sch_pie.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /* Copyright (C) 2013 Cisco Systems, Inc, 2013.
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of the GNU General Public License
  5. * as published by the Free Software Foundation; either version 2
  6. * of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * Author: Vijay Subramanian <vijaynsu@cisco.com>
  14. * Author: Mythili Prabhu <mysuryan@cisco.com>
  15. *
  16. * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
  17. * University of Oslo, Norway.
  18. *
  19. * References:
  20. * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00
  21. * IEEE Conference on High Performance Switching and Routing 2013 :
  22. * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem"
  23. */
  24. #include <linux/module.h>
  25. #include <linux/slab.h>
  26. #include <linux/types.h>
  27. #include <linux/kernel.h>
  28. #include <linux/errno.h>
  29. #include <linux/skbuff.h>
  30. #include <net/pkt_sched.h>
  31. #include <net/inet_ecn.h>
  32. #define QUEUE_THRESHOLD 10000
  33. #define DQCOUNT_INVALID -1
  34. #define MAX_PROB 0xffffffff
  35. #define PIE_SCALE 8
  36. /* parameters used */
  37. struct pie_params {
  38. psched_time_t target; /* user specified target delay in pschedtime */
  39. u32 tupdate; /* timer frequency (in jiffies) */
  40. u32 limit; /* number of packets that can be enqueued */
  41. u32 alpha; /* alpha and beta are between 0 and 32 */
  42. u32 beta; /* and are used for shift relative to 1 */
  43. bool ecn; /* true if ecn is enabled */
  44. bool bytemode; /* to scale drop early prob based on pkt size */
  45. };
  46. /* variables used */
  47. struct pie_vars {
  48. u32 prob; /* probability but scaled by u32 limit. */
  49. psched_time_t burst_time;
  50. psched_time_t qdelay;
  51. psched_time_t qdelay_old;
  52. u64 dq_count; /* measured in bytes */
  53. psched_time_t dq_tstamp; /* drain rate */
  54. u32 avg_dq_rate; /* bytes per pschedtime tick,scaled */
  55. u32 qlen_old; /* in bytes */
  56. };
  57. /* statistics gathering */
  58. struct pie_stats {
  59. u32 packets_in; /* total number of packets enqueued */
  60. u32 dropped; /* packets dropped due to pie_action */
  61. u32 overlimit; /* dropped due to lack of space in queue */
  62. u32 maxq; /* maximum queue size */
  63. u32 ecn_mark; /* packets marked with ECN */
  64. };
  65. /* private data for the Qdisc */
  66. struct pie_sched_data {
  67. struct pie_params params;
  68. struct pie_vars vars;
  69. struct pie_stats stats;
  70. struct timer_list adapt_timer;
  71. };
  72. static void pie_params_init(struct pie_params *params)
  73. {
  74. params->alpha = 2;
  75. params->beta = 20;
  76. params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */
  77. params->limit = 1000; /* default of 1000 packets */
  78. params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC); /* 20 ms */
  79. params->ecn = false;
  80. params->bytemode = false;
  81. }
  82. static void pie_vars_init(struct pie_vars *vars)
  83. {
  84. vars->dq_count = DQCOUNT_INVALID;
  85. vars->avg_dq_rate = 0;
  86. /* default of 100 ms in pschedtime */
  87. vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC);
  88. }
  89. static bool drop_early(struct Qdisc *sch, u32 packet_size)
  90. {
  91. struct pie_sched_data *q = qdisc_priv(sch);
  92. u32 rnd;
  93. u32 local_prob = q->vars.prob;
  94. u32 mtu = psched_mtu(qdisc_dev(sch));
  95. /* If there is still burst allowance left skip random early drop */
  96. if (q->vars.burst_time > 0)
  97. return false;
  98. /* If current delay is less than half of target, and
  99. * if drop prob is low already, disable early_drop
  100. */
  101. if ((q->vars.qdelay < q->params.target / 2)
  102. && (q->vars.prob < MAX_PROB / 5))
  103. return false;
  104. /* If we have fewer than 2 mtu-sized packets, disable drop_early,
  105. * similar to min_th in RED
  106. */
  107. if (sch->qstats.backlog < 2 * mtu)
  108. return false;
  109. /* If bytemode is turned on, use packet size to compute new
  110. * probablity. Smaller packets will have lower drop prob in this case
  111. */
  112. if (q->params.bytemode && packet_size <= mtu)
  113. local_prob = (local_prob / mtu) * packet_size;
  114. else
  115. local_prob = q->vars.prob;
  116. rnd = prandom_u32();
  117. if (rnd < local_prob)
  118. return true;
  119. return false;
  120. }
  121. static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
  122. struct sk_buff **to_free)
  123. {
  124. struct pie_sched_data *q = qdisc_priv(sch);
  125. bool enqueue = false;
  126. if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
  127. q->stats.overlimit++;
  128. goto out;
  129. }
  130. if (!drop_early(sch, skb->len)) {
  131. enqueue = true;
  132. } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
  133. INET_ECN_set_ce(skb)) {
  134. /* If packet is ecn capable, mark it if drop probability
  135. * is lower than 10%, else drop it.
