page_alloc.c 204 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <linux/memcontrol.h>
  66. #include <asm/sections.h>
  67. #include <asm/tlbflush.h>
  68. #include <asm/div64.h>
  69. #include "internal.h"
  70. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  71. static DEFINE_MUTEX(pcp_batch_high_lock);
  72. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  73. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  74. DEFINE_PER_CPU(int, numa_node);
  75. EXPORT_PER_CPU_SYMBOL(numa_node);
  76. #endif
  77. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  78. /*
  79. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  80. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  81. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  82. * defined in <linux/topology.h>.
  83. */
  84. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  85. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  86. int _node_numa_mem_[MAX_NUMNODES];
  87. #endif
  88. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  89. volatile unsigned long latent_entropy __latent_entropy;
  90. EXPORT_SYMBOL(latent_entropy);
  91. #endif
  92. /*
  93. * Array of node states.
  94. */
  95. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  96. [N_POSSIBLE] = NODE_MASK_ALL,
  97. [N_ONLINE] = { { [0] = 1UL } },
  98. #ifndef CONFIG_NUMA
  99. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  100. #ifdef CONFIG_HIGHMEM
  101. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  102. #endif
  103. #ifdef CONFIG_MOVABLE_NODE
  104. [N_MEMORY] = { { [0] = 1UL } },
  105. #endif
  106. [N_CPU] = { { [0] = 1UL } },
  107. #endif /* NUMA */
  108. };
  109. EXPORT_SYMBOL(node_states);
  110. /* Protect totalram_pages and zone->managed_pages */
  111. static DEFINE_SPINLOCK(managed_page_count_lock);
  112. unsigned long totalram_pages __read_mostly;
  113. unsigned long totalreserve_pages __read_mostly;
  114. unsigned long totalcma_pages __read_mostly;
  115. int percpu_pagelist_fraction;
  116. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  117. /*
  118. * A cached value of the page's pageblock's migratetype, used when the page is
  119. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  120. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  121. * Also the migratetype set in the page does not necessarily match the pcplist
  122. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  123. * other index - this ensures that it will be put on the correct CMA freelist.
  124. */
  125. static inline int get_pcppage_migratetype(struct page *page)
  126. {
  127. return page->index;
  128. }
  129. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  130. {
  131. page->index = migratetype;
  132. }
  133. #ifdef CONFIG_PM_SLEEP
  134. /*
  135. * The following functions are used by the suspend/hibernate code to temporarily
  136. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  137. * while devices are suspended. To avoid races with the suspend/hibernate code,
  138. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  139. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  140. * guaranteed not to run in parallel with that modification).
  141. */
  142. static gfp_t saved_gfp_mask;
  143. void pm_restore_gfp_mask(void)
  144. {
  145. WARN_ON(!mutex_is_locked(&pm_mutex));
  146. if (saved_gfp_mask) {
  147. gfp_allowed_mask = saved_gfp_mask;
  148. saved_gfp_mask = 0;
  149. }
  150. }
  151. void pm_restrict_gfp_mask(void)
  152. {
  153. WARN_ON(!mutex_is_locked(&pm_mutex));
  154. WARN_ON(saved_gfp_mask);
  155. saved_gfp_mask = gfp_allowed_mask;
  156. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  157. }
  158. bool pm_suspended_storage(void)
  159. {
  160. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  161. return false;
  162. return true;
  163. }
  164. #endif /* CONFIG_PM_SLEEP */
  165. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  166. unsigned int pageblock_order __read_mostly;
  167. #endif
  168. static void __free_pages_ok(struct page *page, unsigned int order);
  169. /*
  170. * results with 256, 32 in the lowmem_reserve sysctl:
  171. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  172. * 1G machine -> (16M dma, 784M normal, 224M high)
  173. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  174. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  175. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  176. *
  177. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  178. * don't need any ZONE_NORMAL reservation
  179. */
  180. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  181. #ifdef CONFIG_ZONE_DMA
  182. 256,
  183. #endif
  184. #ifdef CONFIG_ZONE_DMA32
  185. 256,
  186. #endif
  187. #ifdef CONFIG_HIGHMEM
  188. 32,
  189. #endif
  190. 32,
  191. };
  192. EXPORT_SYMBOL(totalram_pages);
  193. static char * const zone_names[MAX_NR_ZONES] = {
  194. #ifdef CONFIG_ZONE_DMA
  195. "DMA",
  196. #endif
  197. #ifdef CONFIG_ZONE_DMA32
  198. "DMA32",
  199. #endif
  200. "Normal",
  201. #ifdef CONFIG_HIGHMEM
  202. "HighMem",
  203. #endif
  204. "Movable",
  205. #ifdef CONFIG_ZONE_DEVICE
  206. "Device",
  207. #endif
  208. };
  209. char * const migratetype_names[MIGRATE_TYPES] = {
  210. "Unmovable",
  211. "Movable",
  212. "Reclaimable",
  213. "HighAtomic",
  214. #ifdef CONFIG_CMA
  215. "CMA",
  216. #endif
  217. #ifdef CONFIG_MEMORY_ISOLATION
  218. "Isolate",
  219. #endif
  220. };
  221. compound_page_dtor * const compound_page_dtors[] = {
  222. NULL,
  223. free_compound_page,
  224. #ifdef CONFIG_HUGETLB_PAGE
  225. free_huge_page,
  226. #endif
  227. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  228. free_transhuge_page,
  229. #endif
  230. };
  231. int min_free_kbytes = 1024;
  232. int user_min_free_kbytes = -1;
  233. int watermark_scale_factor = 10;
  234. static unsigned long __meminitdata nr_kernel_pages;
  235. static unsigned long __meminitdata nr_all_pages;
  236. static unsigned long __meminitdata dma_reserve;
  237. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  238. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  239. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  240. static unsigned long __initdata required_kernelcore;
  241. static unsigned long __initdata required_movablecore;
  242. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  243. static bool mirrored_kernelcore;
  244. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  245. int movable_zone;
  246. EXPORT_SYMBOL(movable_zone);
  247. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  248. #if MAX_NUMNODES > 1
  249. int nr_node_ids __read_mostly = MAX_NUMNODES;
  250. int nr_online_nodes __read_mostly = 1;
  251. EXPORT_SYMBOL(nr_node_ids);
  252. EXPORT_SYMBOL(nr_online_nodes);
  253. #endif
  254. int page_group_by_mobility_disabled __read_mostly;
  255. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  256. /*
  257. * Determine how many pages need to be initialized durig early boot
  258. * (non-deferred initialization).
  259. * The value of first_deferred_pfn will be set later, once non-deferred pages
  260. * are initialized, but for now set it ULONG_MAX.
  261. */
  262. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  263. {
  264. phys_addr_t start_addr, end_addr;
  265. unsigned long max_pgcnt;
  266. unsigned long reserved;
  267. /*
  268. * Initialise at least 2G of a node but also take into account that
  269. * two large system hashes that can take up 1GB for 0.25TB/node.
  270. */
  271. max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
  272. (pgdat->node_spanned_pages >> 8));
  273. /*
  274. * Compensate the all the memblock reservations (e.g. crash kernel)
  275. * from the initial estimation to make sure we will initialize enough
  276. * memory to boot.
  277. */
  278. start_addr = PFN_PHYS(pgdat->node_start_pfn);
  279. end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
  280. reserved = memblock_reserved_memory_within(start_addr, end_addr);
  281. max_pgcnt += PHYS_PFN(reserved);
  282. pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
  283. pgdat->first_deferred_pfn = ULONG_MAX;
  284. }
  285. /* Returns true if the struct page for the pfn is uninitialised */
  286. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  287. {
  288. int nid = early_pfn_to_nid(pfn);
  289. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  290. return true;
  291. return false;
  292. }
  293. /*
  294. * Returns false when the remaining initialisation should be deferred until
  295. * later in the boot cycle when it can be parallelised.
  296. */
  297. static inline bool update_defer_init(pg_data_t *pgdat,
  298. unsigned long pfn, unsigned long zone_end,
  299. unsigned long *nr_initialised)
  300. {
  301. /* Always populate low zones for address-contrained allocations */
  302. if (zone_end < pgdat_end_pfn(pgdat))
  303. return true;
  304. (*nr_initialised)++;
  305. if ((*nr_initialised > pgdat->static_init_pgcnt) &&
  306. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  307. pgdat->first_deferred_pfn = pfn;
  308. return false;
  309. }
  310. return true;
  311. }
  312. #else
  313. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  314. {
  315. }
  316. static inline bool early_page_uninitialised(unsigned long pfn)
  317. {
  318. return false;
  319. }
  320. static inline bool update_defer_init(pg_data_t *pgdat,
  321. unsigned long pfn, unsigned long zone_end,
  322. unsigned long *nr_initialised)
  323. {
  324. return true;
  325. }
  326. #endif
  327. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  328. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  329. unsigned long pfn)
  330. {
  331. #ifdef CONFIG_SPARSEMEM
  332. return __pfn_to_section(pfn)->pageblock_flags;
  333. #else
  334. return page_zone(page)->pageblock_flags;
  335. #endif /* CONFIG_SPARSEMEM */
  336. }
  337. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  338. {
  339. #ifdef CONFIG_SPARSEMEM
  340. pfn &= (PAGES_PER_SECTION-1);
  341. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  342. #else
  343. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  344. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  345. #endif /* CONFIG_SPARSEMEM */
  346. }
  347. /**
  348. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  349. * @page: The page within the block of interest
  350. * @pfn: The target page frame number
  351. * @end_bitidx: The last bit of interest to retrieve
  352. * @mask: mask of bits that the caller is interested in
  353. *
  354. * Return: pageblock_bits flags
  355. */
  356. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  357. unsigned long pfn,
  358. unsigned long end_bitidx,
  359. unsigned long mask)
  360. {
  361. unsigned long *bitmap;
  362. unsigned long bitidx, word_bitidx;
  363. unsigned long word;
  364. bitmap = get_pageblock_bitmap(page, pfn);
  365. bitidx = pfn_to_bitidx(page, pfn);
  366. word_bitidx = bitidx / BITS_PER_LONG;
  367. bitidx &= (BITS_PER_LONG-1);
  368. word = bitmap[word_bitidx];
  369. bitidx += end_bitidx;
  370. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  371. }
  372. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  373. unsigned long end_bitidx,
  374. unsigned long mask)
  375. {
  376. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  377. }
  378. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  379. {
  380. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  381. }
  382. /**
  383. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  384. * @page: The page within the block of interest
  385. * @flags: The flags to set
  386. * @pfn: The target page frame number
  387. * @end_bitidx: The last bit of interest
  388. * @mask: mask of bits that the caller is interested in
  389. */
  390. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  391. unsigned long pfn,
  392. unsigned long end_bitidx,
  393. unsigned long mask)
  394. {
  395. unsigned long *bitmap;
  396. unsigned long bitidx, word_bitidx;
  397. unsigned long old_word, word;
  398. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  399. bitmap = get_pageblock_bitmap(page, pfn);
  400. bitidx = pfn_to_bitidx(page, pfn);
  401. word_bitidx = bitidx / BITS_PER_LONG;
  402. bitidx &= (BITS_PER_LONG-1);
  403. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  404. bitidx += end_bitidx;
  405. mask <<= (BITS_PER_LONG - bitidx - 1);
  406. flags <<= (BITS_PER_LONG - bitidx - 1);
  407. word = READ_ONCE(bitmap[word_bitidx]);
  408. for (;;) {
  409. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  410. if (word == old_word)
  411. break;
  412. word = old_word;
  413. }
  414. }
  415. void set_pageblock_migratetype(struct page *page, int migratetype)
  416. {
  417. if (unlikely(page_group_by_mobility_disabled &&
  418. migratetype < MIGRATE_PCPTYPES))
  419. migratetype = MIGRATE_UNMOVABLE;
  420. set_pageblock_flags_group(page, (unsigned long)migratetype,
  421. PB_migrate, PB_migrate_end);
  422. }
  423. #ifdef CONFIG_DEBUG_VM
  424. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  425. {
  426. int ret = 0;
  427. unsigned seq;
  428. unsigned long pfn = page_to_pfn(page);
  429. unsigned long sp, start_pfn;
  430. do {
  431. seq = zone_span_seqbegin(zone);
  432. start_pfn = zone->zone_start_pfn;
  433. sp = zone->spanned_pages;
  434. if (!zone_spans_pfn(zone, pfn))
  435. ret = 1;
  436. } while (zone_span_seqretry(zone, seq));
  437. if (ret)
  438. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  439. pfn, zone_to_nid(zone), zone->name,
  440. start_pfn, start_pfn + sp);
  441. return ret;
  442. }
  443. static int page_is_consistent(struct zone *zone, struct page *page)
  444. {
  445. if (!pfn_valid_within(page_to_pfn(page)))
  446. return 0;
  447. if (zone != page_zone(page))
  448. return 0;
  449. return 1;
  450. }
  451. /*
  452. * Temporary debugging check for pages not lying within a given zone.
  453. */
  454. static int bad_range(struct zone *zone, struct page *page)
  455. {
  456. if (page_outside_zone_boundaries(zone, page))
  457. return 1;
  458. if (!page_is_consistent(zone, page))
  459. return 1;
  460. return 0;
  461. }
  462. #else
  463. static inline int bad_range(struct zone *zone, struct page *page)
  464. {
  465. return 0;
  466. }
  467. #endif
  468. static void bad_page(struct page *page, const char *reason,
  469. unsigned long bad_flags)
  470. {
  471. static unsigned long resume;
  472. static unsigned long nr_shown;
  473. static unsigned long nr_unshown;
  474. /*
  475. * Allow a burst of 60 reports, then keep quiet for that minute;
  476. * or allow a steady drip of one report per second.
  477. */
  478. if (nr_shown == 60) {
  479. if (time_before(jiffies, resume)) {
  480. nr_unshown++;
  481. goto out;
  482. }
  483. if (nr_unshown) {
  484. pr_alert(
  485. "BUG: Bad page state: %lu messages suppressed\n",
  486. nr_unshown);
  487. nr_unshown = 0;
  488. }
  489. nr_shown = 0;
  490. }
  491. if (nr_shown++ == 0)
  492. resume = jiffies + 60 * HZ;
  493. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  494. current->comm, page_to_pfn(page));
  495. __dump_page(page, reason);
  496. bad_flags &= page->flags;
  497. if (bad_flags)
  498. pr_alert("bad because of flags: %#lx(%pGp)\n",
  499. bad_flags, &bad_flags);
  500. dump_page_owner(page);
  501. print_modules();
  502. dump_stack();
  503. out:
  504. /* Leave bad fields for debug, except PageBuddy could make trouble */
  505. page_mapcount_reset(page); /* remove PageBuddy */
  506. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  507. }
  508. /*
  509. * Higher-order pages are called "compound pages". They are structured thusly:
  510. *
  511. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  512. *
  513. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  514. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  515. *
  516. * The first tail page's ->compound_dtor holds the offset in array of compound
  517. * page destructors. See compound_page_dtors.
  518. *
  519. * The first tail page's ->compound_order holds the order of allocation.
  520. * This usage means that zero-order pages may not be compound.
  521. */
  522. void free_compound_page(struct page *page)
  523. {
  524. __free_pages_ok(page, compound_order(page));
  525. }
  526. void prep_compound_page(struct page *page, unsigned int order)
  527. {
  528. int i;
  529. int nr_pages = 1 << order;
  530. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  531. set_compound_order(page, order);
  532. __SetPageHead(page);
  533. for (i = 1; i < nr_pages; i++) {
  534. struct page *p = page + i;
  535. set_page_count(p, 0);
  536. p->mapping = TAIL_MAPPING;
  537. set_compound_head(p, page);
  538. }
  539. atomic_set(compound_mapcount_ptr(page), -1);
  540. }
  541. #ifdef CONFIG_DEBUG_PAGEALLOC
  542. unsigned int _debug_guardpage_minorder;
  543. bool _debug_pagealloc_enabled __read_mostly
  544. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  545. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  546. bool _debug_guardpage_enabled __read_mostly;
  547. static int __init early_debug_pagealloc(char *buf)
  548. {
  549. if (!buf)
  550. return -EINVAL;
  551. return kstrtobool(buf, &_debug_pagealloc_enabled);
  552. }
  553. early_param("debug_pagealloc", early_debug_pagealloc);
  554. static bool need_debug_guardpage(void)
  555. {
  556. /* If we don't use debug_pagealloc, we don't need guard page */
  557. if (!debug_pagealloc_enabled())
  558. return false;
  559. if (!debug_guardpage_minorder())
  560. return false;
  561. return true;
  562. }
  563. static void init_debug_guardpage(void)
  564. {
  565. if (!debug_pagealloc_enabled())
  566. return;
  567. if (!debug_guardpage_minorder())
  568. return;
  569. _debug_guardpage_enabled = true;
  570. }
  571. struct page_ext_operations debug_guardpage_ops = {
  572. .need = need_debug_guardpage,
  573. .init = init_debug_guardpage,
  574. };
  575. static int __init debug_guardpage_minorder_setup(char *buf)
  576. {
  577. unsigned long res;
  578. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  579. pr_err("Bad debug_guardpage_minorder value\n");
  580. return 0;
  581. }
  582. _debug_guardpage_minorder = res;
  583. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  584. return 0;
  585. }
  586. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  587. static inline bool set_page_guard(struct zone *zone, struct page *page,
  588. unsigned int order, int migratetype)
  589. {
  590. struct page_ext *page_ext;
  591. if (!debug_guardpage_enabled())
  592. return false;
  593. if (order >= debug_guardpage_minorder())
  594. return false;
  595. page_ext = lookup_page_ext(page);
  596. if (unlikely(!page_ext))
  597. return false;
  598. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  599. INIT_LIST_HEAD(&page->lru);
  600. set_page_private(page, order);
  601. /* Guard pages are not available for any usage */
  602. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  603. return true;
  604. }
  605. static inline void clear_page_guard(struct zone *zone, struct page *page,
  606. unsigned int order, int migratetype)
  607. {
  608. struct page_ext *page_ext;
  609. if (!debug_guardpage_enabled())
  610. return;
  611. page_ext = lookup_page_ext(page);
  612. if (unlikely(!page_ext))
  613. return;
  614. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  615. set_page_private(page, 0);
  616. if (!is_migrate_isolate(migratetype))
  617. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  618. }
  619. #else
  620. struct page_ext_operations debug_guardpage_ops;
  621. static inline bool set_page_guard(struct zone *zone, struct page *page,
  622. unsigned int order, int migratetype) { return false; }
  623. static inline void clear_page_guard(struct zone *zone, struct page *page,
  624. unsigned int order, int migratetype) {}
  625. #endif
  626. static inline void set_page_order(struct page *page, unsigned int order)
  627. {
  628. set_page_private(page, order);
  629. __SetPageBuddy(page);
  630. }
  631. static inline void rmv_page_order(struct page *page)
  632. {
  633. __ClearPageBuddy(page);
  634. set_page_private(page, 0);
  635. }
  636. /*
  637. * This function checks whether a page is free && is the buddy
  638. * we can do coalesce a page and its buddy if
  639. * (a) the buddy is not in a hole &&
  640. * (b) the buddy is in the buddy system &&
  641. * (c) a page and its buddy have the same order &&
  642. * (d) a page and its buddy are in the same zone.
  643. *
  644. * For recording whether a page is in the buddy system, we set ->_mapcount
  645. * PAGE_BUDDY_MAPCOUNT_VALUE.
  646. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  647. * serialized by zone->lock.
  648. *
  649. * For recording page's order, we use page_private(page).
  650. */
  651. static inline int page_is_buddy(struct page *page, struct page *buddy,
  652. unsigned int order)
  653. {
  654. if (!pfn_valid_within(page_to_pfn(buddy)))
  655. return 0;
  656. if (page_is_guard(buddy) && page_order(buddy) == order) {
  657. if (page_zone_id(page) != page_zone_id(buddy))
  658. return 0;
  659. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  660. return 1;
  661. }
  662. if (PageBuddy(buddy) && page_order(buddy) == order) {
  663. /*
  664. * zone check is done late to avoid uselessly
  665. * calculating zone/node ids for pages that could
  666. * never merge.
  667. */
  668. if (page_zone_id(page) != page_zone_id(buddy))
  669. return 0;
  670. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  671. return 1;
  672. }
  673. return 0;
  674. }
  675. /*
  676. * Freeing function for a buddy system allocator.
  677. *
  678. * The concept of a buddy system is to maintain direct-mapped table
  679. * (containing bit values) for memory blocks of various "orders".
