CACHE_FLUSH by reading
  201. * cr.ivr, but it never writes cr.eoi. This leaves any interrupt marked as
  202. * "in-service" and masks other interrupts of equal or lower priority.
  203. *
  204. * HP internal defect reports: F1859, F2775, F3031.
  205. */
  206. static int sal_cache_flush_drops_interrupts;
  207. static int __init
  208. force_pal_cache_flush(char *str)
  209. {
  210. sal_cache_flush_drops_interrupts = 1;
  211. return 0;
  212. }
  213. early_param("force_pal_cache_flush", force_pal_cache_flush);
  214. void __init
  215. check_sal_cache_flush (void)
  216. {
  217. unsigned long flags;
  218. int cpu;
  219. u64 vector, cache_type = 3;
  220. struct ia64_sal_retval isrv;
  221. if (sal_cache_flush_drops_interrupts)
  222. return;
  223. cpu = get_cpu();
  224. local_irq_save(flags);
  225. /*
  226. * Send ourselves a timer interrupt, wait until it's reported, and see
  227. * if SAL_CACHE_FLUSH drops it.
  228. */
  229. platform_send_ipi(cpu, IA64_TIMER_VECTOR, IA64_IPI_DM_INT, 0);
  230. while (!ia64_get_irr(IA64_TIMER_VECTOR))
  231. cpu_relax();
  232. SAL_CALL(isrv, SAL_CACHE_FLUSH, cache_type, 0, 0, 0, 0, 0, 0);
  233. if (isrv.status)
  234. printk(KERN_ERR "SAL_CAL_FLUSH failed with %ld\n", isrv.status);
  235. if (ia64_get_irr(IA64_TIMER_VECTOR)) {
  236. vector = ia64_get_ivr();
  237. ia64_eoi();
  238. WARN_ON(vector != IA64_TIMER_VECTOR);
  239. } else {
  240. sal_cache_flush_drops_interrupts = 1;
  241. printk(KERN_ERR "SAL: SAL_CACHE_FLUSH drops interrupts; "
  242. "PAL_CACHE_FLUSH will be used instead\n");
  243. ia64_eoi();
  244. }
  245. local_irq_restore(flags);
  246. put_cpu();
  247. }
  248. s64
  249. ia64_sal_cache_flush (u64 cache_type)
  250. {
  251. struct ia64_sal_retval isrv;
  252. if (sal_cache_flush_drops_interrupts) {
  253. unsigned long flags;
  254. u64 progress;
  255. s64 rc;
  256. progress = 0;
  257. local_irq_save(flags);
  258. rc = ia64_pal_cache_flush(cache_type,
  259. PAL_CACHE_FLUSH_INVALIDATE, &progress, NULL);
  260. local_irq_restore(flags);
  261. return rc;
  262. }
  263. SAL_CALL(isrv, SAL_CACHE_FLUSH, cache_type, 0, 0, 0, 0, 0, 0);
  264. return isrv.status;
  265. }
  266. EXPORT_SYMBOL_GPL(ia64_sal_cache_flush);
  267. void __init
  268. ia64_sal_init (struct ia64_sal_systab *systab)
  269. {
  270. char *p;
  271. int i;
  272. if (!systab) {
  273. printk(KERN_WARNING "Hmm, no SAL System Table.\n");
  274. return;
  275. }
  276. if (strncmp(systab->signature, "SST_", 4) != 0)
  277. printk(KERN_ERR "bad signature in system table!");
  278. check_versions(systab);
  279. #ifdef CONFIG_SMP
  280. chk_nointroute_opt();
  281. #endif
  282. /* revisions are coded in BCD, so %x does the job for us */
  283. printk(KERN_INFO "SAL %x.%x: %.32s %.32s%sversion %x.%x\n",
  284. SAL_MAJOR(sal_revision), SAL_MINOR(sal_revision),
  285. systab->oem_id, systab->product_id,
  286. systab->product_id[0] ? " " : "",
  287. SAL_MAJOR(sal_version), SAL_MINOR(sal_version));
  288. p = (char *) (systab + 1);
  289. for (i = 0; i < systab->entry_count; i++) {
  290. /*
  291. * The first byte of each entry type contains the type
  292. * descriptor.
  293. */
  294. switch (*p) {
  295. case SAL_DESC_ENTRY_POINT:
  296. sal_desc_entry_point(p);
  297. break;
  298. case SAL_DESC_PLATFORM_FEATURE:
  299. sal_desc_platform_feature(p);
  300. break;
  301. case SAL_DESC_PTC:
  302. ia64_ptc_domain_info = (ia64_sal_desc_ptc_t *)p;
  303. break;
  304. case SAL_DESC_AP_WAKEUP:
  305. sal_desc_ap_wakeup(p);
  306. break;
  307. }
  308. p += SAL_DESC_SIZE(*p);
  309. }
  310. }
  311. int
  312. ia64_sal_oemcall(struct ia64_sal_retval *isrvp, u64 oemfunc, u64 arg1,
  313. u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7)
  314. {
  315. if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX)
  316. return -1;
  317. SAL_CALL(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6, arg7);
  318. return 0;
  319. }
  320. EXPORT_SYMBOL(ia64_sal_oemcall);
  321. int
  322. ia64_sal_oemcall_nolock(struct ia64_sal_retval *isrvp, u64 oemfunc, u64 arg1,
  323. u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6,
  324. u64 arg7)
  325. {
  326. if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX)
  327. return -1;
  328. SAL_CALL_NOLOCK(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6,
  329. arg7);
  330. return 0;
  331. }
  332. EXPORT_SYMBOL(ia64_sal_oemcall_nolock);
  333. int
  334. ia64_sal_oemcall_reentrant(struct ia64_sal_retval *isrvp, u64 oemfunc,
  335. u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5,
  336. u64 arg6, u64 arg7)
  337. {
  338. if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX)
  339. return -1;
  340. SAL_CALL_REENTRANT(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6,
  341. arg7);
  342. return 0;
  343. }
  344. EXPORT_SYMBOL(ia64_sal_oemcall_reentrant);
  345. long
  346. ia64_sal_freq_base (unsigned long which, unsigned long *ticks_per_second,
  347. unsigned long *drift_info)
  348. {
  349. struct ia64_sal_retval isrv;
  350. SAL_CALL(isrv, SAL_FREQ_BASE, which, 0, 0, 0, 0, 0, 0);
  351. *ticks_per_second = isrv.v0;
  352. *drift_info = isrv.v1;
  353. return isrv.status;
  354. }
  355. EXPORT_SYMBOL_GPL(ia64_sal_freq_base);