  136. */
  137. q->stats.ecn_mark++;
  138. enqueue = true;
  139. }
  140. /* we can enqueue the packet */
  141. if (enqueue) {
  142. q->stats.packets_in++;
  143. if (qdisc_qlen(sch) > q->stats.maxq)
  144. q->stats.maxq = qdisc_qlen(sch);
  145. return qdisc_enqueue_tail(skb, sch);
  146. }
  147. out:
  148. q->stats.dropped++;
  149. return qdisc_drop(skb, sch, to_free);
  150. }
  151. static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
  152. [TCA_PIE_TARGET] = {.type = NLA_U32},
  153. [TCA_PIE_LIMIT] = {.type = NLA_U32},
  154. [TCA_PIE_TUPDATE] = {.type = NLA_U32},
  155. [TCA_PIE_ALPHA] = {.type = NLA_U32},
  156. [TCA_PIE_BETA] = {.type = NLA_U32},
  157. [TCA_PIE_ECN] = {.type = NLA_U32},
  158. [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
  159. };
  160. static int pie_change(struct Qdisc *sch, struct nlattr *opt)
  161. {
  162. struct pie_sched_data *q = qdisc_priv(sch);
  163. struct nlattr *tb[TCA_PIE_MAX + 1];
  164. unsigned int qlen, dropped = 0;
  165. int err;
  166. if (!opt)
  167. return -EINVAL;
  168. err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy);
  169. if (err < 0)
  170. return err;
  171. sch_tree_lock(sch);
  172. /* convert from microseconds to pschedtime */
  173. if (tb[TCA_PIE_TARGET]) {
  174. /* target is in us */
  175. u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
  176. /* convert to pschedtime */
  177. q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
  178. }
  179. /* tupdate is in jiffies */
  180. if (tb[TCA_PIE_TUPDATE])
  181. q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
  182. if (tb[TCA_PIE_LIMIT]) {
  183. u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
  184. q->params.limit = limit;
  185. sch->limit = limit;
  186. }
  187. if (tb[TCA_PIE_ALPHA])
  188. q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
  189. if (tb[TCA_PIE_BETA])
  190. q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
  191. if (tb[TCA_PIE_ECN])
  192. q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
  193. if (tb[TCA_PIE_BYTEMODE])
  194. q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
  195. /* Drop excess packets if new limit is lower */
  196. qlen = sch->q.qlen;
  197. while (sch->q.qlen > sch->limit) {
  198. struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
  199. dropped += qdisc_pkt_len(skb);
  200. qdisc_qstats_backlog_dec(sch, skb);
  201. rtnl_qdisc_drop(skb, sch);
  202. }
  203. qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
  204. sch_tree_unlock(sch);
  205. return 0;
  206. }
  207. static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
  208. {
  209. struct pie_sched_data *q = qdisc_priv(sch);
  210. int qlen = sch->qstats.backlog; /* current queue size in bytes */
  211. /* If current queue is about 10 packets or more and dq_count is unset
  212. * we have enough packets to calculate the drain rate. Save
  213. * current time as dq_tstamp and start measurement cycle.
  214. */
  215. if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
  216. q->vars.dq_tstamp = psched_get_time();
  217. q->vars.dq_count = 0;
  218. }
  219. /* Calculate the average drain rate from this value. If queue length
  220. * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
  221. * the dq_count to -1 as we don't have enough packets to calculate the
  222. * drain rate anymore The following if block is entered only when we
  223. * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
  224. * and we calculate the drain rate for the threshold here. dq_count is
  225. * in bytes, time difference in psched_time, hence rate is in
  226. * bytes/psched_time.