  680. * The bottom level table contains the map for the smallest allocatable
  681. * units of memory (here, pages), and each level above it describes
  682. * pairs of units from the levels below, hence, "buddies".
  683. * At a high level, all that happens here is marking the table entry
  684. * at the bottom level available, and propagating the changes upward
  685. * as necessary, plus some accounting needed to play nicely with other
  686. * parts of the VM system.
  687. * At each level, we keep a list of pages, which are heads of continuous
  688. * free pages of length of (1 << order) and marked with _mapcount
  689. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  690. * field.
  691. * So when we are allocating or freeing one, we can derive the state of the
  692. * other. That is, if we allocate a small block, and both were
  693. * free, the remainder of the region must be split into blocks.
  694. * If a block is freed, and its buddy is also free, then this
  695. * triggers coalescing into a block of larger size.
  696. *
  697. * -- nyc
  698. */
  699. static inline void __free_one_page(struct page *page,
  700. unsigned long pfn,
  701. struct zone *zone, unsigned int order,
  702. int migratetype)
  703. {
  704. unsigned long page_idx;
  705. unsigned long combined_idx;
  706. unsigned long uninitialized_var(buddy_idx);
  707. struct page *buddy;
  708. unsigned int max_order;
  709. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  710. VM_BUG_ON(!zone_is_initialized(zone));
  711. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  712. VM_BUG_ON(migratetype == -1);
  713. if (likely(!is_migrate_isolate(migratetype)))
  714. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  715. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  716. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  717. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  718. continue_merging:
  719. while (order < max_order - 1) {
  720. buddy_idx = __find_buddy_index(page_idx, order);
  721. buddy = page + (buddy_idx - page_idx);
  722. if (!page_is_buddy(page, buddy, order))
  723. goto done_merging;
  724. /*
  725. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  726. * merge with it and move up one order.
  727. */
  728. if (page_is_guard(buddy)) {
  729. clear_page_guard(zone, buddy, order, migratetype);
  730. } else {
  731. list_del(&buddy->lru);
  732. zone->free_area[order].nr_free--;
  733. rmv_page_order(buddy);
  734. }
  735. combined_idx = buddy_idx & page_idx;
  736. page = page + (combined_idx - page_idx);
  737. page_idx = combined_idx;
  738. order++;
  739. }
  740. if (max_order < MAX_ORDER) {
  741. /* If we are here, it means order is >= pageblock_order.
  742. * We want to prevent merge between freepages on isolate
  743. * pageblock and normal pageblock. Without this, pageblock
  744. * isolation could cause incorrect freepage or CMA accounting.
  745. *
  746. * We don't want to hit this code for the more frequent
  747. * low-order merging.
  748. */
  749. if (unlikely(has_isolate_pageblock(zone))) {
  750. int buddy_mt;
  751. buddy_idx = __find_buddy_index(page_idx, order);
  752. buddy = page + (buddy_idx - page_idx);
  753. buddy_mt = get_pageblock_migratetype(buddy);
  754. if (migratetype != buddy_mt
  755. && (is_migrate_isolate(migratetype) ||
  756. is_migrate_isolate(buddy_mt)))
  757. goto done_merging;
  758. }
  759. max_order++;
  760. goto continue_merging;
  761. }
  762. done_merging:
  763. set_page_order(page, order);
  764. /*
  765. * If this is not the largest possible page, check if the buddy
  766. * of the next-highest order is free. If it is, it's possible
  767. * that pages are being freed that will coalesce soon. In case,
  768. * that is happening, add the free page to the tail of the list
  769. * so it's less likely to be used soon and more likely to be merged
  770. * as a higher order page
  771. */
  772. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  773. struct page *higher_page, *higher_buddy;
  774. combined_idx = buddy_idx & page_idx;
  775. higher_page = page + (combined_idx - page_idx);
  776. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  777. higher_buddy = higher_page + (buddy_idx - combined_idx);
  778. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  779. list_add_tail(&page->lru,
  780. &zone->free_area[order].free_list[migratetype]);
  781. goto out;
  782. }
  783. }
  784. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  785. out:
  786. zone->free_area[order].nr_free++;
  787. }
  788. /*
  789. * A bad page could be due to a number of fields. Instead of multiple branches,
  790. * try and check multiple fields with one check. The caller must do a detailed
  791. * check if necessary.
  792. */
  793. static inline bool page_expected_state(struct page *page,
  794. unsigned long check_flags)
  795. {
  796. if (unlikely(atomic_read(&page->_mapcount) != -1))
  797. return false;
  798. if (unlikely((unsigned long)page->mapping |
  799. page_ref_count(page) |
  800. #ifdef CONFIG_MEMCG
  801. (unsigned long)page->mem_cgroup |
  802. #endif
  803. (page->flags & check_flags)))
  804. return false;
  805. return true;
  806. }
  807. static void free_pages_check_bad(struct page *page)
  808. {
  809. const char *bad_reason;
  810. unsigned long bad_flags;
  811. bad_reason = NULL;
  812. bad_flags = 0;
  813. if (unlikely(atomic_read(&page->_mapcount) != -1))
  814. bad_reason = "nonzero mapcount";
  815. if (unlikely(page->mapping != NULL))
  816. bad_reason = "non-NULL mapping";
  817. if (unlikely(page_ref_count(page) != 0))
  818. bad_reason = "nonzero _refcount";
  819. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  820. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  821. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  822. }
  823. #ifdef CONFIG_MEMCG
  824. if (unlikely(page->mem_cgroup))
  825. bad_reason = "page still charged to cgroup";
  826. #endif
  827. bad_page(page, bad_reason, bad_flags);
  828. }
  829. static inline int free_pages_check(struct page *page)
  830. {
  831. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  832. return 0;
  833. /* Something has gone sideways, find it */
  834. free_pages_check_bad(page);
  835. return 1;
  836. }
  837. static int free_tail_pages_check(struct page *head_page, struct page *page)
  838. {
  839. int ret = 1;
  840. /*
  841. * We rely page->lru.next never has bit 0 set, unless the page
  842. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  843. */
  844. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  845. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  846. ret = 0;
  847. goto out;
  848. }
  849. switch (page - head_page) {
  850. case 1:
  851. /* the first tail page: ->mapping is compound_mapcount() */
  852. if (unlikely(compound_mapcount(page))) {
  853. bad_page(page, "nonzero compound_mapcount", 0);
  854. goto out;
  855. }
  856. break;
  857. case 2:
  858. /*
  859. * the second tail page: ->mapping is
  860. * page_deferred_list().next -- ignore value.
  861. */
  862. break;
  863. default:
  864. if (page->mapping != TAIL_MAPPING) {
  865. bad_page(page, "corrupted mapping in tail page", 0);
  866. goto out;
  867. }
  868. break;
  869. }
  870. if (unlikely(!PageTail(page))) {
  871. bad_page(page, "PageTail not set", 0);
  872. goto out;
  873. }
  874. if (unlikely(compound_head(page) != head_page)) {
  875. bad_page(page, "compound_head not consistent", 0);
  876. goto out;
  877. }
  878. ret = 0;
  879. out:
  880. page->mapping = NULL;
  881. clear_compound_head(page);
  882. return ret;
  883. }
  884. static __always_inline bool free_pages_prepare(struct page *page,
  885. unsigned int order, bool check_free)
  886. {
  887. int bad = 0;
  888. VM_BUG_ON_PAGE(PageTail(page), page);
  889. trace_mm_page_free(page, order);
  890. kmemcheck_free_shadow(page, order);
  891. /*
  892. * Check tail pages before head page information is cleared to
  893. * avoid checking PageCompound for order-0 pages.
  894. */
  895. if (unlikely(order)) {
  896. bool compound = PageCompound(page);
  897. int i;
  898. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  899. if (compound)
  900. ClearPageDoubleMap(page);
  901. for (i = 1; i < (1 << order); i++) {
  902. if (compound)
  903. bad += free_tail_pages_check(page, page + i);
  904. if (unlikely(free_pages_check(page + i))) {
  905. bad++;
  906. continue;
  907. }
  908. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  909. }
  910. }
  911. if (PageMappingFlags(page))
  912. page->mapping = NULL;
  913. if (memcg_kmem_enabled() && PageKmemcg(page))
  914. memcg_kmem_uncharge(page, order);
  915. if (check_free)
  916. bad += free_pages_check(page);
  917. if (bad)
  918. return false;
  919. page_cpupid_reset_last(page);
  920. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  921. reset_page_owner(page, order);
  922. if (!PageHighMem(page)) {
  923. debug_check_no_locks_freed(page_address(page),
  924. PAGE_SIZE << order);
  925. debug_check_no_obj_freed(page_address(page),
  926. PAGE_SIZE << order);
  927. }
  928. arch_free_page(page, order);
  929. kernel_poison_pages(page, 1 << order, 0);
  930. kernel_map_pages(page, 1 << order, 0);
  931. kasan_free_pages(page, order);
  932. return true;
  933. }
  934. #ifdef CONFIG_DEBUG_VM
  935. static inline bool free_pcp_prepare(struct page *page)
  936. {
  937. return free_pages_prepare(page, 0, true);
  938. }
  939. static inline bool bulkfree_pcp_prepare(struct page *page)
  940. {
  941. return false;
  942. }
  943. #else
  944. static bool free_pcp_prepare(struct page *page)
  945. {
  946. return free_pages_prepare(page, 0, false);
  947. }
  948. static bool bulkfree_pcp_prepare(struct page *page)
  949. {
  950. return free_pages_check(page);
  951. }
  952. #endif /* CONFIG_DEBUG_VM */
  953. /*
  954. * Frees a number of pages from the PCP lists
  955. * Assumes all pages on list are in same zone, and of same order.
  956. * count is the number of pages to free.
  957. *
  958. * If the zone was previously in an "all pages pinned" state then look to
  959. * see if this freeing clears that state.
  960. *
  961. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  962. * pinned" detection logic.
  963. */
  964. static void free_pcppages_bulk(struct zone *zone, int count,
  965. struct per_cpu_pages *pcp)
  966. {
  967. int migratetype = 0;
  968. int batch_free = 0;
  969. unsigned long nr_scanned;
  970. bool isolated_pageblocks;
  971. spin_lock(&zone->lock);
  972. isolated_pageblocks = has_isolate_pageblock(zone);
  973. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  974. if (nr_scanned)
  975. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  976. while (count) {
  977. struct page *page;
  978. struct list_head *list;
  979. /*
  980. * Remove pages from lists in a round-robin fashion. A
  981. * batch_free count is maintained that is incremented when an
  982. * empty list is encountered. This is so more pages are freed
  983. * off fuller lists instead of spinning excessively around empty
  984. * lists
  985. */
  986. do {
  987. batch_free++;
  988. if (++migratetype == MIGRATE_PCPTYPES)
  989. migratetype = 0;
  990. list = &pcp->lists[migratetype];
  991. } while (list_empty(list));
  992. /* This is the only non-empty list. Free them all. */
  993. if (batch_free == MIGRATE_PCPTYPES)
  994. batch_free = count;
  995. do {
  996. int mt; /* migratetype of the to-be-freed page */
  997. page = list_last_entry(list, struct page, lru);
  998. /* must delete as __free_one_page list manipulates */
  999. list_del(&page->lru);
  1000. mt = get_pcppage_migratetype(page);
  1001. /* MIGRATE_ISOLATE page should not go to pcplists */
  1002. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  1003. /* Pageblock could have been isolated meanwhile */
  1004. if (unlikely(isolated_pageblocks))
  1005. mt = get_pageblock_migratetype(page);
  1006. if (bulkfree_pcp_prepare(page))
  1007. continue;
  1008. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  1009. trace_mm_page_pcpu_drain(page, 0, mt);
  1010. } while (--count && --batch_free && !list_empty(list));
  1011. }
  1012. spin_unlock(&zone->lock);
  1013. }
  1014. static void free_one_page(struct zone *zone,
  1015. struct page *page, unsigned long pfn,
  1016. unsigned int order,
  1017. int migratetype)
  1018. {
  1019. unsigned long nr_scanned;
  1020. spin_lock(&zone->lock);
  1021. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  1022. if (nr_scanned)
  1023. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  1024. if (unlikely(has_isolate_pageblock(zone) ||
  1025. is_migrate_isolate(migratetype))) {
  1026. migratetype = get_pfnblock_migratetype(page, pfn);
  1027. }
  1028. __free_one_page(page, pfn, zone, order, migratetype);
  1029. spin_unlock(&zone->lock);
  1030. }
  1031. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1032. unsigned long zone, int nid)
  1033. {
  1034. set_page_links(page, zone, nid, pfn);
  1035. init_page_count(page);
  1036. page_mapcount_reset(page);
  1037. page_cpupid_reset_last(page);
  1038. INIT_LIST_HEAD(&page->lru);
  1039. #ifdef WANT_PAGE_VIRTUAL
  1040. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1041. if (!is_highmem_idx(zone))
  1042. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1043. #endif
  1044. }
  1045. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1046. int nid)
  1047. {
  1048. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1049. }
  1050. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1051. static void init_reserved_page(unsigned long pfn)
  1052. {
  1053. pg_data_t *pgdat;
  1054. int nid, zid;
  1055. if (!early_page_uninitialised(pfn))
  1056. return;
  1057. nid = early_pfn_to_nid(pfn);
  1058. pgdat = NODE_DATA(nid);
  1059. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1060. struct zone *zone = &pgdat->node_zones[zid];
  1061. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1062. break;
  1063. }
  1064. __init_single_pfn(pfn, zid, nid);
  1065. }
  1066. #else
  1067. static inline void init_reserved_page(unsigned long pfn)
  1068. {
  1069. }
  1070. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1071. /*
  1072. * Initialised pages do not have PageReserved set. This function is
  1073. * called for each range allocated by the bootmem allocator and
  1074. * marks the pages PageReserved. The remaining valid pages are later
  1075. * sent to the buddy page allocator.
  1076. */
  1077. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1078. {
  1079. unsigned long start_pfn = PFN_DOWN(start);
  1080. unsigned long end_pfn = PFN_UP(end);
  1081. for (; start_pfn < end_pfn; start_pfn++) {
  1082. if (pfn_valid(start_pfn)) {
  1083. struct page *page = pfn_to_page(start_pfn);
  1084. init_reserved_page(start_pfn);
  1085. /* Avoid false-positive PageTail() */
  1086. INIT_LIST_HEAD(&page->lru);
  1087. SetPageReserved(page);
  1088. }
  1089. }
  1090. }
  1091. static void __free_pages_ok(struct page *page, unsigned int order)
  1092. {
  1093. unsigned long flags;
  1094. int migratetype;
  1095. unsigned long pfn = page_to_pfn(page);
  1096. if (!free_pages_prepare(page, order, true))
  1097. return;
  1098. migratetype = get_pfnblock_migratetype(page, pfn);
  1099. local_irq_save(flags);
  1100. __count_vm_events(PGFREE, 1 << order);
  1101. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1102. local_irq_restore(flags);
  1103. }
  1104. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1105. {
  1106. unsigned int nr_pages = 1 << order;
  1107. struct page *p = page;
  1108. unsigned int loop;
  1109. prefetchw(p);
  1110. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1111. prefetchw(p + 1);
  1112. __ClearPageReserved(p);
  1113. set_page_count(p, 0);
  1114. }
  1115. __ClearPageReserved(p);
  1116. set_page_count(p, 0);
  1117. page_zone(page)->managed_pages += nr_pages;
  1118. set_page_refcounted(page);
  1119. __free_pages(page, order);
  1120. }
  1121. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1122. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1123. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1124. int __meminit early_pfn_to_nid(unsigned long pfn)
  1125. {
  1126. static DEFINE_SPINLOCK(early_pfn_lock);
  1127. int nid;
  1128. spin_lock(&early_pfn_lock);
  1129. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1130. if (nid < 0)
  1131. nid = first_online_node;
  1132. spin_unlock(&early_pfn_lock);
  1133. return nid;
  1134. }
  1135. #endif
  1136. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1137. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1138. struct mminit_pfnnid_cache *state)
  1139. {
  1140. int nid;
  1141. nid = __early_pfn_to_nid(pfn, state);
  1142. if (nid >= 0 && nid != node)
  1143. return false;
  1144. return true;
  1145. }
  1146. /* Only safe to use early in boot when initialisation is single-threaded */
  1147. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1148. {
  1149. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1150. }
  1151. #else
  1152. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1153. {
  1154. return true;
  1155. }
  1156. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1157. struct mminit_pfnnid_cache *state)
  1158. {
  1159. return true;
  1160. }
  1161. #endif
  1162. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1163. unsigned int order)
  1164. {
  1165. if (early_page_uninitialised(pfn))
  1166. return;
  1167. return __free_pages_boot_core(page, order);
  1168. }
  1169. /*
  1170. * Check that the whole (or subset of) a pageblock given by the interval of
  1171. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1172. * with the migration of free compaction scanner. The scanners then need to
  1173. * use only pfn_valid_within() check for arches that allow holes within
  1174. * pageblocks.
  1175. *
  1176. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1177. *
  1178. * It's possible on some configurations to have a setup like node0 node1 node0
  1179. * i.e. it's possible that all pages within a zones range of pages do not
  1180. * belong to a single zone. We assume that a border between node0 and node1
  1181. * can occur within a single pageblock, but not a node0 node1 node0
  1182. * interleaving within a single pageblock. It is therefore sufficient to check
  1183. * the first and last page of a pageblock and avoid checking each individual
  1184. * page in a pageblock.