  227. */
  228. if (q->vars.dq_count != DQCOUNT_INVALID) {
  229. q->vars.dq_count += skb->len;
  230. if (q->vars.dq_count >= QUEUE_THRESHOLD) {
  231. psched_time_t now = psched_get_time();
  232. u32 dtime = now - q->vars.dq_tstamp;
  233. u32 count = q->vars.dq_count << PIE_SCALE;
  234. if (dtime == 0)
  235. return;
  236. count = count / dtime;
  237. if (q->vars.avg_dq_rate == 0)
  238. q->vars.avg_dq_rate = count;
  239. else
  240. q->vars.avg_dq_rate =
  241. (q->vars.avg_dq_rate -
  242. (q->vars.avg_dq_rate >> 3)) + (count >> 3);
  243. /* If the queue has receded below the threshold, we hold
  244. * on to the last drain rate calculated, else we reset
  245. * dq_count to 0 to re-enter the if block when the next
  246. * packet is dequeued
  247. */
  248. if (qlen < QUEUE_THRESHOLD)
  249. q->vars.dq_count = DQCOUNT_INVALID;
  250. else {
  251. q->vars.dq_count = 0;
  252. q->vars.dq_tstamp = psched_get_time();
  253. }
  254. if (q->vars.burst_time > 0) {
  255. if (q->vars.burst_time > dtime)
  256. q->vars.burst_time -= dtime;
  257. else
  258. q->vars.burst_time = 0;
  259. }
  260. }
  261. }
  262. }
  263. static void calculate_probability(struct Qdisc *sch)
  264. {
  265. struct pie_sched_data *q = qdisc_priv(sch);
  266. u32 qlen = sch->qstats.backlog; /* queue size in bytes */
  267. psched_time_t qdelay = 0; /* in pschedtime */
  268. psched_time_t qdelay_old = q->vars.qdelay; /* in pschedtime */
  269. s32 delta = 0; /* determines the change in probability */
  270. u32 oldprob;
  271. u32 alpha, beta;
  272. bool update_prob = true;
  273. q->vars.qdelay_old = q->vars.qdelay;
  274. if (q->vars.avg_dq_rate > 0)
  275. qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
  276. else
  277. qdelay = 0;
  278. /* If qdelay is zero and qlen is not, it means qlen is very small, less
  279. * than dequeue_rate, so we do not update probabilty in this round
  280. */
  281. if (qdelay == 0 && qlen != 0)
  282. update_prob = false;
  283. /* In the algorithm, alpha and beta are between 0 and 2 with typical
  284. * value for alpha as 0.125. In this implementation, we use values 0-32
  285. * passed from user space to represent this. Also, alpha and beta have
  286. * unit of HZ and need to be scaled before they can used to update
  287. * probability. alpha/beta are updated locally below by 1) scaling them
  288. * appropriately 2) scaling down by 16 to come to 0-2 range.
  289. * Please see paper for details.
  290. *
  291. * We scale alpha and beta differently depending on whether we are in
  292. * light, medium or high dropping mode.
  293. */
  294. if (q->vars.prob < MAX_PROB / 100) {
  295. alpha =
  296. (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
  297. beta =
  298. (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
  299. } else if (q->vars.prob < MAX_PROB / 10) {
  300. alpha =
  301. (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
  302. beta =
  303. (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
  304. } else {
  305. alpha =
  306. (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
  307. beta =
  308. (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
  309. }
  310. /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
  311. delta += alpha * ((qdelay - q->params.target));
  312. delta += beta * ((qdelay - qdelay_old));
  313. oldprob = q->vars.prob;
  314. /* to ensure we increase probability in steps of no more than 2% */
  315. if (delta > (s32) (MAX_PROB / (100 / 2)) &&
  316. q->vars.prob >= MAX_PROB / 10)
  317. delta = (MAX_PROB / 100) * 2;
  318. /* Non-linear drop:
  319. * Tune drop probability to increase quickly for high delays(>= 250ms)
  320. * 250ms is derived through experiments and provides error protection
  321. */
  322. if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
  323. delta += MAX_PROB / (100 / 2);
  324. q->vars.prob += delta;
  325. if (delta > 0) {
  326. /* prevent overflow */
  327. if (q->vars.prob < oldprob) {
  328. q->vars.prob = MAX_PROB;
  329. /* Prevent normalization error. If probability is at
  330. * maximum value already, we normalize it here, and
  331. * skip the check to do a non-linear drop in the next
  332. * section.
  333. */
  334. update_prob = false;
  335. }
  336. } else {
  337. /* prevent underflow */
  338. if (q->vars.prob > oldprob)
  339. q->vars.prob = 0;
  340. }
  341. /* Non-linear drop in probability: Reduce drop probability quickly if
  342. * delay is 0 for 2 consecutive Tupdate periods.
  343. */
  344. if ((qdelay == 0) && (qdelay_old == 0) && update_prob)
  345. q->vars.prob = (q->vars.prob * 98) / 100;
  346. q->vars.qdelay = qdelay;
  347. q->vars.qlen_old = qlen;
  348. /* We restart the measurement cycle if the following conditions are met
  349. * 1. If the delay has been low for 2 consecutive Tupdate periods
  350. * 2. Calculated drop probability is zero
  351. * 3. We have atleast one estimate for the avg_dq_rate ie.,
  352. * is a non-zero value
  353. */
  354. if ((q->vars.qdelay < q->params.target / 2) &&
  355. (q->vars.qdelay_old < q->params.target / 2) &&
  356. (q->vars.prob == 0) &&
  357. (q->vars.avg_dq_rate > 0))
  358. pie_vars_init(&q->vars);
  359. }
  360. static void pie_timer(unsigned long arg)
  361. {
  362. struct Qdisc *sch = (struct Qdisc *)arg;
  363. struct pie_sched_data *q = qdisc_priv(sch);
  364. spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
  365. spin_lock(root_lock);
  366. calculate_probability(sch);
  367. /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
  368. if (q->params.tupdate)
  369. mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
  370. spin_unlock(root_lock);
  371. }
  372. static int pie_init(struct Qdisc *sch, struct nlattr *opt)
  373. {
  374. struct pie_sched_data *q = qdisc_priv(sch);
  375. pie_params_init(&q->params);
  376. pie_vars_init(&q->vars);
  377. sch->limit = q->params.limit;
  378. setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch);
  379. if (opt) {
  380. int err = pie_change(sch, opt);
  381. if (err)
  382. return err;
  383. }
  384. mod_timer(&q->adapt_timer, jiffies + HZ / 2);
  385. return 0;
  386. }
  387. static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
  388. {
  389. struct pie_sched_data *q = qdisc_priv(sch);
  390. struct nlattr *opts;
  391. opts = nla_nest_start(skb, TCA_OPTIONS);
  392. if (opts == NULL)
  393. goto nla_put_failure;
  394. /* convert target from pschedtime to us */
  395. if (nla_put_u32(skb, TCA_PIE_TARGET,
  396. ((u32) PSCHED_TICKS2NS(q->params.target)) /
  397. NSEC_PER_USEC) ||
  398. nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
  399. nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) ||
  400. nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
  401. nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
  402. nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
  403. nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
  404. goto nla_put_failure;
  405. return nla_nest_end(skb, opts);
  406. nla_put_failure:
  407. nla_nest_cancel(skb, opts);
  408. return -1;
  409. }
  410. static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
  411. {
  412. struct pie_sched_data *q = qdisc_priv(sch);
  413. struct tc_pie_xstats st = {
  414. .prob = q->vars.prob,
  415. .delay = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) /
  416. NSEC_PER_USEC,
  417. /* unscale and return dq_rate in bytes per sec */
  418. .avg_dq_rate = q->vars.avg_dq_rate *
  419. (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
  420. .packets_in = q->stats.packets_in,
  421. .overlimit = q->stats.overlimit,
  422. .maxq = q->stats.maxq,
  423. .dropped = q->stats.dropped,
  424. .ecn_mark = q->stats.ecn_mark,
  425. };
  426. return gnet_stats_copy_app(d, &st, sizeof(st));
  427. }
  428. static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
  429. {
  430. struct sk_buff *skb;
  431. skb = qdisc_dequeue_head(sch);
  432. if (!skb)
  433. return NULL;
  434. pie_process_dequeue(sch, skb);
  435. return skb;
  436. }
  437. static void pie_reset(struct Qdisc *sch)
  438. {
  439. struct pie_sched_data *q = qdisc_priv(sch);
  440. qdisc_reset_queue(sch);
  441. pie_vars_init(&q->vars);
  442. }
  443. static void pie_destroy(struct Qdisc *sch)
  444. {
  445. struct pie_sched_data *q = qdisc_priv(sch);
  446. q->params.tupdate = 0;
  447. del_timer_sync(&q->adapt_timer);
  448. }
  449. static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
  450. .id = "pie",
  451. .priv_size = sizeof(struct pie_sched_data),
  452. .enqueue = pie_qdisc_enqueue,
  453. .dequeue = pie_qdisc_dequeue,
  454. .peek = qdisc_peek_dequeued,
  455. .init = pie_init,
  456. .destroy = pie_destroy,
  457. .reset = pie_reset,
  458. .change = pie_change,
  459. .dump = pie_dump,
  460. .dump_stats = pie_dump_stats,
  461. .owner = THIS_MODULE,
  462. };
  463. static int __init pie_module_init(void)
  464. {
  465. return register_qdisc(&pie_qdisc_ops);
  466. }
  467. static void __exit pie_module_exit(void)
  468. {
  469. unregister_qdisc(&pie_qdisc_ops);
  470. }
  471. module_init(pie_module_init);
  472. module_exit(pie_module_exit);
  473. MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
  474. MODULE_AUTHOR("Vijay Subramanian");
  475. MODULE_AUTHOR("Mythili Prabhu");
  476. MODULE_LICENSE("GPL");