  1185. */
  1186. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1187. unsigned long end_pfn, struct zone *zone)
  1188. {
  1189. struct page *start_page;
  1190. struct page *end_page;
  1191. /* end_pfn is one past the range we are checking */
  1192. end_pfn--;
  1193. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1194. return NULL;
  1195. start_page = pfn_to_page(start_pfn);
  1196. if (page_zone(start_page) != zone)
  1197. return NULL;
  1198. end_page = pfn_to_page(end_pfn);
  1199. /* This gives a shorter code than deriving page_zone(end_page) */
  1200. if (page_zone_id(start_page) != page_zone_id(end_page))
  1201. return NULL;
  1202. return start_page;
  1203. }
  1204. void set_zone_contiguous(struct zone *zone)
  1205. {
  1206. unsigned long block_start_pfn = zone->zone_start_pfn;
  1207. unsigned long block_end_pfn;
  1208. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1209. for (; block_start_pfn < zone_end_pfn(zone);
  1210. block_start_pfn = block_end_pfn,
  1211. block_end_pfn += pageblock_nr_pages) {
  1212. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1213. if (!__pageblock_pfn_to_page(block_start_pfn,
  1214. block_end_pfn, zone))
  1215. return;
  1216. }
  1217. /* We confirm that there is no hole */
  1218. zone->contiguous = true;
  1219. }
  1220. void clear_zone_contiguous(struct zone *zone)
  1221. {
  1222. zone->contiguous = false;
  1223. }
  1224. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1225. static void __init deferred_free_range(struct page *page,
  1226. unsigned long pfn, int nr_pages)
  1227. {
  1228. int i;
  1229. if (!page)
  1230. return;
  1231. /* Free a large naturally-aligned chunk if possible */
  1232. if (nr_pages == pageblock_nr_pages &&
  1233. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1234. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1235. __free_pages_boot_core(page, pageblock_order);
  1236. return;
  1237. }
  1238. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1239. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1240. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1241. __free_pages_boot_core(page, 0);
  1242. }
  1243. }
  1244. /* Completion tracking for deferred_init_memmap() threads */
  1245. static atomic_t pgdat_init_n_undone __initdata;
  1246. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1247. static inline void __init pgdat_init_report_one_done(void)
  1248. {
  1249. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1250. complete(&pgdat_init_all_done_comp);
  1251. }
  1252. /* Initialise remaining memory on a node */
  1253. static int __init deferred_init_memmap(void *data)
  1254. {
  1255. pg_data_t *pgdat = data;
  1256. int nid = pgdat->node_id;
  1257. struct mminit_pfnnid_cache nid_init_state = { };
  1258. unsigned long start = jiffies;
  1259. unsigned long nr_pages = 0;
  1260. unsigned long walk_start, walk_end;
  1261. int i, zid;
  1262. struct zone *zone;
  1263. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1264. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1265. if (first_init_pfn == ULONG_MAX) {
  1266. pgdat_init_report_one_done();
  1267. return 0;
  1268. }
  1269. /* Bind memory initialisation thread to a local node if possible */
  1270. if (!cpumask_empty(cpumask))
  1271. set_cpus_allowed_ptr(current, cpumask);
  1272. /* Sanity check boundaries */
  1273. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1274. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1275. pgdat->first_deferred_pfn = ULONG_MAX;
  1276. /* Only the highest zone is deferred so find it */
  1277. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1278. zone = pgdat->node_zones + zid;
  1279. if (first_init_pfn < zone_end_pfn(zone))
  1280. break;
  1281. }
  1282. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1283. unsigned long pfn, end_pfn;
  1284. struct page *page = NULL;
  1285. struct page *free_base_page = NULL;
  1286. unsigned long free_base_pfn = 0;
  1287. int nr_to_free = 0;
  1288. end_pfn = min(walk_end, zone_end_pfn(zone));
  1289. pfn = first_init_pfn;
  1290. if (pfn < walk_start)
  1291. pfn = walk_start;
  1292. if (pfn < zone->zone_start_pfn)
  1293. pfn = zone->zone_start_pfn;
  1294. for (; pfn < end_pfn; pfn++) {
  1295. if (!pfn_valid_within(pfn))
  1296. goto free_range;
  1297. /*
  1298. * Ensure pfn_valid is checked every
  1299. * pageblock_nr_pages for memory holes
  1300. */
  1301. if ((pfn & (pageblock_nr_pages - 1)) == 0) {
  1302. if (!pfn_valid(pfn)) {
  1303. page = NULL;
  1304. goto free_range;
  1305. }
  1306. }
  1307. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1308. page = NULL;
  1309. goto free_range;
  1310. }
  1311. /* Minimise pfn page lookups and scheduler checks */
  1312. if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
  1313. page++;
  1314. } else {
  1315. nr_pages += nr_to_free;
  1316. deferred_free_range(free_base_page,
  1317. free_base_pfn, nr_to_free);
  1318. free_base_page = NULL;
  1319. free_base_pfn = nr_to_free = 0;
  1320. page = pfn_to_page(pfn);
  1321. cond_resched();
  1322. }
  1323. if (page->flags) {
  1324. VM_BUG_ON(page_zone(page) != zone);
  1325. goto free_range;
  1326. }
  1327. __init_single_page(page, pfn, zid, nid);
  1328. if (!free_base_page) {
  1329. free_base_page = page;
  1330. free_base_pfn = pfn;
  1331. nr_to_free = 0;
  1332. }
  1333. nr_to_free++;
  1334. /* Where possible, batch up pages for a single free */
  1335. continue;
  1336. free_range:
  1337. /* Free the current block of pages to allocator */
  1338. nr_pages += nr_to_free;
  1339. deferred_free_range(free_base_page, free_base_pfn,
  1340. nr_to_free);
  1341. free_base_page = NULL;
  1342. free_base_pfn = nr_to_free = 0;
  1343. }
  1344. /* Free the last block of pages to allocator */
  1345. nr_pages += nr_to_free;
  1346. deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
  1347. first_init_pfn = max(end_pfn, first_init_pfn);
  1348. }
  1349. /* Sanity check that the next zone really is unpopulated */
  1350. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1351. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1352. jiffies_to_msecs(jiffies - start));
  1353. pgdat_init_report_one_done();
  1354. return 0;
  1355. }
  1356. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1357. void __init page_alloc_init_late(void)
  1358. {
  1359. struct zone *zone;
  1360. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1361. int nid;
  1362. /* There will be num_node_state(N_MEMORY) threads */
  1363. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1364. for_each_node_state(nid, N_MEMORY) {
  1365. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1366. }
  1367. /* Block until all are initialised */
  1368. wait_for_completion(&pgdat_init_all_done_comp);
  1369. /* Reinit limits that are based on free pages after the kernel is up */
  1370. files_maxfiles_init();
  1371. #endif
  1372. #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
  1373. /* Discard memblock private memory */
  1374. memblock_discard();
  1375. #endif
  1376. for_each_populated_zone(zone)
  1377. set_zone_contiguous(zone);
  1378. }
  1379. #ifdef CONFIG_CMA
  1380. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1381. void __init init_cma_reserved_pageblock(struct page *page)
  1382. {
  1383. unsigned i = pageblock_nr_pages;
  1384. struct page *p = page;
  1385. do {
  1386. __ClearPageReserved(p);
  1387. set_page_count(p, 0);
  1388. } while (++p, --i);
  1389. set_pageblock_migratetype(page, MIGRATE_CMA);
  1390. if (pageblock_order >= MAX_ORDER) {
  1391. i = pageblock_nr_pages;
  1392. p = page;
  1393. do {
  1394. set_page_refcounted(p);
  1395. __free_pages(p, MAX_ORDER - 1);
  1396. p += MAX_ORDER_NR_PAGES;
  1397. } while (i -= MAX_ORDER_NR_PAGES);
  1398. } else {
  1399. set_page_refcounted(page);
  1400. __free_pages(page, pageblock_order);
  1401. }
  1402. adjust_managed_page_count(page, pageblock_nr_pages);
  1403. }
  1404. #endif
  1405. /*
  1406. * The order of subdivision here is critical for the IO subsystem.
  1407. * Please do not alter this order without good reasons and regression
  1408. * testing. Specifically, as large blocks of memory are subdivided,
  1409. * the order in which smaller blocks are delivered depends on the order
  1410. * they're subdivided in this function. This is the primary factor
  1411. * influencing the order in which pages are delivered to the IO
  1412. * subsystem according to empirical testing, and this is also justified
  1413. * by considering the behavior of a buddy system containing a single
  1414. * large block of memory acted on by a series of small allocations.
  1415. * This behavior is a critical factor in sglist merging's success.
  1416. *
  1417. * -- nyc
  1418. */
  1419. static inline void expand(struct zone *zone, struct page *page,
  1420. int low, int high, struct free_area *area,
  1421. int migratetype)
  1422. {
  1423. unsigned long size = 1 << high;
  1424. while (high > low) {
  1425. area--;
  1426. high--;
  1427. size >>= 1;
  1428. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1429. /*
  1430. * Mark as guard pages (or page), that will allow to
  1431. * merge back to allocator when buddy will be freed.
  1432. * Corresponding page table entries will not be touched,
  1433. * pages will stay not present in virtual address space
  1434. */
  1435. if (set_page_guard(zone, &page[size], high, migratetype))
  1436. continue;
  1437. list_add(&page[size].lru, &area->free_list[migratetype]);
  1438. area->nr_free++;
  1439. set_page_order(&page[size], high);
  1440. }
  1441. }
  1442. static void check_new_page_bad(struct page *page)
  1443. {
  1444. const char *bad_reason = NULL;
  1445. unsigned long bad_flags = 0;
  1446. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1447. bad_reason = "nonzero mapcount";
  1448. if (unlikely(page->mapping != NULL))
  1449. bad_reason = "non-NULL mapping";
  1450. if (unlikely(page_ref_count(page) != 0))
  1451. bad_reason = "nonzero _count";
  1452. if (unlikely(page->flags & __PG_HWPOISON)) {
  1453. bad_reason = "HWPoisoned (hardware-corrupted)";
  1454. bad_flags = __PG_HWPOISON;
  1455. /* Don't complain about hwpoisoned pages */
  1456. page_mapcount_reset(page); /* remove PageBuddy */
  1457. return;
  1458. }
  1459. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1460. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1461. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1462. }
  1463. #ifdef CONFIG_MEMCG
  1464. if (unlikely(page->mem_cgroup))
  1465. bad_reason = "page still charged to cgroup";
  1466. #endif
  1467. bad_page(page, bad_reason, bad_flags);
  1468. }
  1469. /*
  1470. * This page is about to be returned from the page allocator
  1471. */
  1472. static inline int check_new_page(struct page *page)
  1473. {
  1474. if (likely(page_expected_state(page,
  1475. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1476. return 0;
  1477. check_new_page_bad(page);
  1478. return 1;
  1479. }
  1480. static inline bool free_pages_prezeroed(bool poisoned)
  1481. {
  1482. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1483. page_poisoning_enabled() && poisoned;
  1484. }
  1485. #ifdef CONFIG_DEBUG_VM
  1486. static bool check_pcp_refill(struct page *page)
  1487. {
  1488. return false;
  1489. }
  1490. static bool check_new_pcp(struct page *page)
  1491. {
  1492. return check_new_page(page);
  1493. }
  1494. #else
  1495. static bool check_pcp_refill(struct page *page)
  1496. {
  1497. return check_new_page(page);
  1498. }
  1499. static bool check_new_pcp(struct page *page)
  1500. {
  1501. return false;
  1502. }
  1503. #endif /* CONFIG_DEBUG_VM */
  1504. static bool check_new_pages(struct page *page, unsigned int order)
  1505. {
  1506. int i;
  1507. for (i = 0; i < (1 << order); i++) {
  1508. struct page *p = page + i;
  1509. if (unlikely(check_new_page(p)))
  1510. return true;
  1511. }
  1512. return false;
  1513. }
  1514. inline void post_alloc_hook(struct page *page, unsigned int order,
  1515. gfp_t gfp_flags)
  1516. {
  1517. set_page_private(page, 0);
  1518. set_page_refcounted(page);
  1519. arch_alloc_page(page, order);
  1520. kernel_map_pages(page, 1 << order, 1);
  1521. kernel_poison_pages(page, 1 << order, 1);
  1522. kasan_alloc_pages(page, order);
  1523. set_page_owner(page, order, gfp_flags);
  1524. }
  1525. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1526. unsigned int alloc_flags)
  1527. {
  1528. int i;
  1529. bool poisoned = true;
  1530. for (i = 0; i < (1 << order); i++) {
  1531. struct page *p = page + i;
  1532. if (poisoned)
  1533. poisoned &= page_is_poisoned(p);
  1534. }
  1535. post_alloc_hook(page, order, gfp_flags);
  1536. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1537. for (i = 0; i < (1 << order); i++)
  1538. clear_highpage(page + i);
  1539. if (order && (gfp_flags & __GFP_COMP))
  1540. prep_compound_page(page, order);
  1541. /*
  1542. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1543. * allocate the page. The expectation is that the caller is taking
  1544. * steps that will free more memory. The caller should avoid the page
  1545. * being used for !PFMEMALLOC purposes.
  1546. */
  1547. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1548. set_page_pfmemalloc(page);
  1549. else
  1550. clear_page_pfmemalloc(page);
  1551. }
  1552. /*
  1553. * Go through the free lists for the given migratetype and remove
  1554. * the smallest available page from the freelists
  1555. */
  1556. static inline
  1557. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1558. int migratetype)
  1559. {
  1560. unsigned int current_order;
  1561. struct free_area *area;
  1562. struct page *page;
  1563. /* Find a page of the appropriate size in the preferred list */
  1564. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1565. area = &(zone->free_area[current_order]);
  1566. page = list_first_entry_or_null(&area->free_list[migratetype],
  1567. struct page, lru);
  1568. if (!page)
  1569. continue;
  1570. list_del(&page->lru);
  1571. rmv_page_order(page);
  1572. area->nr_free--;
  1573. expand(zone, page, order, current_order, area, migratetype);
  1574. set_pcppage_migratetype(page, migratetype);
  1575. return page;
  1576. }
  1577. return NULL;
  1578. }
  1579. /*
  1580. * This array describes the order lists are fallen back to when
  1581. * the free lists for the desirable migrate type are depleted
  1582. */
  1583. static int fallbacks[MIGRATE_TYPES][4] = {
  1584. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1585. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1586. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1587. #ifdef CONFIG_CMA
  1588. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1589. #endif
  1590. #ifdef CONFIG_MEMORY_ISOLATION
  1591. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1592. #endif
  1593. };
  1594. #ifdef CONFIG_CMA
  1595. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1596. unsigned int order)
  1597. {
  1598. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1599. }
  1600. #else
  1601. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1602. unsigned int order) { return NULL; }
  1603. #endif
  1604. /*
  1605. * Move the free pages in a range to the free lists of the requested type.
  1606. * Note that start_page and end_pages are not aligned on a pageblock
  1607. * boundary. If alignment is required, use move_freepages_block()
  1608. */
  1609. int move_freepages(struct zone *zone,
  1610. struct page *start_page, struct page *end_page,
  1611. int migratetype)
  1612. {
  1613. struct page *page;
  1614. unsigned int order;
  1615. int pages_moved = 0;
  1616. #ifndef CONFIG_HOLES_IN_ZONE
  1617. /*
  1618. * page_zone is not safe to call in this context when
  1619. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1620. * anyway as we check zone boundaries in move_freepages_block().
  1621. * Remove at a later date when no bug reports exist related to
  1622. * grouping pages by mobility
  1623. */
  1624. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1625. #endif
  1626. for (page = start_page; page <= end_page;) {
  1627. if (!pfn_valid_within(page_to_pfn(page))) {
  1628. page++;
  1629. continue;
  1630. }
  1631. /* Make sure we are not inadvertently changing nodes */
  1632. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1633. if (!PageBuddy(page)) {
  1634. page++;
  1635. continue;
  1636. }
  1637. order = page_order(page);
  1638. list_move(&page->lru,
  1639. &zone->free_area[order].free_list[migratetype]);
  1640. page += 1 << order;
  1641. pages_moved += 1 << order;
  1642. }
  1643. return pages_moved;
  1644. }
  1645. int move_freepages_block(struct zone *zone, struct page *page,
  1646. int migratetype)
  1647. {
  1648. unsigned long start_pfn, end_pfn;
  1649. struct page *start_page, *end_page;
  1650. start_pfn = page_to_pfn(page);
  1651. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1652. start_page = pfn_to_page(start_pfn);
  1653. end_page = start_page + pageblock_nr_pages - 1;
  1654. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1655. /* Do not cross zone boundaries */
  1656. if (!zone_spans_pfn(zone, start_pfn))
  1657. start_page = page;
  1658. if (!zone_spans_pfn(zone, end_pfn))
  1659. return 0;
  1660. return move_freepages(zone, start_page, end_page, migratetype);
  1661. }
  1662. static void change_pageblock_range(struct page *pageblock_page,
  1663. int start_order, int migratetype)
  1664. {
  1665. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1666. while (nr_pageblocks--) {
  1667. set_pageblock_migratetype(pageblock_page, migratetype);
  1668. pageblock_page += pageblock_nr_pages;
  1669. }
  1670. }
  1671. /*
  1672. * When we are falling back to another migratetype during allocation, try to
  1673. * steal extra free pages from the same pageblocks to satisfy further
  1674. * allocations, instead of polluting multiple pageblocks.
  1675. *
  1676. * If we are stealing a relatively large buddy page, it is likely there will
  1677. * be more free pages in the pageblock, so try to steal them all. For
  1678. * reclaimable and unmovable allocations, we steal regardless of page size,
  1679. * as fragmentation caused by those allocations polluting movable pageblocks
  1680. * is worse than movable allocations stealing from unmovable and reclaimable
  1681. * pageblocks.
  1682. */
  1683. static bool can_steal_fallback(unsigned int order, int start_mt)
  1684. {
  1685. /*
  1686. * Leaving this order check is intended, although there is
  1687. * relaxed order check in next check. The reason is that
  1688. * we can actually steal whole pageblock if this condition met,
  1689. * but, below check doesn't guarantee it and that is just heuristic
  1690. * so could be changed anytime.
  1691. */
  1692. if (order >= pageblock_order)
  1693. return true;
  1694. if (order >= pageblock_order / 2 ||
  1695. start_mt == MIGRATE_RECLAIMABLE ||
  1696. start_mt == MIGRATE_UNMOVABLE ||
  1697. page_group_by_mobility_disabled)
  1698. return true;
  1699. return false;
  1700. }
  1701. /*
  1702. * This function implements actual steal behaviour. If order is large enough,
  1703. * we can steal whole pageblock. If not, we first move freepages in this
  1704. * pageblock and check whether half of pages are moved or not. If half of
  1705. * pages are moved, we can change migratetype of pageblock and permanently
  1706. * use it's pages as requested migratetype in the future.
  1707. */
  1708. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1709. int start_type)
  1710. {
  1711. unsigned int current_order = page_order(page);
  1712. int pages;
  1713. /* Take ownership for orders >= pageblock_order */
  1714. if (current_order >= pageblock_order) {
  1715. change_pageblock_range(page, current_order, start_type);
  1716. return;
  1717. }
  1718. pages = move_freepages_block(zone, page, start_type);
  1719. /* Claim the whole block if over half of it is free */
  1720. if (pages >= (1 << (pageblock_order-1)) ||
  1721. page_group_by_mobility_disabled)
  1722. set_pageblock_migratetype(page, start_type);
  1723. }
  1724. /*
  1725. * Check whether there is a suitable fallback freepage with requested order.
  1726. * If only_stealable is true, this function returns fallback_mt only if
  1727. * we can steal other freepages all together. This would help to reduce
  1728. * fragmentation due to mixed migratetype pages in one pageblock.
  1729. */
  1730. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1731. int migratetype, bool only_stealable, bool *can_steal)
  1732. {
  1733. int i;
  1734. int fallback_mt;
  1735. if (area->nr_free == 0)
  1736. return -1;
  1737. *can_steal = false;
  1738. for (i = 0;; i++) {
  1739. fallback_mt = fallbacks[migratetype][i];
  1740. if (fallback_mt == MIGRATE_TYPES)
  1741. break;
  1742. if (list_empty(&area->free_list[fallback_mt]))
  1743. continue;
  1744. if (can_steal_fallback(order, migratetype))
  1745. *can_steal = true;
  1746. if (!only_stealable)
  1747. return fallback_mt;
  1748. if (*can_steal)
  1749. return fallback_mt;
  1750. }
  1751. return -1;
  1752. }
  1753. /*
  1754. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1755. * there are no empty page blocks that contain a page with a suitable order
  1756. */
  1757. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1758. unsigned int alloc_order)
  1759. {
  1760. int mt;
  1761. unsigned long max_managed, flags;
  1762. /*
  1763. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1764. * Check is race-prone but harmless.
  1765. */
  1766. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1767. if (zone->nr_reserved_highatomic >= max_managed)
  1768. return;
  1769. spin_lock_irqsave(&zone->lock, flags);
  1770. /* Recheck the nr_reserved_highatomic limit under the lock */
  1771. if (zone->nr_reserved_highatomic >= max_managed)
  1772. goto out_unlock;
  1773. /* Yoink! */
  1774. mt = get_pageblock_migratetype(page);
  1775. if (mt != MIGRATE_HIGHATOMIC &&
  1776. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1777. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1778. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1779. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1780. }
  1781. out_unlock:
  1782. spin_unlock_irqrestore(&zone->lock, flags);
  1783. }
  1784. /*
  1785. * Used when an allocation is about to fail under memory pressure. This
  1786. * potentially hurts the reliability of high-order allocations when under
  1787. * intense memory pressure but failed atomic allocations should be easier
  1788. * to recover from than an OOM.
  1789. */
  1790. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1791. {
  1792. struct zonelist *zonelist = ac->zonelist;
  1793. unsigned long flags;
  1794. struct zoneref *z;
  1795. struct zone *zone;
  1796. struct page *page;
  1797. int order;
  1798. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1799. ac->nodemask) {
  1800. /* Preserve at least one pageblock */
  1801. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1802. continue;
  1803. spin_lock_irqsave(&zone->lock, flags);
  1804. for (order = 0; order < MAX_ORDER; order++) {
  1805. struct free_area *area = &(zone->free_area[order]);
  1806. page = list_first_entry_or_null(
  1807. &area->free_list[MIGRATE_HIGHATOMIC],
  1808. struct page, lru);
  1809. if (!page)
  1810. continue;
  1811. /*
  1812. * In page freeing path, migratetype change is racy so
  1813. * we can counter several free pages in a pageblock
  1814. * in this loop althoug we changed the pageblock type
  1815. * from highatomic to ac->migratetype. So we should
  1816. * adjust the count once.
  1817. */
  1818. if (get_pageblock_migratetype(page) ==
  1819. MIGRATE_HIGHATOMIC) {
  1820. /*
  1821. * It should never happen but changes to
  1822. * locking could inadvertently allow a per-cpu
  1823. * drain to add pages to MIGRATE_HIGHATOMIC
  1824. * while unreserving so be safe and watch for
  1825. * underflows.
  1826. */
  1827. zone->nr_reserved_highatomic -= min(
  1828. pageblock_nr_pages,
  1829. zone->nr_reserved_highatomic);
  1830. }
  1831. /*
  1832. * Convert to ac->migratetype and avoid the normal
  1833. * pageblock stealing heuristics. Minimally, the caller
  1834. * is doing the work and needs the pages. More
  1835. * importantly, if the block was always converted to
  1836. * MIGRATE_UNMOVABLE or another type then the number
  1837. * of pageblocks that cannot be completely freed
  1838. * may increase.
  1839. */
  1840. set_pageblock_migratetype(page, ac->migratetype);
  1841. move_freepages_block(zone, page, ac->migratetype);
  1842. spin_unlock_irqrestore(&zone->lock, flags);
  1843. return;
  1844. }
  1845. spin_unlock_irqrestore(&zone->lock, flags);
  1846. }
  1847. }
  1848. /* Remove an element from the buddy allocator from the fallback list */
  1849. static inline struct page *
  1850. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1851. {
  1852. struct free_area *area;
  1853. unsigned int current_order;
  1854. struct page *page;
  1855. int fallback_mt;
  1856. bool can_steal;
  1857. /* Find the largest possible block of pages in the other list */
  1858. for (current_order = MAX_ORDER-1;
  1859. current_order >= order && current_order <= MAX_ORDER-1;
  1860. --current_order) {
  1861. area = &(zone->free_area[current_order]);
  1862. fallback_mt = find_suitable_fallback(area, current_order,
  1863. start_migratetype, false, &can_steal);
  1864. if (fallback_mt == -1)
  1865. continue;
  1866. page = list_first_entry(&area->free_list[fallback_mt],
  1867. struct page, lru);
  1868. if (can_steal)
  1869. steal_suitable_fallback(zone, page, start_migratetype);
  1870. /* Remove the page from the freelists */
  1871. area->nr_free--;
  1872. list_del(&page->lru);
  1873. rmv_page_order(page);
  1874. expand(zone, page, order, current_order, area,
  1875. start_migratetype);
  1876. /*
  1877. * The pcppage_migratetype may differ from pageblock's
  1878. * migratetype depending on the decisions in
  1879. * find_suitable_fallback(). This is OK as long as it does not
  1880. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1881. * fallback only via special __rmqueue_cma_fallback() function
  1882. */
  1883. set_pcppage_migratetype(page, start_migratetype);
  1884. trace_mm_page_alloc_extfrag(page, order, current_order,
  1885. start_migratetype, fallback_mt);
  1886. return page;
  1887. }
  1888. return NULL;
  1889. }
  1890. /*
  1891. * Do the hard work of removing an element from the buddy allocator.
  1892. * Call me with the zone->lock already held.
  1893. */
  1894. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1895. int migratetype)
  1896. {
  1897. struct page *page;
  1898. page = __rmqueue_smallest(zone, order, migratetype);
  1899. if (unlikely(!page)) {
  1900. if (migratetype == MIGRATE_MOVABLE)
  1901. page = __rmqueue_cma_fallback(zone, order);
  1902. if (!page)
  1903. page = __rmqueue_fallback(zone, order, migratetype);
  1904. }
  1905. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1906. return page;
  1907. }
  1908. /*
  1909. * Obtain a specified number of elements from the buddy allocator, all under
  1910. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1911. * Returns the number of new pages which were placed at *list.
  1912. */
  1913. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1914. unsigned long count, struct list_head *list,
  1915. int migratetype, bool cold)
  1916. {
  1917. int i, alloced = 0;
  1918. spin_lock(&zone->lock);
  1919. for (i = 0; i < count; ++i) {
  1920. struct page *page = __rmqueue(zone, order, migratetype);
  1921. if (unlikely(page == NULL))
  1922. break;
  1923. if (unlikely(check_pcp_refill(page)))
  1924. continue;
  1925. /*
  1926. * Split buddy pages returned by expand() are received here
  1927. * in physical page order. The page is added to the callers and
  1928. * list and the list head then moves forward. From the callers
  1929. * perspective, the linked list is ordered by page number in
  1930. * some conditions. This is useful for IO devices that can
  1931. * merge IO requests if the physical pages are ordered
  1932. * properly.
  1933. */
  1934. if (likely(!cold))
  1935. list_add(&page->lru, list);
  1936. else
  1937. list_add_tail(&page->lru, list);
  1938. list = &page->lru;
  1939. alloced++;
  1940. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1941. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1942. -(1 << order));
  1943. }
  1944. /*
  1945. * i pages were removed from the buddy list even if some leak due
  1946. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  1947. * on i. Do not confuse with 'alloced' which is the number of
  1948. * pages added to the pcp list.
  1949. */
  1950. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1951. spin_unlock(&zone->lock);
  1952. return alloced;
  1953. }
  1954. #ifdef CONFIG_NUMA
  1955. /*
  1956. * Called from the vmstat counter updater to drain pagesets of this
  1957. * currently executing processor on remote nodes after they have
  1958. * expired.
  1959. *
  1960. * Note that this function must be called with the thread pinned to
  1961. * a single processor.
  1962. */
  1963. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1964. {
  1965. unsigned long flags;
  1966. int to_drain, batch;
  1967. local_irq_save(flags);
  1968. batch = READ_ONCE(pcp->batch);
  1969. to_drain = min(pcp->count, batch);
  1970. if (to_drain > 0) {
  1971. free_pcppages_bulk(zone, to_drain, pcp);
  1972. pcp->count -= to_drain;
  1973. }
  1974. local_irq_restore(flags);
  1975. }
  1976. #endif
  1977. /*
  1978. * Drain pcplists of the indicated processor and zone.
  1979. *
  1980. * The processor must either be the current processor and the
  1981. * thread pinned to the current processor or a processor that
  1982. * is not online.
  1983. */
  1984. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1985. {
  1986. unsigned long flags;
  1987. struct per_cpu_pageset *pset;
  1988. struct per_cpu_pages *pcp;
  1989. local_irq_save(flags);
  1990. pset = per_cpu_ptr(zone->pageset, cpu);
  1991. pcp = &pset->pcp;
  1992. if (pcp->count) {
  1993. free_pcppages_bulk(zone, pcp->count, pcp);
  1994. pcp->count = 0;
  1995. }
  1996. local_irq_restore(flags);
  1997. }
  1998. /*
  1999. * Drain pcplists of all zones on the indicated processor.
  2000. *
  2001. * The processor must either be the current processor and the
  2002. * thread pinned to the current processor or a processor that
  2003. * is not online.
  2004. */
  2005. static void drain_pages(unsigned int cpu)
  2006. {
  2007. struct zone *zone;
  2008. for_each_populated_zone(zone) {
  2009. drain_pages_zone(cpu, zone);
  2010. }
  2011. }
  2012. /*
  2013. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2014. *
  2015. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2016. * the single zone's pages.
  2017. */
  2018. void drain_local_pages(struct zone *zone)
  2019. {
  2020. int cpu = smp_processor_id();
  2021. if (zone)
  2022. drain_pages_zone(cpu, zone);
  2023. else
  2024. drain_pages(cpu);
  2025. }
  2026. /*
  2027. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2028. *
  2029. * When zone parameter is non-NULL, spill just the single zone's pages.
  2030. *
  2031. * Note that this code is protected against sending an IPI to an offline
  2032. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  2033. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  2034. * nothing keeps CPUs from showing up after we populated the cpumask and
  2035. * before the call to on_each_cpu_mask().
  2036. */
  2037. void drain_all_pages(struct zone *zone)
  2038. {
  2039. int cpu;
  2040. /*
  2041. * Allocate in the BSS so we wont require allocation in
  2042. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2043. */
  2044. static cpumask_t cpus_with_pcps;
  2045. /*
  2046. * We don't care about racing with CPU hotplug event
  2047. * as offline notification will cause the notified
  2048. * cpu to drain that CPU pcps and on_each_cpu_mask
  2049. * disables preemption as part of its processing
  2050. */
  2051. for_each_online_cpu(cpu) {
  2052. struct per_cpu_pageset *pcp;
  2053. struct zone *z;
  2054. bool has_pcps = false;
  2055. if (zone) {
  2056. pcp = per_cpu_ptr(zone->pageset, cpu);
  2057. if (pcp->pcp.count)
  2058. has_pcps = true;
  2059. } else {
  2060. for_each_populated_zone(z) {
  2061. pcp = per_cpu_ptr(z->pageset, cpu);
  2062. if (pcp->pcp.count) {
  2063. has_pcps = true;
  2064. break;
  2065. }
  2066. }
  2067. }
  2068. if (has_pcps)
  2069. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2070. else
  2071. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2072. }
  2073. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2074. zone, 1);
  2075. }
  2076. #ifdef CONFIG_HIBERNATION
  2077. void mark_free_pages(struct zone *zone)
  2078. {
  2079. unsigned long pfn, max_zone_pfn;
  2080. unsigned long flags;
  2081. unsigned int order, t;
  2082. struct page *page;
  2083. if (zone_is_empty(zone))
  2084. return;
  2085. spin_lock_irqsave(&zone->lock, flags);
  2086. max_zone_pfn = zone_end_pfn(zone);
  2087. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2088. if (pfn_valid(pfn)) {
  2089. page = pfn_to_page(pfn);
  2090. if (page_zone(page) != zone)
  2091. continue;
  2092. if (!swsusp_page_is_forbidden(page))
  2093. swsusp_unset_page_free(page);
  2094. }
  2095. for_each_migratetype_order(order, t) {
  2096. list_for_each_entry(page,
  2097. &zone->free_area[order].free_list[t], lru) {
  2098. unsigned long i;
  2099. pfn = page_to_pfn(page);
  2100. for (i = 0; i < (1UL << order); i++)
  2101. swsusp_set_page_free(pfn_to_page(pfn + i));
  2102. }
  2103. }
  2104. spin_unlock_irqrestore(&zone->lock, flags);
  2105. }
  2106. #endif /* CONFIG_PM */
  2107. /*
  2108. * Free a 0-order page
  2109. * cold == true ? free a cold page : free a hot page
  2110. */
  2111. void free_hot_cold_page(struct page *page, bool cold)
  2112. {
  2113. struct zone *zone = page_zone(page);
  2114. struct per_cpu_pages *pcp;
  2115. unsigned long flags;
  2116. unsigned long pfn = page_to_pfn(page);
  2117. int migratetype;
  2118. if (!free_pcp_prepare(page))
  2119. return;
  2120. migratetype = get_pfnblock_migratetype(page, pfn);
  2121. set_pcppage_migratetype(page, migratetype);
  2122. local_irq_save(flags);
  2123. __count_vm_event(PGFREE);
  2124. /*
  2125. * We only track unmovable, reclaimable and movable on pcp lists.
  2126. * Free ISOLATE pages back to the allocator because they are being
  2127. * offlined but treat RESERVE as movable pages so we can get those
  2128. * areas back if necessary. Otherwise, we may have to free
  2129. * excessively into the page allocator
  2130. */
  2131. if (migratetype >= MIGRATE_PCPTYPES) {
  2132. if (unlikely(is_migrate_isolate(migratetype))) {
  2133. free_one_page(zone, page, pfn, 0, migratetype);
  2134. goto out;
  2135. }
  2136. migratetype = MIGRATE_MOVABLE;
  2137. }
  2138. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2139. if (!cold)
  2140. list_add(&page->lru, &pcp->lists[migratetype]);
  2141. else
  2142. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2143. pcp->count++;
  2144. if (pcp->count >= pcp->high) {
  2145. unsigned long batch = READ_ONCE(pcp->batch);
  2146. free_pcppages_bulk(zone, batch, pcp);
  2147. pcp->count -= batch;
  2148. }
  2149. out:
  2150. local_irq_restore(flags);
  2151. }
  2152. /*
  2153. * Free a list of 0-order pages
  2154. */
  2155. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2156. {
  2157. struct page *page, *next;
  2158. list_for_each_entry_safe(page, next, list, lru) {
  2159. trace_mm_page_free_batched(page, cold);
  2160. free_hot_cold_page(page, cold);
  2161. }
  2162. }
  2163. /*
  2164. * split_page takes a non-compound higher-order page, and splits it into
  2165. * n (1<<order) sub-pages: page[0..n]
  2166. * Each sub-page must be freed individually.
  2167. *
  2168. * Note: this is probably too low level an operation for use in drivers.
  2169. * Please consult with lkml before using this in your driver.
  2170. */
  2171. void split_page(struct page *page, unsigned int order)
  2172. {
  2173. int i;
  2174. VM_BUG_ON_PAGE(PageCompound(page), page);
  2175. VM_BUG_ON_PAGE(!page_count(page), page);
  2176. #ifdef CONFIG_KMEMCHECK
  2177. /*
  2178. * Split shadow pages too, because free(page[0]) would
  2179. * otherwise free the whole shadow.
  2180. */
  2181. if (kmemcheck_page_is_tracked(page))
  2182. split_page(virt_to_page(page[0].shadow), order);
  2183. #endif
  2184. for (i = 1; i < (1 << order); i++)
  2185. set_page_refcounted(page + i);
  2186. split_page_owner(page, order);
  2187. }
  2188. EXPORT_SYMBOL_GPL(split_page);
  2189. int __isolate_free_page(struct page *page, unsigned int order)
  2190. {
  2191. unsigned long watermark;
  2192. struct zone *zone;
  2193. int mt;
  2194. BUG_ON(!PageBuddy(page));
  2195. zone = page_zone(page);
  2196. mt = get_pageblock_migratetype(page);
  2197. if (!is_migrate_isolate(mt)) {
  2198. /*
  2199. * Obey watermarks as if the page was being allocated. We can
  2200. * emulate a high-order watermark check with a raised order-0
  2201. * watermark, because we already know our high-order page
  2202. * exists.
  2203. */
  2204. watermark = min_wmark_pages(zone) + (1UL << order);
  2205. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2206. return 0;
  2207. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2208. }
  2209. /* Remove page from free list */
  2210. list_del(&page->lru);
  2211. zone->free_area[order].nr_free--;
  2212. rmv_page_order(page);
  2213. /*
  2214. * Set the pageblock if the isolated page is at least half of a
  2215. * pageblock
  2216. */
  2217. if (order >= pageblock_order - 1) {
  2218. struct page *endpage = page + (1 << order) - 1;
  2219. for (; page < endpage; page += pageblock_nr_pages) {
  2220. int mt = get_pageblock_migratetype(page);
  2221. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2222. set_pageblock_migratetype(page,
  2223. MIGRATE_MOVABLE);
  2224. }
  2225. }
  2226. return 1UL << order;
  2227. }
  2228. /*
  2229. * Update NUMA hit/miss statistics
  2230. *
  2231. * Must be called with interrupts disabled.
  2232. */
  2233. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2234. gfp_t flags)
  2235. {
  2236. #ifdef CONFIG_NUMA
  2237. enum zone_stat_item local_stat = NUMA_LOCAL;
  2238. if (z->node != numa_node_id())
  2239. local_stat = NUMA_OTHER;
  2240. if (z->node == preferred_zone->node)
  2241. __inc_zone_state(z, NUMA_HIT);
  2242. else {
  2243. __inc_zone_state(z, NUMA_MISS);
  2244. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2245. }
  2246. __inc_zone_state(z, local_stat);
  2247. #endif
  2248. }
  2249. /*
  2250. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2251. */
  2252. static inline
  2253. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2254. struct zone *zone, unsigned int order,
  2255. gfp_t gfp_flags, unsigned int alloc_flags,
  2256. int migratetype)
  2257. {
  2258. unsigned long flags;
  2259. struct page *page;
  2260. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2261. if (likely(order == 0)) {
  2262. struct per_cpu_pages *pcp;
  2263. struct list_head *list;
  2264. local_irq_save(flags);
  2265. do {
  2266. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2267. list = &pcp->lists[migratetype];
  2268. if (list_empty(list)) {
  2269. pcp->count += rmqueue_bulk(zone, 0,
  2270. pcp->batch, list,
  2271. migratetype, cold);
  2272. if (unlikely(list_empty(list)))
  2273. goto failed;
  2274. }
  2275. if (cold)
  2276. page = list_last_entry(list, struct page, lru);
  2277. else
  2278. page = list_first_entry(list, struct page, lru);
  2279. list_del(&page->lru);
  2280. pcp->count--;
  2281. } while (check_new_pcp(page));
  2282. } else {
  2283. /*
  2284. * We most definitely don't want callers attempting to
  2285. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2286. */
  2287. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2288. spin_lock_irqsave(&zone->lock, flags);
  2289. do {
  2290. page = NULL;
  2291. if (alloc_flags & ALLOC_HARDER) {
  2292. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2293. if (page)
  2294. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2295. }
  2296. if (!page)
  2297. page = __rmqueue(zone, order, migratetype);
  2298. } while (page && check_new_pages(page, order));
  2299. spin_unlock(&zone->lock);
  2300. if (!page)
  2301. goto failed;
  2302. __mod_zone_freepage_state(zone, -(1 << order),
  2303. get_pcppage_migratetype(page));
  2304. }
  2305. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2306. zone_statistics(preferred_zone, zone, gfp_flags);
  2307. local_irq_restore(flags);
  2308. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2309. return page;
  2310. failed:
  2311. local_irq_restore(flags);
  2312. return NULL;
  2313. }
  2314. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2315. static struct {
  2316. struct fault_attr attr;
  2317. bool ignore_gfp_highmem;
  2318. bool ignore_gfp_reclaim;
  2319. u32 min_order;
  2320. } fail_page_alloc = {
  2321. .attr = FAULT_ATTR_INITIALIZER,
  2322. .ignore_gfp_reclaim = true,
  2323. .ignore_gfp_highmem = true,
  2324. .min_order = 1,
  2325. };
  2326. static int __init setup_fail_page_alloc(char *str)
  2327. {
  2328. return setup_fault_attr(&fail_page_alloc.attr, str);
  2329. }
  2330. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2331. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2332. {
  2333. if (order < fail_page_alloc.min_order)
  2334. return false;
  2335. if (gfp_mask & __GFP_NOFAIL)
  2336. return false;
  2337. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2338. return false;
  2339. if (fail_page_alloc.ignore_gfp_reclaim &&
  2340. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2341. return false;
  2342. return should_fail(&fail_page_alloc.attr, 1 << order);
  2343. }
  2344. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2345. static int __init fail_page_alloc_debugfs(void)
  2346. {
  2347. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2348. struct dentry *dir;
  2349. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2350. &fail_page_alloc.attr);
  2351. if (IS_ERR(dir))
  2352. return PTR_ERR(dir);
  2353. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2354. &fail_page_alloc.ignore_gfp_reclaim))
  2355. goto fail;
  2356. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2357. &fail_page_alloc.ignore_gfp_highmem))
  2358. goto fail;
  2359. if (!debugfs_create_u32("min-order", mode, dir,
  2360. &fail_page_alloc.min_order))
  2361. goto fail;
  2362. return 0;
  2363. fail:
  2364. debugfs_remove_recursive(dir);
  2365. return -ENOMEM;
  2366. }
  2367. late_initcall(fail_page_alloc_debugfs);
  2368. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2369. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2370. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2371. {
  2372. return false;
  2373. }
  2374. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2375. /*
  2376. * Return true if free base pages are above 'mark'. For high-order checks it
  2377. * will return true of the order-0 watermark is reached and there is at least
  2378. * one free page of a suitable size. Checking now avoids taking the zone lock
  2379. * to check in the allocation paths if no pages are free.
  2380. */
  2381. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2382. int classzone_idx, unsigned int alloc_flags,
  2383. long free_pages)
  2384. {
  2385. long min = mark;
  2386. int o;
  2387. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2388. /* free_pages may go negative - that's OK */
  2389. free_pages -= (1 << order) - 1;
  2390. if (alloc_flags & ALLOC_HIGH)
  2391. min -= min / 2;
  2392. /*
  2393. * If the caller does not have rights to ALLOC_HARDER then subtract
  2394. * the high-atomic reserves. This will over-estimate the size of the
  2395. * atomic reserve but it avoids a search.
  2396. */
  2397. if (likely(!alloc_harder))
  2398. free_pages -= z->nr_reserved_highatomic;
  2399. else
  2400. min -= min / 4;
  2401. #ifdef CONFIG_CMA
  2402. /* If allocation can't use CMA areas don't use free CMA pages */
  2403. if (!(alloc_flags & ALLOC_CMA))
  2404. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2405. #endif
  2406. /*
  2407. * Check watermarks for an order-0 allocation request. If these
  2408. * are not met, then a high-order request also cannot go ahead
  2409. * even if a suitable page happened to be free.
  2410. */
  2411. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2412. return false;
  2413. /* If this is an order-0 request then the watermark is fine */
  2414. if (!order)
  2415. return true;
  2416. /* For a high-order request, check at least one suitable page is free */
  2417. for (o = order; o < MAX_ORDER; o++) {
  2418. struct free_area *area = &z->free_area[o];
  2419. int mt;
  2420. if (!area->nr_free)
  2421. continue;
  2422. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2423. if (!list_empty(&area->free_list[mt]))
  2424. return true;
  2425. }
  2426. #ifdef CONFIG_CMA
  2427. if ((alloc_flags & ALLOC_CMA) &&
  2428. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2429. return true;
  2430. }
  2431. #endif
  2432. if (alloc_harder &&
  2433. !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  2434. return true;
  2435. }
  2436. return false;
  2437. }
  2438. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2439. int classzone_idx, unsigned int alloc_flags)
  2440. {
  2441. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2442. zone_page_state(z, NR_FREE_PAGES));
  2443. }
  2444. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2445. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2446. {
  2447. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2448. long cma_pages = 0;
  2449. #ifdef CONFIG_CMA
  2450. /* If allocation can't use CMA areas don't use free CMA pages */
  2451. if (!(alloc_flags & ALLOC_CMA))
  2452. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2453. #endif
  2454. /*
  2455. * Fast check for order-0 only. If this fails then the reserves
  2456. * need to be calculated. There is a corner case where the check
  2457. * passes but only the high-order atomic reserve are free. If
  2458. * the caller is !atomic then it'll uselessly search the free
  2459. * list. That corner case is then slower but it is harmless.
  2460. */
  2461. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2462. return true;
  2463. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2464. free_pages);
  2465. }
  2466. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2467. unsigned long mark, int classzone_idx)
  2468. {
  2469. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2470. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2471. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2472. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2473. free_pages);
  2474. }
  2475. #ifdef CONFIG_NUMA
  2476. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2477. {
  2478. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2479. RECLAIM_DISTANCE;
  2480. }
  2481. #else /* CONFIG_NUMA */
  2482. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2483. {
  2484. return true;
  2485. }
  2486. #endif /* CONFIG_NUMA */
  2487. /*
  2488. * get_page_from_freelist goes through the zonelist trying to allocate
  2489. * a page.
  2490. */
  2491. static struct page *
  2492. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2493. const struct alloc_context *ac)
  2494. {
  2495. struct zoneref *z = ac->preferred_zoneref;
  2496. struct zone *zone;
  2497. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2498. /*
  2499. * Scan zonelist, looking for a zone with enough free.
  2500. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2501. */
  2502. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2503. ac->nodemask) {
  2504. struct page *page;
  2505. unsigned long mark;
  2506. if (cpusets_enabled() &&
  2507. (alloc_flags & ALLOC_CPUSET) &&
  2508. !__cpuset_zone_allowed(zone, gfp_mask))
  2509. continue;
  2510. /*
  2511. * When allocating a page cache page for writing, we
  2512. * want to get it from a node that is within its dirty
  2513. * limit, such that no single node holds more than its
  2514. * proportional share of globally allowed dirty pages.
  2515. * The dirty limits take into account the node's
  2516. * lowmem reserves and high watermark so that kswapd
  2517. * should be able to balance it without having to
  2518. * write pages from its LRU list.
  2519. *
  2520. * XXX: For now, allow allocations to potentially
  2521. * exceed the per-node dirty limit in the slowpath
  2522. * (spread_dirty_pages unset) before going into reclaim,
  2523. * which is important when on a NUMA setup the allowed
  2524. * nodes are together not big enough to reach the
  2525. * global limit. The proper fix for these situations
  2526. * will require awareness of nodes in the
  2527. * dirty-throttling and the flusher threads.
  2528. */
  2529. if (ac->spread_dirty_pages) {
  2530. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2531. continue;
  2532. if (!node_dirty_ok(zone->zone_pgdat)) {
  2533. last_pgdat_dirty_limit = zone->zone_pgdat;
  2534. continue;
  2535. }
  2536. }
  2537. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2538. if (!zone_watermark_fast(zone, order, mark,
  2539. ac_classzone_idx(ac), alloc_flags)) {
  2540. int ret;
  2541. /* Checked here to keep the fast path fast */
  2542. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2543. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2544. goto try_this_zone;
  2545. if (node_reclaim_mode == 0 ||
  2546. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2547. continue;
  2548. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2549. switch (ret) {
  2550. case NODE_RECLAIM_NOSCAN:
  2551. /* did not scan */
  2552. continue;
  2553. case NODE_RECLAIM_FULL:
  2554. /* scanned but unreclaimable */
  2555. continue;
  2556. default:
  2557. /* did we reclaim enough */
  2558. if (zone_watermark_ok(zone, order, mark,
  2559. ac_classzone_idx(ac), alloc_flags))
  2560. goto try_this_zone;
  2561. continue;
  2562. }
  2563. }
  2564. try_this_zone:
  2565. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2566. gfp_mask, alloc_flags, ac->migratetype);
  2567. if (page) {
  2568. prep_new_page(page, order, gfp_mask, alloc_flags);
  2569. /*
  2570. * If this is a high-order atomic allocation then check
  2571. * if the pageblock should be reserved for the future
  2572. */
  2573. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2574. reserve_highatomic_pageblock(page, zone, order);
  2575. return page;
  2576. }
  2577. }
  2578. return NULL;
  2579. }
  2580. /*
  2581. * Large machines with many possible nodes should not always dump per-node
  2582. * meminfo in irq context.
  2583. */
  2584. static inline bool should_suppress_show_mem(void)
  2585. {
  2586. bool ret = false;
  2587. #if NODES_SHIFT > 8
  2588. ret = in_interrupt();
  2589. #endif
  2590. return ret;
  2591. }
  2592. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2593. DEFAULT_RATELIMIT_INTERVAL,
  2594. DEFAULT_RATELIMIT_BURST);
  2595. void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
  2596. {
  2597. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2598. struct va_format vaf;
  2599. va_list args;
  2600. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2601. debug_guardpage_minorder() > 0)
  2602. return;
  2603. /*
  2604. * This documents exceptions given to allocations in certain
  2605. * contexts that are allowed to allocate outside current's set
  2606. * of allowed nodes.
  2607. */
  2608. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2609. if (test_thread_flag(TIF_MEMDIE) ||
  2610. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2611. filter &= ~SHOW_MEM_FILTER_NODES;
  2612. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2613. filter &= ~SHOW_MEM_FILTER_NODES;
  2614. pr_warn("%s: ", current->comm);
  2615. va_start(args, fmt);
  2616. vaf.fmt = fmt;
  2617. vaf.va = &args;
  2618. pr_cont("%pV", &vaf);
  2619. va_end(args);
  2620. pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
  2621. dump_stack();
  2622. if (!should_suppress_show_mem())
  2623. show_mem(filter);
  2624. }
  2625. static inline struct page *
  2626. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2627. const struct alloc_context *ac, unsigned long *did_some_progress)
  2628. {
  2629. struct oom_control oc = {
  2630. .zonelist = ac->zonelist,
  2631. .nodemask = ac->nodemask,
  2632. .memcg = NULL,
  2633. .gfp_mask = gfp_mask,
  2634. .order = order,
  2635. };
  2636. struct page *page;
  2637. *did_some_progress = 0;
  2638. /*
  2639. * Acquire the oom lock. If that fails, somebody else is
  2640. * making progress for us.
  2641. */
  2642. if (!mutex_trylock(&oom_lock)) {
  2643. *did_some_progress = 1;
  2644. schedule_timeout_uninterruptible(1);
  2645. return NULL;
  2646. }
  2647. /*
  2648. * Go through the zonelist yet one more time, keep very high watermark
  2649. * here, this is only to catch a parallel oom killing, we must fail if
  2650. * we're still under heavy pressure.
  2651. */
  2652. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2653. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2654. if (page)
  2655. goto out;
  2656. if (!(gfp_mask & __GFP_NOFAIL)) {
  2657. /* Coredumps can quickly deplete all memory reserves */
  2658. if (current->flags & PF_DUMPCORE)
  2659. goto out;
  2660. /* The OOM killer will not help higher order allocs */
  2661. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2662. goto out;
  2663. /* The OOM killer does not needlessly kill tasks for lowmem */
  2664. if (ac->high_zoneidx < ZONE_NORMAL)
  2665. goto out;
  2666. if (pm_suspended_storage())
  2667. goto out;
  2668. /*
  2669. * XXX: GFP_NOFS allocations should rather fail than rely on
  2670. * other request to make a forward progress.
  2671. * We are in an unfortunate situation where out_of_memory cannot
  2672. * do much for this context but let's try it to at least get
  2673. * access to memory reserved if the current task is killed (see
  2674. * out_of_memory). Once filesystems are ready to handle allocation
  2675. * failures more gracefully we should just bail out here.
  2676. */
  2677. /* The OOM killer may not free memory on a specific node */
  2678. if (gfp_mask & __GFP_THISNODE)
  2679. goto out;
  2680. }
  2681. /* Exhausted what can be done so it's blamo time */
  2682. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2683. *did_some_progress = 1;
  2684. if (gfp_mask & __GFP_NOFAIL) {
  2685. page = get_page_from_freelist(gfp_mask, order,
  2686. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2687. /*
  2688. * fallback to ignore cpuset restriction if our nodes
  2689. * are depleted
  2690. */
  2691. if (!page)
  2692. page = get_page_from_freelist(gfp_mask, order,
  2693. ALLOC_NO_WATERMARKS, ac);
  2694. }
  2695. }
  2696. out:
  2697. mutex_unlock(&oom_lock);
  2698. return page;
  2699. }
  2700. /*
  2701. * Maximum number of compaction retries wit a progress before OOM
  2702. * killer is consider as the only way to move forward.
  2703. */
  2704. #define MAX_COMPACT_RETRIES 16
  2705. #ifdef CONFIG_COMPACTION
  2706. /* Try memory compaction for high-order allocations before reclaim */
  2707. static struct page *
  2708. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2709. unsigned int alloc_flags, const struct alloc_context *ac,
  2710. enum compact_priority prio, enum compact_result *compact_result)
  2711. {
  2712. struct page *page;
  2713. unsigned int noreclaim_flag = current->flags & PF_MEMALLOC;
  2714. if (!order)
  2715. return NULL;
  2716. current->flags |= PF_MEMALLOC;
  2717. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2718. prio);
  2719. current->flags = (current->flags & ~PF_MEMALLOC) | noreclaim_flag;
  2720. if (*compact_result <= COMPACT_INACTIVE)
  2721. return NULL;
  2722. /*
  2723. * At least in one zone compaction wasn't deferred or skipped, so let's
  2724. * count a compaction stall
  2725. */
  2726. count_vm_event(COMPACTSTALL);
  2727. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2728. if (page) {
  2729. struct zone *zone = page_zone(page);
  2730. zone->compact_blockskip_flush = false;
  2731. compaction_defer_reset(zone, order, true);
  2732. count_vm_event(COMPACTSUCCESS);
  2733. return page;
  2734. }
  2735. /*
  2736. * It's bad if compaction run occurs and fails. The most likely reason
  2737. * is that pages exist, but not enough to satisfy watermarks.
  2738. */
  2739. count_vm_event(COMPACTFAIL);
  2740. cond_resched();
  2741. return NULL;
  2742. }
  2743. static inline bool
  2744. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2745. enum compact_result compact_result,
  2746. enum compact_priority *compact_priority,
  2747. int *compaction_retries)
  2748. {
  2749. int max_retries = MAX_COMPACT_RETRIES;
  2750. int min_priority;
  2751. if (!order)
  2752. return false;
  2753. if (compaction_made_progress(compact_result))
  2754. (*compaction_retries)++;
  2755. /*
  2756. * compaction considers all the zone as desperately out of memory
  2757. * so it doesn't really make much sense to retry except when the
  2758. * failure could be caused by insufficient priority
  2759. */
  2760. if (compaction_failed(compact_result))
  2761. goto check_priority;
  2762. /*
  2763. * make sure the compaction wasn't deferred or didn't bail out early
  2764. * due to locks contention before we declare that we should give up.
  2765. * But do not retry if the given zonelist is not suitable for
  2766. * compaction.
  2767. */
  2768. if (compaction_withdrawn(compact_result))
  2769. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2770. /*
  2771. * !costly requests are much more important than __GFP_REPEAT
  2772. * costly ones because they are de facto nofail and invoke OOM
  2773. * killer to move on while costly can fail and users are ready
  2774. * to cope with that. 1/4 retries is rather arbitrary but we
  2775. * would need much more detailed feedback from compaction to
  2776. * make a better decision.
  2777. */
  2778. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2779. max_retries /= 4;
  2780. if (*compaction_retries <= max_retries)
  2781. return true;
  2782. /*
  2783. * Make sure there are attempts at the highest priority if we exhausted
  2784. * all retries or failed at the lower priorities.
  2785. */
  2786. check_priority:
  2787. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  2788. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  2789. if (*compact_priority > min_priority) {
  2790. (*compact_priority)--;
  2791. *compaction_retries = 0;
  2792. return true;
  2793. }
  2794. return false;
  2795. }
  2796. #else
  2797. static inline struct page *
  2798. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2799. unsigned int alloc_flags, const struct alloc_context *ac,
  2800. enum compact_priority prio, enum compact_result *compact_result)
  2801. {
  2802. *compact_result = COMPACT_SKIPPED;
  2803. return NULL;
  2804. }
  2805. static inline bool
  2806. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2807. enum compact_result compact_result,
  2808. enum compact_priority *compact_priority,
  2809. int *compaction_retries)
  2810. {
  2811. struct zone *zone;
  2812. struct zoneref *z;
  2813. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2814. return false;
  2815. /*
  2816. * There are setups with compaction disabled which would prefer to loop
  2817. * inside the allocator rather than hit the oom killer prematurely.
  2818. * Let's give them a good hope and keep retrying while the order-0
  2819. * watermarks are OK.
  2820. */
  2821. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2822. ac->nodemask) {
  2823. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2824. ac_classzone_idx(ac), alloc_flags))
  2825. return true;
  2826. }
  2827. return false;
  2828. }
  2829. #endif /* CONFIG_COMPACTION */
  2830. /* Perform direct synchronous page reclaim */
  2831. static int
  2832. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2833. const struct alloc_context *ac)
  2834. {
  2835. struct reclaim_state reclaim_state;
  2836. int progress;
  2837. cond_resched();
  2838. /* We now go into synchronous reclaim */
  2839. cpuset_memory_pressure_bump();
  2840. current->flags |= PF_MEMALLOC;
  2841. lockdep_set_current_reclaim_state(gfp_mask);
  2842. reclaim_state.reclaimed_slab = 0;
  2843. current->reclaim_state = &reclaim_state;
  2844. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2845. ac->nodemask);
  2846. current->reclaim_state = NULL;
  2847. lockdep_clear_current_reclaim_state();
  2848. current->flags &= ~PF_MEMALLOC;
  2849. cond_resched();
  2850. return progress;
  2851. }
  2852. /* The really slow allocator path where we enter direct reclaim */
  2853. static inline struct page *
  2854. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2855. unsigned int alloc_flags, const struct alloc_context *ac,
  2856. unsigned long *did_some_progress)
  2857. {
  2858. struct page *page = NULL;
  2859. bool drained = false;
  2860. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2861. if (unlikely(!(*did_some_progress)))
  2862. return NULL;
  2863. retry:
  2864. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2865. /*
  2866. * If an allocation failed after direct reclaim, it could be because
  2867. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2868. * Shrink them them and try again
  2869. */
  2870. if (!page && !drained) {
  2871. unreserve_highatomic_pageblock(ac);
  2872. drain_all_pages(NULL);
  2873. drained = true;
  2874. goto retry;
  2875. }
  2876. return page;
  2877. }
  2878. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2879. {
  2880. struct zoneref *z;
  2881. struct zone *zone;
  2882. pg_data_t *last_pgdat = NULL;
  2883. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2884. ac->high_zoneidx, ac->nodemask) {
  2885. if (last_pgdat != zone->zone_pgdat)
  2886. wakeup_kswapd(zone, order, ac->high_zoneidx);
  2887. last_pgdat = zone->zone_pgdat;
  2888. }
  2889. }
  2890. static inline unsigned int
  2891. gfp_to_alloc_flags(gfp_t gfp_mask)
  2892. {
  2893. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2894. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2895. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2896. /*
  2897. * The caller may dip into page reserves a bit more if the caller
  2898. * cannot run direct reclaim, or if the caller has realtime scheduling
  2899. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2900. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2901. */
  2902. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2903. if (gfp_mask & __GFP_ATOMIC) {
  2904. /*
  2905. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2906. * if it can't schedule.
  2907. */
  2908. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2909. alloc_flags |= ALLOC_HARDER;
  2910. /*
  2911. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2912. * comment for __cpuset_node_allowed().
  2913. */
  2914. alloc_flags &= ~ALLOC_CPUSET;
  2915. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2916. alloc_flags |= ALLOC_HARDER;
  2917. #ifdef CONFIG_CMA
  2918. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2919. alloc_flags |= ALLOC_CMA;
  2920. #endif
  2921. return alloc_flags;
  2922. }
  2923. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2924. {
  2925. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  2926. return false;
  2927. if (gfp_mask & __GFP_MEMALLOC)
  2928. return true;
  2929. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2930. return true;
  2931. if (!in_interrupt() &&
  2932. ((current->flags & PF_MEMALLOC) ||
  2933. unlikely(test_thread_flag(TIF_MEMDIE))))
  2934. return true;
  2935. return false;
  2936. }
  2937. /*
  2938. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2939. * for the given allocation request.
  2940. * The reclaim feedback represented by did_some_progress (any progress during
  2941. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2942. * any progress in a row) is considered as well as the reclaimable pages on the
  2943. * applicable zone list (with a backoff mechanism which is a function of
  2944. * no_progress_loops).
  2945. *
  2946. * Returns true if a retry is viable or false to enter the oom path.
  2947. */
  2948. static inline bool
  2949. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2950. struct alloc_context *ac, int alloc_flags,
  2951. bool did_some_progress, int *no_progress_loops)
  2952. {
  2953. struct zone *zone;
  2954. struct zoneref *z;
  2955. /*
  2956. * Costly allocations might have made a progress but this doesn't mean
  2957. * their order will become available due to high fragmentation so
  2958. * always increment the no progress counter for them
  2959. */
  2960. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  2961. *no_progress_loops = 0;
  2962. else
  2963. (*no_progress_loops)++;
  2964. /*
  2965. * Make sure we converge to OOM if we cannot make any progress
  2966. * several times in the row.
  2967. */
  2968. if (*no_progress_loops > MAX_RECLAIM_RETRIES)
  2969. return false;
  2970. /*
  2971. * Keep reclaiming pages while there is a chance this will lead
  2972. * somewhere. If none of the target zones can satisfy our allocation
  2973. * request even if all reclaimable pages are considered then we are
  2974. * screwed and have to go OOM.
  2975. */
  2976. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2977. ac->nodemask) {
  2978. unsigned long available;
  2979. unsigned long reclaimable;
  2980. available = reclaimable = zone_reclaimable_pages(zone);
  2981. available -= DIV_ROUND_UP((*no_progress_loops) * available,
  2982. MAX_RECLAIM_RETRIES);
  2983. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  2984. /*
  2985. * Would the allocation succeed if we reclaimed the whole
  2986. * available?
  2987. */
  2988. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  2989. ac_classzone_idx(ac), alloc_flags, available)) {
  2990. /*
  2991. * If we didn't make any progress and have a lot of
  2992. * dirty + writeback pages then we should wait for
  2993. * an IO to complete to slow down the reclaim and
  2994. * prevent from pre mature OOM
  2995. */
  2996. if (!did_some_progress) {
  2997. unsigned long write_pending;
  2998. write_pending = zone_page_state_snapshot(zone,
  2999. NR_ZONE_WRITE_PENDING);
  3000. if (2 * write_pending > reclaimable) {
  3001. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3002. return true;
  3003. }
  3004. }
  3005. /*
  3006. * Memory allocation/reclaim might be called from a WQ
  3007. * context and the current implementation of the WQ
  3008. * concurrency control doesn't recognize that
  3009. * a particular WQ is congested if the worker thread is
  3010. * looping without ever sleeping. Therefore we have to
  3011. * do a short sleep here rather than calling
  3012. * cond_resched().
  3013. */
  3014. if (current->flags & PF_WQ_WORKER)
  3015. schedule_timeout_uninterruptible(1);
  3016. else
  3017. cond_resched();
  3018. return true;
  3019. }
  3020. }
  3021. return false;
  3022. }
  3023. static inline struct page *
  3024. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3025. struct alloc_context *ac)
  3026. {
  3027. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3028. struct page *page = NULL;
  3029. unsigned int alloc_flags;
  3030. unsigned long did_some_progress;
  3031. enum compact_priority compact_priority;
  3032. enum compact_result compact_result;
  3033. int compaction_retries;
  3034. int no_progress_loops;
  3035. unsigned long alloc_start = jiffies;
  3036. unsigned int stall_timeout = 10 * HZ;
  3037. unsigned int cpuset_mems_cookie;
  3038. /*
  3039. * In the slowpath, we sanity check order to avoid ever trying to
  3040. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3041. * be using allocators in order of preference for an area that is
  3042. * too large.
  3043. */
  3044. if (order >= MAX_ORDER) {
  3045. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3046. return NULL;
  3047. }
  3048. /*
  3049. * We also sanity check to catch abuse of atomic reserves being used by
  3050. * callers that are not in atomic context.
  3051. */
  3052. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3053. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3054. gfp_mask &= ~__GFP_ATOMIC;
  3055. retry_cpuset:
  3056. compaction_retries = 0;
  3057. no_progress_loops = 0;
  3058. compact_priority = DEF_COMPACT_PRIORITY;
  3059. cpuset_mems_cookie = read_mems_allowed_begin();
  3060. /*
  3061. * We need to recalculate the starting point for the zonelist iterator
  3062. * because we might have used different nodemask in the fast path, or
  3063. * there was a cpuset modification and we are retrying - otherwise we
  3064. * could end up iterating over non-eligible zones endlessly.
  3065. */
  3066. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3067. ac->high_zoneidx, ac->nodemask);
  3068. if (!ac->preferred_zoneref->zone)
  3069. goto nopage;
  3070. /*
  3071. * The fast path uses conservative alloc_flags to succeed only until
  3072. * kswapd needs to be woken up, and to avoid the cost of setting up
  3073. * alloc_flags precisely. So we do that now.
  3074. */
  3075. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3076. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3077. wake_all_kswapds(order, ac);
  3078. /*
  3079. * The adjusted alloc_flags might result in immediate success, so try
  3080. * that first
  3081. */
  3082. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3083. if (page)
  3084. goto got_pg;
  3085. /*
  3086. * For costly allocations, try direct compaction first, as it's likely
  3087. * that we have enough base pages and don't need to reclaim. Don't try
  3088. * that for allocations that are allowed to ignore watermarks, as the
  3089. * ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3090. */
  3091. if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
  3092. !gfp_pfmemalloc_allowed(gfp_mask)) {
  3093. page = __alloc_pages_direct_compact(gfp_mask, order,
  3094. alloc_flags, ac,
  3095. INIT_COMPACT_PRIORITY,
  3096. &compact_result);
  3097. if (page)
  3098. goto got_pg;
  3099. /*
  3100. * Checks for costly allocations with __GFP_NORETRY, which
  3101. * includes THP page fault allocations
  3102. */
  3103. if (gfp_mask & __GFP_NORETRY) {
  3104. /*
  3105. * If compaction is deferred for high-order allocations,
  3106. * it is because sync compaction recently failed. If
  3107. * this is the case and the caller requested a THP
  3108. * allocation, we do not want to heavily disrupt the
  3109. * system, so we fail the allocation instead of entering
  3110. * direct reclaim.
  3111. */
  3112. if (compact_result == COMPACT_DEFERRED)
  3113. goto nopage;
  3114. /*
  3115. * Looks like reclaim/compaction is worth trying, but
  3116. * sync compaction could be very expensive, so keep
  3117. * using async compaction.
  3118. */
  3119. compact_priority = INIT_COMPACT_PRIORITY;
  3120. }
  3121. }
  3122. retry:
  3123. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3124. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3125. wake_all_kswapds(order, ac);
  3126. if (gfp_pfmemalloc_allowed(gfp_mask))
  3127. alloc_flags = ALLOC_NO_WATERMARKS;
  3128. /*
  3129. * Reset the zonelist iterators if memory policies can be ignored.
  3130. * These allocations are high priority and system rather than user
  3131. * orientated.
  3132. */
  3133. if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
  3134. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3135. ac->high_zoneidx, ac->nodemask);
  3136. }
  3137. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3138. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3139. if (page)
  3140. goto got_pg;
  3141. /* Caller is not willing to reclaim, we can't balance anything */
  3142. if (!can_direct_reclaim) {
  3143. /*
  3144. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3145. * of any new users that actually allow this type of allocation
  3146. * to fail.
  3147. */
  3148. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3149. goto nopage;
  3150. }
  3151. /* Avoid recursion of direct reclaim */
  3152. if (current->flags & PF_MEMALLOC) {
  3153. /*
  3154. * __GFP_NOFAIL request from this context is rather bizarre
  3155. * because we cannot reclaim anything and only can loop waiting
  3156. * for somebody to do a work for us.
  3157. */
  3158. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3159. cond_resched();
  3160. goto retry;
  3161. }
  3162. goto nopage;
  3163. }
  3164. /* Avoid allocations with no watermarks from looping endlessly */
  3165. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3166. goto nopage;
  3167. /* Try direct reclaim and then allocating */
  3168. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3169. &did_some_progress);
  3170. if (page)
  3171. goto got_pg;
  3172. /* Try direct compaction and then allocating */
  3173. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3174. compact_priority, &compact_result);
  3175. if (page)
  3176. goto got_pg;
  3177. /* Do not loop if specifically requested */
  3178. if (gfp_mask & __GFP_NORETRY)
  3179. goto nopage;
  3180. /*
  3181. * Do not retry costly high order allocations unless they are
  3182. * __GFP_REPEAT
  3183. */
  3184. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3185. goto nopage;
  3186. /* Make sure we know about allocations which stall for too long */
  3187. if (time_after(jiffies, alloc_start + stall_timeout)) {
  3188. warn_alloc(gfp_mask,
  3189. "page allocation stalls for %ums, order:%u",
  3190. jiffies_to_msecs(jiffies-alloc_start), order);
  3191. stall_timeout += 10 * HZ;
  3192. }
  3193. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3194. did_some_progress > 0, &no_progress_loops))
  3195. goto retry;
  3196. /*
  3197. * It doesn't make any sense to retry for the compaction if the order-0
  3198. * reclaim is not able to make any progress because the current
  3199. * implementation of the compaction depends on the sufficient amount
  3200. * of free memory (see __compaction_suitable)
  3201. */
  3202. if (did_some_progress > 0 &&
  3203. should_compact_retry(ac, order, alloc_flags,
  3204. compact_result, &compact_priority,
  3205. &compaction_retries))
  3206. goto retry;
  3207. /*
  3208. * It's possible we raced with cpuset update so the OOM would be
  3209. * premature (see below the nopage: label for full explanation).
  3210. */
  3211. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3212. goto retry_cpuset;
  3213. /* Reclaim has failed us, start killing things */
  3214. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3215. if (page)
  3216. goto got_pg;
  3217. /* Retry as long as the OOM killer is making progress */
  3218. if (did_some_progress) {
  3219. no_progress_loops = 0;
  3220. goto retry;
  3221. }
  3222. nopage:
  3223. /*
  3224. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3225. * possible to race with parallel threads in such a way that our
  3226. * allocation can fail while the mask is being updated. If we are about
  3227. * to fail, check if the cpuset changed during allocation and if so,
  3228. * retry.
  3229. */
  3230. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3231. goto retry_cpuset;
  3232. warn_alloc(gfp_mask,
  3233. "page allocation failure: order:%u", order);
  3234. got_pg:
  3235. return page;
  3236. }
  3237. /*
  3238. * This is the 'heart' of the zoned buddy allocator.
  3239. */
  3240. struct page *
  3241. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3242. struct zonelist *zonelist, nodemask_t *nodemask)
  3243. {
  3244. struct page *page;
  3245. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3246. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3247. struct alloc_context ac = {
  3248. .high_zoneidx = gfp_zone(gfp_mask),
  3249. .zonelist = zonelist,
  3250. .nodemask = nodemask,
  3251. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3252. };
  3253. if (cpusets_enabled()) {
  3254. alloc_mask |= __GFP_HARDWALL;
  3255. alloc_flags |= ALLOC_CPUSET;
  3256. if (!ac.nodemask)
  3257. ac.nodemask = &cpuset_current_mems_allowed;
  3258. }
  3259. gfp_mask &= gfp_allowed_mask;
  3260. lockdep_trace_alloc(gfp_mask);
  3261. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3262. if (should_fail_alloc_page(gfp_mask, order))
  3263. return NULL;
  3264. /*
  3265. * Check the zones suitable for the gfp_mask contain at least one
  3266. * valid zone. It's possible to have an empty zonelist as a result
  3267. * of __GFP_THISNODE and a memoryless node
  3268. */
  3269. if (unlikely(!zonelist->_zonerefs->zone))
  3270. return NULL;
  3271. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3272. alloc_flags |= ALLOC_CMA;
  3273. /* Dirty zone balancing only done in the fast path */
  3274. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3275. /*
  3276. * The preferred zone is used for statistics but crucially it is
  3277. * also used as the starting point for the zonelist iterator. It
  3278. * may get reset for allocations that ignore memory policies.
  3279. */
  3280. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3281. ac.high_zoneidx, ac.nodemask);
  3282. if (!ac.preferred_zoneref->zone) {
  3283. page = NULL;
  3284. /*
  3285. * This might be due to race with cpuset_current_mems_allowed
  3286. * update, so make sure we retry with original nodemask in the
  3287. * slow path.
  3288. */
  3289. goto no_zone;
  3290. }
  3291. /* First allocation attempt */
  3292. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3293. if (likely(page))
  3294. goto out;
  3295. no_zone:
  3296. /*
  3297. * Runtime PM, block IO and its error handling path can deadlock
  3298. * because I/O on the device might not complete.
  3299. */
  3300. alloc_mask = memalloc_noio_flags(gfp_mask);
  3301. ac.spread_dirty_pages = false;
  3302. /*
  3303. * Restore the original nodemask if it was potentially replaced with
  3304. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3305. */
  3306. if (unlikely(ac.nodemask != nodemask))
  3307. ac.nodemask = nodemask;
  3308. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3309. out:
  3310. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3311. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3312. __free_pages(page, order);
  3313. page = NULL;
  3314. }
  3315. if (kmemcheck_enabled && page)
  3316. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3317. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3318. return page;
  3319. }
  3320. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3321. /*
  3322. * Common helper functions.
  3323. */
  3324. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3325. {
  3326. struct page *page;
  3327. /*
  3328. * __get_free_pages() returns a 32-bit address, which cannot represent
  3329. * a highmem page
  3330. */
  3331. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3332. page = alloc_pages(gfp_mask, order);
  3333. if (!page)
  3334. return 0;
  3335. return (unsigned long) page_address(page);
  3336. }
  3337. EXPORT_SYMBOL(__get_free_pages);
  3338. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3339. {
  3340. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3341. }
  3342. EXPORT_SYMBOL(get_zeroed_page);
  3343. void __free_pages(struct page *page, unsigned int order)
  3344. {
  3345. if (put_page_testzero(page)) {
  3346. if (order == 0)
  3347. free_hot_cold_page(page, false);
  3348. else
  3349. __free_pages_ok(page, order);
  3350. }
  3351. }
  3352. EXPORT_SYMBOL(__free_pages);
  3353. void free_pages(unsigned long addr, unsigned int order)
  3354. {
  3355. if (addr != 0) {
  3356. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3357. __free_pages(virt_to_page((void *)addr), order);
  3358. }
  3359. }
  3360. EXPORT_SYMBOL(free_pages);
  3361. /*
  3362. * Page Fragment:
  3363. * An arbitrary-length arbitrary-offset area of memory which resides
  3364. * within a 0 or higher order page. Multiple fragments within that page
  3365. * are individually refcounted, in the page's reference counter.
  3366. *
  3367. * The page_frag functions below provide a simple allocation framework for
  3368. * page fragments. This is used by the network stack and network device
  3369. * drivers to provide a backing region of memory for use as either an
  3370. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3371. */
  3372. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3373. gfp_t gfp_mask)
  3374. {
  3375. struct page *page = NULL;
  3376. gfp_t gfp = gfp_mask;
  3377. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3378. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3379. __GFP_NOMEMALLOC;
  3380. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3381. PAGE_FRAG_CACHE_MAX_ORDER);
  3382. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3383. #endif
  3384. if (unlikely(!page))
  3385. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3386. nc->va = page ? page_address(page) : NULL;
  3387. return page;
  3388. }
  3389. void *__alloc_page_frag(struct page_frag_cache *nc,
  3390. unsigned int fragsz, gfp_t gfp_mask)
  3391. {
  3392. unsigned int size = PAGE_SIZE;
  3393. struct page *page;
  3394. int offset;
  3395. if (unlikely(!nc->va)) {
  3396. refill:
  3397. page = __page_frag_refill(nc, gfp_mask);
  3398. if (!page)
  3399. return NULL;
  3400. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3401. /* if size can vary use size else just use PAGE_SIZE */
  3402. size = nc->size;
  3403. #endif
  3404. /* Even if we own the page, we do not use atomic_set().
  3405. * This would break get_page_unless_zero() users.
  3406. */
  3407. page_ref_add(page, size - 1);
  3408. /* reset page count bias and offset to start of new frag */
  3409. nc->pfmemalloc = page_is_pfmemalloc(page);
  3410. nc->pagecnt_bias = size;
  3411. nc->offset = size;
  3412. }
  3413. offset = nc->offset - fragsz;
  3414. if (unlikely(offset < 0)) {
  3415. page = virt_to_page(nc->va);
  3416. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3417. goto refill;
  3418. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3419. /* if size can vary use size else just use PAGE_SIZE */
  3420. size = nc->size;
  3421. #endif
  3422. /* OK, page count is 0, we can safely set it */
  3423. set_page_count(page, size);
  3424. /* reset page count bias and offset to start of new frag */
  3425. nc->pagecnt_bias = size;
  3426. offset = size - fragsz;
  3427. }
  3428. nc->pagecnt_bias--;
  3429. nc->offset = offset;
  3430. return nc->va + offset;
  3431. }
  3432. EXPORT_SYMBOL(__alloc_page_frag);
  3433. /*
  3434. * Frees a page fragment allocated out of either a compound or order 0 page.
  3435. */
  3436. void __free_page_frag(void *addr)
  3437. {
  3438. struct page *page = virt_to_head_page(addr);
  3439. if (unlikely(put_page_testzero(page)))
  3440. __free_pages_ok(page, compound_order(page));
  3441. }
  3442. EXPORT_SYMBOL(__free_page_frag);
  3443. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3444. size_t size)
  3445. {
  3446. if (addr) {
  3447. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3448. unsigned long used = addr + PAGE_ALIGN(size);
  3449. split_page(virt_to_page((void *)addr), order);
  3450. while (used < alloc_end) {
  3451. free_page(used);
  3452. used += PAGE_SIZE;
  3453. }
  3454. }
  3455. return (void *)addr;
  3456. }
  3457. /**
  3458. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3459. * @size: the number of bytes to allocate
  3460. * @gfp_mask: GFP flags for the allocation
  3461. *
  3462. * This function is similar to alloc_pages(), except that it allocates the
  3463. * minimum number of pages to satisfy the request. alloc_pages() can only
  3464. * allocate memory in power-of-two pages.
  3465. *
  3466. * This function is also limited by MAX_ORDER.
  3467. *
  3468. * Memory allocated by this function must be released by free_pages_exact().
  3469. */
  3470. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3471. {
  3472. unsigned int order = get_order(size);
  3473. unsigned long addr;
  3474. addr = __get_free_pages(gfp_mask, order);
  3475. return make_alloc_exact(addr, order, size);
  3476. }
  3477. EXPORT_SYMBOL(alloc_pages_exact);
  3478. /**
  3479. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3480. * pages on a node.
  3481. * @nid: the preferred node ID where memory should be allocated
  3482. * @size: the number of bytes to allocate
  3483. * @gfp_mask: GFP flags for the allocation
  3484. *
  3485. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3486. * back.
  3487. */
  3488. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3489. {
  3490. unsigned int order = get_order(size);
  3491. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3492. if (!p)
  3493. return NULL;
  3494. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3495. }
  3496. /**
  3497. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3498. * @virt: the value returned by alloc_pages_exact.
  3499. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3500. *
  3501. * Release the memory allocated by a previous call to alloc_pages_exact.
  3502. */
  3503. void free_pages_exact(void *virt, size_t size)
  3504. {
  3505. unsigned long addr = (unsigned long)virt;
  3506. unsigned long end = addr + PAGE_ALIGN(size);
  3507. while (addr < end) {
  3508. free_page(addr);
  3509. addr += PAGE_SIZE;
  3510. }
  3511. }
  3512. EXPORT_SYMBOL(free_pages_exact);
  3513. /**
  3514. * nr_free_zone_pages - count number of pages beyond high watermark
  3515. * @offset: The zone index of the highest zone
  3516. *
  3517. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3518. * high watermark within all zones at or below a given zone index. For each
  3519. * zone, the number of pages is calculated as:
  3520. * managed_pages - high_pages
  3521. */
  3522. static unsigned long nr_free_zone_pages(int offset)
  3523. {
  3524. struct zoneref *z;
  3525. struct zone *zone;
  3526. /* Just pick one node, since fallback list is circular */
  3527. unsigned long sum = 0;
  3528. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3529. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3530. unsigned long size = zone->managed_pages;
  3531. unsigned long high = high_wmark_pages(zone);
  3532. if (size > high)
  3533. sum += size - high;
  3534. }
  3535. return sum;
  3536. }
  3537. /**
  3538. * nr_free_buffer_pages - count number of pages beyond high watermark
  3539. *
  3540. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3541. * watermark within ZONE_DMA and ZONE_NORMAL.
  3542. */
  3543. unsigned long nr_free_buffer_pages(void)
  3544. {
  3545. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3546. }
  3547. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3548. /**
  3549. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3550. *
  3551. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3552. * high watermark within all zones.
  3553. */
  3554. unsigned long nr_free_pagecache_pages(void)
  3555. {
  3556. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3557. }
  3558. static inline void show_node(struct zone *zone)
  3559. {
  3560. if (IS_ENABLED(CONFIG_NUMA))
  3561. printk("Node %d ", zone_to_nid(zone));
  3562. }
  3563. long si_mem_available(void)
  3564. {
  3565. long available;
  3566. unsigned long pagecache;
  3567. unsigned long wmark_low = 0;
  3568. unsigned long pages[NR_LRU_LISTS];
  3569. struct zone *zone;
  3570. int lru;
  3571. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3572. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3573. for_each_zone(zone)
  3574. wmark_low += zone->watermark[WMARK_LOW];
  3575. /*
  3576. * Estimate the amount of memory available for userspace allocations,
  3577. * without causing swapping.
  3578. */
  3579. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3580. /*
  3581. * Not all the page cache can be freed, otherwise the system will
  3582. * start swapping. Assume at least half of the page cache, or the
  3583. * low watermark worth of cache, needs to stay.
  3584. */
  3585. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3586. pagecache -= min(pagecache / 2, wmark_low);
  3587. available += pagecache;
  3588. /*
  3589. * Part of the reclaimable slab consists of items that are in use,
  3590. * and cannot be freed. Cap this estimate at the low watermark.
  3591. */
  3592. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3593. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3594. if (available < 0)
  3595. available = 0;
  3596. return available;
  3597. }
  3598. EXPORT_SYMBOL_GPL(si_mem_available);
  3599. void si_meminfo(struct sysinfo *val)
  3600. {
  3601. val->totalram = totalram_pages;
  3602. val->sharedram = global_node_page_state(NR_SHMEM);
  3603. val->freeram = global_page_state(NR_FREE_PAGES);
  3604. val->bufferram = nr_blockdev_pages();
  3605. val->totalhigh = totalhigh_pages;
  3606. val->freehigh = nr_free_highpages();
  3607. val->mem_unit = PAGE_SIZE;
  3608. }
  3609. EXPORT_SYMBOL(si_meminfo);
  3610. #ifdef CONFIG_NUMA
  3611. void si_meminfo_node(struct sysinfo *val, int nid)
  3612. {
  3613. int zone_type; /* needs to be signed */
  3614. unsigned long managed_pages = 0;
  3615. unsigned long managed_highpages = 0;
  3616. unsigned long free_highpages = 0;
  3617. pg_data_t *pgdat = NODE_DATA(nid);
  3618. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3619. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3620. val->totalram = managed_pages;
  3621. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3622. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3623. #ifdef CONFIG_HIGHMEM
  3624. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3625. struct zone *zone = &pgdat->node_zones[zone_type];
  3626. if (is_highmem(zone)) {
  3627. managed_highpages += zone->managed_pages;
  3628. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3629. }
  3630. }
  3631. val->totalhigh = managed_highpages;
  3632. val->freehigh = free_highpages;
  3633. #else
  3634. val->totalhigh = managed_highpages;
  3635. val->freehigh = free_highpages;
  3636. #endif
  3637. val->mem_unit = PAGE_SIZE;
  3638. }
  3639. #endif
  3640. /*
  3641. * Determine whether the node should be displayed or not, depending on whether
  3642. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3643. */
  3644. bool skip_free_areas_node(unsigned int flags, int nid)
  3645. {
  3646. bool ret = false;
  3647. unsigned int cpuset_mems_cookie;
  3648. if (!(flags & SHOW_MEM_FILTER_NODES))
  3649. goto out;
  3650. do {
  3651. cpuset_mems_cookie = read_mems_allowed_begin();
  3652. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3653. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3654. out:
  3655. return ret;
  3656. }
  3657. #define K(x) ((x) << (PAGE_SHIFT-10))
  3658. static void show_migration_types(unsigned char type)
  3659. {
  3660. static const char types[MIGRATE_TYPES] = {
  3661. [MIGRATE_UNMOVABLE] = 'U',
  3662. [MIGRATE_MOVABLE] = 'M',
  3663. [MIGRATE_RECLAIMABLE] = 'E',
  3664. [MIGRATE_HIGHATOMIC] = 'H',
  3665. #ifdef CONFIG_CMA
  3666. [MIGRATE_CMA] = 'C',
  3667. #endif
  3668. #ifdef CONFIG_MEMORY_ISOLATION
  3669. [MIGRATE_ISOLATE] = 'I',
  3670. #endif
  3671. };
  3672. char tmp[MIGRATE_TYPES + 1];
  3673. char *p = tmp;
  3674. int i;
  3675. for (i = 0; i < MIGRATE_TYPES; i++) {
  3676. if (type & (1 << i))
  3677. *p++ = types[i];
  3678. }
  3679. *p = '\0';
  3680. printk(KERN_CONT "(%s) ", tmp);
  3681. }
  3682. /*
  3683. * Show free area list (used inside shift_scroll-lock stuff)
  3684. * We also calculate the percentage fragmentation. We do this by counting the
  3685. * memory on each free list with the exception of the first item on the list.
  3686. *
  3687. * Bits in @filter:
  3688. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3689. * cpuset.
  3690. */
  3691. void show_free_areas(unsigned int filter)
  3692. {
  3693. unsigned long free_pcp = 0;
  3694. int cpu;
  3695. struct zone *zone;
  3696. pg_data_t *pgdat;
  3697. for_each_populated_zone(zone) {
  3698. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3699. continue;
  3700. for_each_online_cpu(cpu)
  3701. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3702. }
  3703. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3704. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3705. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3706. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3707. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3708. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3709. global_node_page_state(NR_ACTIVE_ANON),
  3710. global_node_page_state(NR_INACTIVE_ANON),
  3711. global_node_page_state(NR_ISOLATED_ANON),
  3712. global_node_page_state(NR_ACTIVE_FILE),
  3713. global_node_page_state(NR_INACTIVE_FILE),
  3714. global_node_page_state(NR_ISOLATED_FILE),
  3715. global_node_page_state(NR_UNEVICTABLE),
  3716. global_node_page_state(NR_FILE_DIRTY),
  3717. global_node_page_state(NR_WRITEBACK),
  3718. global_node_page_state(NR_UNSTABLE_NFS),
  3719. global_page_state(NR_SLAB_RECLAIMABLE),
  3720. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3721. global_node_page_state(NR_FILE_MAPPED),
  3722. global_node_page_state(NR_SHMEM),
  3723. global_page_state(NR_PAGETABLE),
  3724. global_page_state(NR_BOUNCE),
  3725. global_page_state(NR_FREE_PAGES),
  3726. free_pcp,
  3727. global_page_state(NR_FREE_CMA_PAGES));
  3728. for_each_online_pgdat(pgdat) {
  3729. printk("Node %d"
  3730. " active_anon:%lukB"
  3731. " inactive_anon:%lukB"
  3732. " active_file:%lukB"
  3733. " inactive_file:%lukB"
  3734. " unevictable:%lukB"
  3735. " isolated(anon):%lukB"
  3736. " isolated(file):%lukB"
  3737. " mapped:%lukB"
  3738. " dirty:%lukB"
  3739. " writeback:%lukB"
  3740. " shmem:%lukB"
  3741. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3742. " shmem_thp: %lukB"
  3743. " shmem_pmdmapped: %lukB"
  3744. " anon_thp: %lukB"
  3745. #endif
  3746. " writeback_tmp:%lukB"
  3747. " unstable:%lukB"
  3748. " pages_scanned:%lu"
  3749. " all_unreclaimable? %s"
  3750. "\n",
  3751. pgdat->node_id,
  3752. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  3753. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  3754. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  3755. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  3756. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  3757. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  3758. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  3759. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  3760. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  3761. K(node_page_state(pgdat, NR_WRITEBACK)),
  3762. K(node_page_state(pgdat, NR_SHMEM)),
  3763. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3764. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  3765. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  3766. * HPAGE_PMD_NR),
  3767. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  3768. #endif
  3769. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  3770. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  3771. node_page_state(pgdat, NR_PAGES_SCANNED),
  3772. pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
  3773. "yes" : "no");
  3774. }
  3775. for_each_populated_zone(zone) {
  3776. int i;
  3777. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3778. continue;
  3779. free_pcp = 0;
  3780. for_each_online_cpu(cpu)
  3781. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3782. show_node(zone);
  3783. printk(KERN_CONT
  3784. "%s"
  3785. " free:%lukB"
  3786. " min:%lukB"
  3787. " low:%lukB"
  3788. " high:%lukB"
  3789. " active_anon:%lukB"
  3790. " inactive_anon:%lukB"
  3791. " active_file:%lukB"
  3792. " inactive_file:%lukB"
  3793. " unevictable:%lukB"
  3794. " writepending:%lukB"
  3795. " present:%lukB"
  3796. " managed:%lukB"
  3797. " mlocked:%lukB"
  3798. " slab_reclaimable:%lukB"
  3799. " slab_unreclaimable:%lukB"
  3800. " kernel_stack:%lukB"
  3801. " pagetables:%lukB"
  3802. " bounce:%lukB"
  3803. " free_pcp:%lukB"
  3804. " local_pcp:%ukB"
  3805. " free_cma:%lukB"
  3806. "\n",
  3807. zone->name,
  3808. K(zone_page_state(zone, NR_FREE_PAGES)),
  3809. K(min_wmark_pages(zone)),
  3810. K(low_wmark_pages(zone)),
  3811. K(high_wmark_pages(zone)),
  3812. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  3813. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  3814. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  3815. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  3816. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  3817. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  3818. K(zone->present_pages),
  3819. K(zone->managed_pages),
  3820. K(zone_page_state(zone, NR_MLOCK)),
  3821. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3822. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3823. zone_page_state(zone, NR_KERNEL_STACK_KB),
  3824. K(zone_page_state(zone, NR_PAGETABLE)),
  3825. K(zone_page_state(zone, NR_BOUNCE)),
  3826. K(free_pcp),
  3827. K(this_cpu_read(zone->pageset->pcp.count)),
  3828. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  3829. printk("lowmem_reserve[]:");
  3830. for (i = 0; i < MAX_NR_ZONES; i++)
  3831. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  3832. printk(KERN_CONT "\n");
  3833. }
  3834. for_each_populated_zone(zone) {
  3835. unsigned int order;
  3836. unsigned long nr[MAX_ORDER], flags, total = 0;
  3837. unsigned char types[MAX_ORDER];
  3838. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3839. continue;
  3840. show_node(zone);
  3841. printk(KERN_CONT "%s: ", zone->name);
  3842. spin_lock_irqsave(&zone->lock, flags);
  3843. for (order = 0; order < MAX_ORDER; order++) {
  3844. struct free_area *area = &zone->free_area[order];
  3845. int type;
  3846. nr[order] = area->nr_free;
  3847. total += nr[order] << order;
  3848. types[order] = 0;
  3849. for (type = 0; type < MIGRATE_TYPES; type++) {
  3850. if (!list_empty(&area->free_list[type]))
  3851. types[order] |= 1 << type;
  3852. }
  3853. }
  3854. spin_unlock_irqrestore(&zone->lock, flags);
  3855. for (order = 0; order < MAX_ORDER; order++) {
  3856. printk(KERN_CONT "%lu*%lukB ",
  3857. nr[order], K(1UL) << order);
  3858. if (nr[order])
  3859. show_migration_types(types[order]);
  3860. }
  3861. printk(KERN_CONT "= %lukB\n", K(total));
  3862. }
  3863. hugetlb_show_meminfo();
  3864. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  3865. show_swap_cache_info();
  3866. }
  3867. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3868. {
  3869. zoneref->zone = zone;
  3870. zoneref->zone_idx = zone_idx(zone);
  3871. }
  3872. /*
  3873. * Builds allocation fallback zone lists.
  3874. *
  3875. * Add all populated zones of a node to the zonelist.
  3876. */
  3877. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3878. int nr_zones)
  3879. {
  3880. struct zone *zone;
  3881. enum zone_type zone_type = MAX_NR_ZONES;
  3882. do {
  3883. zone_type--;
  3884. zone = pgdat->node_zones + zone_type;
  3885. if (managed_zone(zone)) {
  3886. zoneref_set_zone(zone,
  3887. &zonelist->_zonerefs[nr_zones++]);
  3888. check_highest_zone(zone_type);
  3889. }
  3890. } while (zone_type);
  3891. return nr_zones;
  3892. }
  3893. /*
  3894. * zonelist_order:
  3895. * 0 = automatic detection of better ordering.
  3896. * 1 = order by ([node] distance, -zonetype)
  3897. * 2 = order by (-zonetype, [node] distance)
  3898. *
  3899. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3900. * the same zonelist. So only NUMA can configure this param.
  3901. */
  3902. #define ZONELIST_ORDER_DEFAULT 0
  3903. #define ZONELIST_ORDER_NODE 1
  3904. #define ZONELIST_ORDER_ZONE 2
  3905. /* zonelist order in the kernel.
  3906. * set_zonelist_order() will set this to NODE or ZONE.
  3907. */
  3908. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3909. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3910. #ifdef CONFIG_NUMA
  3911. /* The value user specified ....changed by config */
  3912. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3913. /* string for sysctl */
  3914. #define NUMA_ZONELIST_ORDER_LEN 16
  3915. char numa_zonelist_order[16] = "default";
  3916. /*
  3917. * interface for configure zonelist ordering.
  3918. * command line option "numa_zonelist_order"
  3919. * = "[dD]efault - default, automatic configuration.
  3920. * = "[nN]ode - order by node locality, then by zone within node
  3921. * = "[zZ]one - order by zone, then by locality within zone
  3922. */
  3923. static int __parse_numa_zonelist_order(char *s)
  3924. {
  3925. if (*s == 'd' || *s == 'D') {
  3926. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3927. } else if (*s == 'n' || *s == 'N') {
  3928. user_zonelist_order = ZONELIST_ORDER_NODE;
  3929. } else if (*s == 'z' || *s == 'Z') {
  3930. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3931. } else {
  3932. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3933. return -EINVAL;
  3934. }
  3935. return 0;
  3936. }
  3937. static __init int setup_numa_zonelist_order(char *s)
  3938. {
  3939. int ret;
  3940. if (!s)
  3941. return 0;
  3942. ret = __parse_numa_zonelist_order(s);
  3943. if (ret == 0)
  3944. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3945. return ret;
  3946. }
  3947. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3948. /*
  3949. * sysctl handler for numa_zonelist_order
  3950. */
  3951. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3952. void __user *buffer, size_t *length,
  3953. loff_t *ppos)
  3954. {
  3955. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3956. int ret;
  3957. static DEFINE_MUTEX(zl_order_mutex);
  3958. mutex_lock(&zl_order_mutex);
  3959. if (write) {
  3960. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3961. ret = -EINVAL;
  3962. goto out;
  3963. }
  3964. strcpy(saved_string, (char *)table->data);
  3965. }
  3966. ret = proc_dostring(table, write, buffer, length, ppos);
  3967. if (ret)
  3968. goto out;
  3969. if (write) {
  3970. int oldval = user_zonelist_order;
  3971. ret = __parse_numa_zonelist_order((char *)table->data);
  3972. if (ret) {
  3973. /*
  3974. * bogus value. restore saved string
  3975. */
  3976. strncpy((char *)table->data, saved_string,
  3977. NUMA_ZONELIST_ORDER_LEN);
  3978. user_zonelist_order = oldval;
  3979. } else if (oldval != user_zonelist_order) {
  3980. mutex_lock(&zonelists_mutex);
  3981. build_all_zonelists(NULL, NULL);
  3982. mutex_unlock(&zonelists_mutex);
  3983. }
  3984. }
  3985. out:
  3986. mutex_unlock(&zl_order_mutex);
  3987. return ret;
  3988. }
  3989. #define MAX_NODE_LOAD (nr_online_nodes)
  3990. static int node_load[MAX_NUMNODES];
  3991. /**
  3992. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3993. * @node: node whose fallback list we're appending
  3994. * @used_node_mask: nodemask_t of already used nodes
  3995. *
  3996. * We use a number of factors to determine which is the next node that should
  3997. * appear on a given node's fallback list. The node should not have appeared
  3998. * already in @node's fallback list, and it should be the next closest node
  3999. * according to the distance array (which contains arbitrary distance values
  4000. * from each node to each node in the system), and should also prefer nodes
  4001. * with no CPUs, since presumably they'll have very little allocation pressure
  4002. * on them otherwise.
  4003. * It returns -1 if no node is found.
  4004. */
  4005. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4006. {
  4007. int n, val;
  4008. int min_val = INT_MAX;
  4009. int best_node = NUMA_NO_NODE;
  4010. const struct cpumask *tmp = cpumask_of_node(0);
  4011. /* Use the local node if we haven't already */
  4012. if (!node_isset(node, *used_node_mask)) {
  4013. node_set(node, *used_node_mask);
  4014. return node;
  4015. }
  4016. for_each_node_state(n, N_MEMORY) {
  4017. /* Don't want a node to appear more than once */
  4018. if (node_isset(n, *used_node_mask))
  4019. continue;
  4020. /* Use the distance array to find the distance */
  4021. val = node_distance(node, n);
  4022. /* Penalize nodes under us ("prefer the next node") */
  4023. val += (n < node);
  4024. /* Give preference to headless and unused nodes */
  4025. tmp = cpumask_of_node(n);
  4026. if (!cpumask_empty(tmp))
  4027. val += PENALTY_FOR_NODE_WITH_CPUS;
  4028. /* Slight preference for less loaded node */
  4029. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4030. val += node_load[n];
  4031. if (val < min_val) {
  4032. min_val = val;
  4033. best_node = n;
  4034. }
  4035. }
  4036. if (best_node >= 0)
  4037. node_set(best_node, *used_node_mask);
  4038. return best_node;
  4039. }
  4040. /*
  4041. * Build zonelists ordered by node and zones within node.
  4042. * This results in maximum locality--normal zone overflows into local
  4043. * DMA zone, if any--but risks exhausting DMA zone.
  4044. */
  4045. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4046. {
  4047. int j;
  4048. struct zonelist *zonelist;
  4049. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4050. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4051. ;
  4052. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4053. zonelist->_zonerefs[j].zone = NULL;
  4054. zonelist->_zonerefs[j].zone_idx = 0;
  4055. }
  4056. /*
  4057. * Build gfp_thisnode zonelists
  4058. */
  4059. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4060. {
  4061. int j;
  4062. struct zonelist *zonelist;
  4063. zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
  4064. j = build_zonelists_node(pgdat, zonelist, 0);
  4065. zonelist->_zonerefs[j].zone = NULL;
  4066. zonelist->_zonerefs[j].zone_idx = 0;
  4067. }
  4068. /*
  4069. * Build zonelists ordered by zone and nodes within zones.
  4070. * This results in conserving DMA zone[s] until all Normal memory is
  4071. * exhausted, but results in overflowing to remote node while memory
  4072. * may still exist in local DMA zone.
  4073. */
  4074. static int node_order[MAX_NUMNODES];
  4075. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4076. {
  4077. int pos, j, node;
  4078. int zone_type; /* needs to be signed */
  4079. struct zone *z;
  4080. struct zonelist *zonelist;
  4081. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4082. pos = 0;
  4083. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4084. for (j = 0; j < nr_nodes; j++) {
  4085. node = node_order[j];
  4086. z = &NODE_DATA(node)->node_zones[zone_type];
  4087. if (managed_zone(z)) {
  4088. zoneref_set_zone(z,
  4089. &zonelist->_zonerefs[pos++]);
  4090. check_highest_zone(zone_type);
  4091. }
  4092. }
  4093. }
  4094. zonelist->_zonerefs[pos].zone = NULL;
  4095. zonelist->_zonerefs[pos].zone_idx = 0;
  4096. }
  4097. #if defined(CONFIG_64BIT)
  4098. /*
  4099. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4100. * penalty to every machine in case the specialised case applies. Default
  4101. * to Node-ordering on 64-bit NUMA machines
  4102. */
  4103. static int default_zonelist_order(void)
  4104. {
  4105. return ZONELIST_ORDER_NODE;
  4106. }
  4107. #else
  4108. /*
  4109. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4110. * by the kernel. If processes running on node 0 deplete the low memory zone
  4111. * then reclaim will occur more frequency increasing stalls and potentially
  4112. * be easier to OOM if a large percentage of the zone is under writeback or
  4113. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4114. * Hence, default to zone ordering on 32-bit.
  4115. */
  4116. static int default_zonelist_order(void)
  4117. {
  4118. return ZONELIST_ORDER_ZONE;
  4119. }
  4120. #endif /* CONFIG_64BIT */
  4121. static void set_zonelist_order(void)
  4122. {
  4123. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4124. current_zonelist_order = default_zonelist_order();
  4125. else
  4126. current_zonelist_order = user_zonelist_order;
  4127. }
  4128. static void build_zonelists(pg_data_t *pgdat)
  4129. {
  4130. int i, node, load;
  4131. nodemask_t used_mask;
  4132. int local_node, prev_node;
  4133. struct zonelist *zonelist;
  4134. unsigned int order = current_zonelist_order;
  4135. /* initialize zonelists */
  4136. for (i = 0; i < MAX_ZONELISTS; i++) {
  4137. zonelist = pgdat->node_zonelists + i;
  4138. zonelist->_zonerefs[0].zone = NULL;
  4139. zonelist->_zonerefs[0].zone_idx = 0;
  4140. }
  4141. /* NUMA-aware ordering of nodes */
  4142. local_node = pgdat->node_id;
  4143. load = nr_online_nodes;
  4144. prev_node = local_node;
  4145. nodes_clear(used_mask);
  4146. memset(node_order, 0, sizeof(node_order));
  4147. i = 0;
  4148. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4149. /*
  4150. * We don't want to pressure a particular node.
  4151. * So adding penalty to the first node in same
  4152. * distance group to make it round-robin.
  4153. */
  4154. if (node_distance(local_node, node) !=
  4155. node_distance(local_node, prev_node))
  4156. node_load[node] = load;
  4157. prev_node = node;
  4158. load--;
  4159. if (order == ZONELIST_ORDER_NODE)
  4160. build_zonelists_in_node_order(pgdat, node);
  4161. else
  4162. node_order[i++] = node; /* remember order */
  4163. }
  4164. if (order == ZONELIST_ORDER_ZONE) {
  4165. /* calculate node order -- i.e., DMA last! */
  4166. build_zonelists_in_zone_order(pgdat, i);
  4167. }
  4168. build_thisnode_zonelists(pgdat);
  4169. }
  4170. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4171. /*
  4172. * Return node id of node used for "local" allocations.
  4173. * I.e., first node id of first zone in arg node's generic zonelist.
  4174. * Used for initializing percpu 'numa_mem', which is used primarily
  4175. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4176. */
  4177. int local_memory_node(int node)
  4178. {
  4179. struct zoneref *z;
  4180. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4181. gfp_zone(GFP_KERNEL),
  4182. NULL);
  4183. return z->zone->node;
  4184. }
  4185. #endif
  4186. static void setup_min_unmapped_ratio(void);
  4187. static void setup_min_slab_ratio(void);
  4188. #else /* CONFIG_NUMA */
  4189. static void set_zonelist_order(void)
  4190. {
  4191. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4192. }
  4193. static void build_zonelists(pg_data_t *pgdat)
  4194. {
  4195. int node, local_node;
  4196. enum zone_type j;
  4197. struct zonelist *zonelist;
  4198. local_node = pgdat->node_id;
  4199. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4200. j = build_zonelists_node(pgdat, zonelist, 0);
  4201. /*
  4202. * Now we build the zonelist so that it contains the zones
  4203. * of all the other nodes.
  4204. * We don't want to pressure a particular node, so when
  4205. * building the zones for node N, we make sure that the
  4206. * zones coming right after the local ones are those from
  4207. * node N+1 (modulo N)
  4208. */
  4209. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4210. if (!node_online(node))
  4211. continue;
  4212. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4213. }
  4214. for (node = 0; node < local_node; node++) {
  4215. if (!node_online(node))
  4216. continue;
  4217. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4218. }
  4219. zonelist->_zonerefs[j].zone = NULL;
  4220. zonelist->_zonerefs[j].zone_idx = 0;
  4221. }
  4222. #endif /* CONFIG_NUMA */
  4223. /*
  4224. * Boot pageset table. One per cpu which is going to be used for all
  4225. * zones and all nodes. The parameters will be set in such a way
  4226. * that an item put on a list will immediately be handed over to
  4227. * the buddy list. This is safe since pageset manipulation is done
  4228. * with interrupts disabled.
  4229. *
  4230. * The boot_pagesets must be kept even after bootup is complete for
  4231. * unused processors and/or zones. They do play a role for bootstrapping
  4232. * hotplugged processors.
  4233. *
  4234. * zoneinfo_show() and maybe other functions do
  4235. * not check if the processor is online before following the pageset pointer.
  4236. * Other parts of the kernel may not check if the zone is available.
  4237. */
  4238. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4239. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4240. static void setup_zone_pageset(struct zone *zone);
  4241. /*
  4242. * Global mutex to protect against size modification of zonelists
  4243. * as well as to serialize pageset setup for the new populated zone.
  4244. */
  4245. DEFINE_MUTEX(zonelists_mutex);
  4246. /* return values int ....just for stop_machine() */
  4247. static int __build_all_zonelists(void *data)
  4248. {
  4249. int nid;
  4250. int cpu;
  4251. pg_data_t *self = data;
  4252. #ifdef CONFIG_NUMA
  4253. memset(node_load, 0, sizeof(node_load));
  4254. #endif
  4255. if (self && !node_online(self->node_id)) {
  4256. build_zonelists(self);
  4257. }
  4258. for_each_online_node(nid) {
  4259. pg_data_t *pgdat = NODE_DATA(nid);
  4260. build_zonelists(pgdat);
  4261. }
  4262. /*
  4263. * Initialize the boot_pagesets that are going to be used
  4264. * for bootstrapping processors. The real pagesets for
  4265. * each zone will be allocated later when the per cpu
  4266. * allocator is available.
  4267. *
  4268. * boot_pagesets are used also for bootstrapping offline
  4269. * cpus if the system is already booted because the pagesets
  4270. * are needed to initialize allocators on a specific cpu too.
  4271. * F.e. the percpu allocator needs the page allocator which
  4272. * needs the percpu allocator in order to allocate its pagesets
  4273. * (a chicken-egg dilemma).
  4274. */
  4275. for_each_possible_cpu(cpu) {
  4276. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4277. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4278. /*
  4279. * We now know the "local memory node" for each node--
  4280. * i.e., the node of the first zone in the generic zonelist.
  4281. * Set up numa_mem percpu variable for on-line cpus. During
  4282. * boot, only the boot cpu should be on-line; we'll init the
  4283. * secondary cpus' numa_mem as they come on-line. During
  4284. * node/memory hotplug, we'll fixup all on-line cpus.
  4285. */
  4286. if (cpu_online(cpu))
  4287. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4288. #endif
  4289. }
  4290. return 0;
  4291. }
  4292. static noinline void __init
  4293. build_all_zonelists_init(void)
  4294. {
  4295. __build_all_zonelists(NULL);
  4296. mminit_verify_zonelist();
  4297. cpuset_init_current_mems_allowed();
  4298. }
  4299. /*
  4300. * Called with zonelists_mutex held always
  4301. * unless system_state == SYSTEM_BOOTING.
  4302. *
  4303. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4304. * [we're only called with non-NULL zone through __meminit paths] and
  4305. * (2) call of __init annotated helper build_all_zonelists_init
  4306. * [protected by SYSTEM_BOOTING].
  4307. */
  4308. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4309. {
  4310. set_zonelist_order();
  4311. if (system_state == SYSTEM_BOOTING) {
  4312. build_all_zonelists_init();
  4313. } else {
  4314. #ifdef CONFIG_MEMORY_HOTPLUG
  4315. if (zone)
  4316. setup_zone_pageset(zone);
  4317. #endif
  4318. /* we have to stop all cpus to guarantee there is no user
  4319. of zonelist */
  4320. stop_machine(__build_all_zonelists, pgdat, NULL);
  4321. /* cpuset refresh routine should be here */
  4322. }
  4323. vm_total_pages = nr_free_pagecache_pages();
  4324. /*
  4325. * Disable grouping by mobility if the number of pages in the
  4326. * system is too low to allow the mechanism to work. It would be
  4327. * more accurate, but expensive to check per-zone. This check is
  4328. * made on memory-hotadd so a system can start with mobility
  4329. * disabled and enable it later
  4330. */
  4331. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4332. page_group_by_mobility_disabled = 1;
  4333. else
  4334. page_group_by_mobility_disabled = 0;
  4335. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4336. nr_online_nodes,
  4337. zonelist_order_name[current_zonelist_order],
  4338. page_group_by_mobility_disabled ? "off" : "on",
  4339. vm_total_pages);
  4340. #ifdef CONFIG_NUMA
  4341. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4342. #endif
  4343. }
  4344. /*
  4345. * Initially all pages are reserved - free ones are freed
  4346. * up by free_all_bootmem() once the early boot process is
  4347. * done. Non-atomic initialization, single-pass.
  4348. */
  4349. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4350. unsigned long start_pfn, enum memmap_context context)
  4351. {
  4352. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4353. unsigned long end_pfn = start_pfn + size;
  4354. pg_data_t *pgdat = NODE_DATA(nid);
  4355. unsigned long pfn;
  4356. unsigned long nr_initialised = 0;
  4357. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4358. struct memblock_region *r = NULL, *tmp;
  4359. #endif
  4360. if (highest_memmap_pfn < end_pfn - 1)
  4361. highest_memmap_pfn = end_pfn - 1;
  4362. /*
  4363. * Honor reservation requested by the driver for this ZONE_DEVICE
  4364. * memory
  4365. */
  4366. if (altmap && start_pfn == altmap->base_pfn)
  4367. start_pfn += altmap->reserve;
  4368. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4369. /*
  4370. * There can be holes in boot-time mem_map[]s handed to this
  4371. * function. They do not exist on hotplugged memory.
  4372. */
  4373. if (context != MEMMAP_EARLY)
  4374. goto not_early;
  4375. if (!early_pfn_valid(pfn))
  4376. continue;
  4377. if (!early_pfn_in_nid(pfn, nid))
  4378. continue;
  4379. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4380. break;
  4381. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4382. /*
  4383. * Check given memblock attribute by firmware which can affect
  4384. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4385. * mirrored, it's an overlapped memmap init. skip it.
  4386. */
  4387. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4388. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4389. for_each_memblock(memory, tmp)
  4390. if (pfn < memblock_region_memory_end_pfn(tmp))
  4391. break;
  4392. r = tmp;
  4393. }
  4394. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4395. memblock_is_mirror(r)) {
  4396. /* already initialized as NORMAL */
  4397. pfn = memblock_region_memory_end_pfn(r);
  4398. continue;
  4399. }
  4400. }
  4401. #endif
  4402. not_early:
  4403. /*
  4404. * Mark the block movable so that blocks are reserved for
  4405. * movable at startup. This will force kernel allocations
  4406. * to reserve their blocks rather than leaking throughout
  4407. * the address space during boot when many long-lived
  4408. * kernel allocations are made.
  4409. *
  4410. * bitmap is created for zone's valid pfn range. but memmap
  4411. * can be created for invalid pages (for alignment)
  4412. * check here not to call set_pageblock_migratetype() against
  4413. * pfn out of zone.
  4414. */
  4415. if (!(pfn & (pageblock_nr_pages - 1))) {
  4416. struct page *page = pfn_to_page(pfn);
  4417. __init_single_page(page, pfn, zone, nid);
  4418. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4419. } else {
  4420. __init_single_pfn(pfn, zone, nid);
  4421. }
  4422. }
  4423. }
  4424. static void __meminit zone_init_free_lists(struct zone *zone)
  4425. {
  4426. unsigned int order, t;
  4427. for_each_migratetype_order(order, t) {
  4428. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4429. zone->free_area[order].nr_free = 0;
  4430. }
  4431. }
  4432. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4433. #define memmap_init(size, nid, zone, start_pfn) \
  4434. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4435. #endif
  4436. static int zone_batchsize(struct zone *zone)
  4437. {
  4438. #ifdef CONFIG_MMU
  4439. int batch;
  4440. /*
  4441. * The per-cpu-pages pools are set to around 1000th of the
  4442. * size of the zone. But no more than 1/2 of a meg.
  4443. *
  4444. * OK, so we don't know how big the cache is. So guess.
  4445. */
  4446. batch = zone->managed_pages / 1024;
  4447. if (batch * PAGE_SIZE > 512 * 1024)
  4448. batch = (512 * 1024) / PAGE_SIZE;
  4449. batch /= 4; /* We effectively *= 4 below */
  4450. if (batch < 1)
  4451. batch = 1;
  4452. /*
  4453. * Clamp the batch to a 2^n - 1 value. Having a power
  4454. * of 2 value was found to be more likely to have
  4455. * suboptimal cache aliasing properties in some cases.
  4456. *
  4457. * For example if 2 tasks are alternately allocating
  4458. * batches of pages, one task can end up with a lot
  4459. * of pages of one half of the possible page colors
  4460. * and the other with pages of the other colors.
  4461. */
  4462. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4463. return batch;
  4464. #else
  4465. /* The deferral and batching of frees should be suppressed under NOMMU
  4466. * conditions.
  4467. *
  4468. * The problem is that NOMMU needs to be able to allocate large chunks
  4469. * of contiguous memory as there's no hardware page translation to
  4470. * assemble apparent contiguous memory from discontiguous pages.
  4471. *
  4472. * Queueing large contiguous runs of pages for batching, however,
  4473. * causes the pages to actually be freed in smaller chunks. As there
  4474. * can be a significant delay between the individual batches being
  4475. * recycled, this leads to the once large chunks of space being
  4476. * fragmented and becoming unavailable for high-order allocations.
  4477. */
  4478. return 0;
  4479. #endif
  4480. }
  4481. /*
  4482. * pcp->high and pcp->batch values are related and dependent on one another:
  4483. * ->batch must never be higher then ->high.
  4484. * The following function updates them in a safe manner without read side
  4485. * locking.
  4486. *
  4487. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4488. * those fields changing asynchronously (acording the the above rule).
  4489. *
  4490. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4491. * outside of boot time (or some other assurance that no concurrent updaters
  4492. * exist).
  4493. */
  4494. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4495. unsigned long batch)
  4496. {
  4497. /* start with a fail safe value for batch */
  4498. pcp->batch = 1;
  4499. smp_wmb();
  4500. /* Update high, then batch, in order */
  4501. pcp->high = high;
  4502. smp_wmb();
  4503. pcp->batch = batch;
  4504. }
  4505. /* a companion to pageset_set_high() */
  4506. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4507. {
  4508. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4509. }
  4510. static void pageset_init(struct per_cpu_pageset *p)
  4511. {
  4512. struct per_cpu_pages *pcp;
  4513. int migratetype;
  4514. memset(p, 0, sizeof(*p));
  4515. pcp = &p->pcp;
  4516. pcp->count = 0;
  4517. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4518. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4519. }
  4520. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4521. {
  4522. pageset_init(p);
  4523. pageset_set_batch(p, batch);
  4524. }
  4525. /*
  4526. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4527. * to the value high for the pageset p.
  4528. */
  4529. static void pageset_set_high(struct per_cpu_pageset *p,
  4530. unsigned long high)
  4531. {
  4532. unsigned long batch = max(1UL, high / 4);
  4533. if ((high / 4) > (PAGE_SHIFT * 8))
  4534. batch = PAGE_SHIFT * 8;
  4535. pageset_update(&p->pcp, high, batch);
  4536. }
  4537. static void pageset_set_high_and_batch(struct zone *zone,
  4538. struct per_cpu_pageset *pcp)
  4539. {
  4540. if (percpu_pagelist_fraction)
  4541. pageset_set_high(pcp,
  4542. (zone->managed_pages /
  4543. percpu_pagelist_fraction));
  4544. else
  4545. pageset_set_batch(pcp, zone_batchsize(zone));
  4546. }
  4547. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4548. {
  4549. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4550. pageset_init(pcp);
  4551. pageset_set_high_and_batch(zone, pcp);
  4552. }
  4553. static void __meminit setup_zone_pageset(struct zone *zone)
  4554. {
  4555. int cpu;
  4556. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4557. for_each_possible_cpu(cpu)
  4558. zone_pageset_init(zone, cpu);
  4559. }
  4560. /*
  4561. * Allocate per cpu pagesets and initialize them.
  4562. * Before this call only boot pagesets were available.
  4563. */
  4564. void __init setup_per_cpu_pageset(void)
  4565. {
  4566. struct pglist_data *pgdat;
  4567. struct zone *zone;
  4568. for_each_populated_zone(zone)
  4569. setup_zone_pageset(zone);
  4570. for_each_online_pgdat(pgdat)
  4571. pgdat->per_cpu_nodestats =
  4572. alloc_percpu(struct per_cpu_nodestat);
  4573. }
  4574. static __meminit void zone_pcp_init(struct zone *zone)
  4575. {
  4576. /*
  4577. * per cpu subsystem is not up at this point. The following code
  4578. * relies on the ability of the linker to provide the
  4579. * offset of a (static) per cpu variable into the per cpu area.
  4580. */
  4581. zone->pageset = &boot_pageset;
  4582. if (populated_zone(zone))
  4583. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4584. zone->name, zone->present_pages,
  4585. zone_batchsize(zone));
  4586. }
  4587. int __meminit init_currently_empty_zone(struct zone *zone,
  4588. unsigned long zone_start_pfn,
  4589. unsigned long size)
  4590. {
  4591. struct pglist_data *pgdat = zone->zone_pgdat;
  4592. pgdat->nr_zones = zone_idx(zone) + 1;
  4593. zone->zone_start_pfn = zone_start_pfn;
  4594. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4595. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4596. pgdat->node_id,
  4597. (unsigned long)zone_idx(zone),
  4598. zone_start_pfn, (zone_start_pfn + size));
  4599. zone_init_free_lists(zone);
  4600. zone->initialized = 1;
  4601. return 0;
  4602. }
  4603. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4604. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4605. /*
  4606. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4607. */
  4608. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4609. struct mminit_pfnnid_cache *state)
  4610. {
  4611. unsigned long start_pfn, end_pfn;
  4612. int nid;
  4613. if (state->last_start <= pfn && pfn < state->last_end)
  4614. return state->last_nid;
  4615. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4616. if (nid != -1) {
  4617. state->last_start = start_pfn;
  4618. state->last_end = end_pfn;
  4619. state->last_nid = nid;
  4620. }
  4621. return nid;
  4622. }
  4623. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4624. /**
  4625. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4626. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4627. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4628. *
  4629. * If an architecture guarantees that all ranges registered contain no holes
  4630. * and may be freed, this this function may be used instead of calling
  4631. * memblock_free_early_nid() manually.
  4632. */
  4633. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4634. {
  4635. unsigned long start_pfn, end_pfn;
  4636. int i, this_nid;
  4637. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4638. start_pfn = min(start_pfn, max_low_pfn);
  4639. end_pfn = min(end_pfn, max_low_pfn);
  4640. if (start_pfn < end_pfn)
  4641. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4642. (end_pfn - start_pfn) << PAGE_SHIFT,
  4643. this_nid);
  4644. }
  4645. }
  4646. /**
  4647. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4648. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4649. *
  4650. * If an architecture guarantees that all ranges registered contain no holes and may
  4651. * be freed, this function may be used instead of calling memory_present() manually.
  4652. */
  4653. void __init sparse_memory_present_with_active_regions(int nid)
  4654. {
  4655. unsigned long start_pfn, end_pfn;
  4656. int i, this_nid;
  4657. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4658. memory_present(this_nid, start_pfn, end_pfn);
  4659. }
  4660. /**
  4661. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4662. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4663. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4664. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4665. *
  4666. * It returns the start and end page frame of a node based on information
  4667. * provided by memblock_set_node(). If called for a node
  4668. * with no available memory, a warning is printed and the start and end
  4669. * PFNs will be 0.
  4670. */
  4671. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4672. unsigned long *start_pfn, unsigned long *end_pfn)
  4673. {
  4674. unsigned long this_start_pfn, this_end_pfn;
  4675. int i;
  4676. *start_pfn = -1UL;
  4677. *end_pfn = 0;
  4678. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4679. *start_pfn = min(*start_pfn, this_start_pfn);
  4680. *end_pfn = max(*end_pfn, this_end_pfn);
  4681. }
  4682. if (*start_pfn == -1UL)
  4683. *start_pfn = 0;
  4684. }
  4685. /*
  4686. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4687. * assumption is made that zones within a node are ordered in monotonic
  4688. * increasing memory addresses so that the "highest" populated zone is used
  4689. */
  4690. static void __init find_usable_zone_for_movable(void)
  4691. {
  4692. int zone_index;
  4693. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4694. if (zone_index == ZONE_MOVABLE)
  4695. continue;
  4696. if (arch_zone_highest_possible_pfn[zone_index] >
  4697. arch_zone_lowest_possible_pfn[zone_index])
  4698. break;
  4699. }
  4700. VM_BUG_ON(zone_index == -1);
  4701. movable_zone = zone_index;
  4702. }
  4703. /*
  4704. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4705. * because it is sized independent of architecture. Unlike the other zones,
  4706. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4707. * in each node depending on the size of each node and how evenly kernelcore
  4708. * is distributed. This helper function adjusts the zone ranges
  4709. * provided by the architecture for a given node by using the end of the
  4710. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4711. * zones within a node are in order of monotonic increases memory addresses
  4712. */
  4713. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4714. unsigned long zone_type,
  4715. unsigned long node_start_pfn,
  4716. unsigned long node_end_pfn,
  4717. unsigned long *zone_start_pfn,
  4718. unsigned long *zone_end_pfn)
  4719. {
  4720. /* Only adjust if ZONE_MOVABLE is on this node */
  4721. if (zone_movable_pfn[nid]) {
  4722. /* Size ZONE_MOVABLE */
  4723. if (zone_type == ZONE_MOVABLE) {
  4724. *zone_start_pfn = zone_movable_pfn[nid];
  4725. *zone_end_pfn = min(node_end_pfn,
  4726. arch_zone_highest_possible_pfn[movable_zone]);
  4727. /* Adjust for ZONE_MOVABLE starting within this range */
  4728. } else if (!mirrored_kernelcore &&
  4729. *zone_start_pfn < zone_movable_pfn[nid] &&
  4730. *zone_end_pfn > zone_movable_pfn[nid]) {
  4731. *zone_end_pfn = zone_movable_pfn[nid];
  4732. /* Check if this whole range is within ZONE_MOVABLE */
  4733. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4734. *zone_start_pfn = *zone_end_pfn;
  4735. }
  4736. }
  4737. /*
  4738. * Return the number of pages a zone spans in a node, including holes
  4739. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4740. */
  4741. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4742. unsigned long zone_type,
  4743. unsigned long node_start_pfn,
  4744. unsigned long node_end_pfn,
  4745. unsigned long *zone_start_pfn,
  4746. unsigned long *zone_end_pfn,
  4747. unsigned long *ignored)
  4748. {
  4749. /* When hotadd a new node from cpu_up(), the node should be empty */
  4750. if (!node_start_pfn && !node_end_pfn)
  4751. return 0;
  4752. /* Get the start and end of the zone */
  4753. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4754. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4755. adjust_zone_range_for_zone_movable(nid, zone_type,
  4756. node_start_pfn, node_end_pfn,
  4757. zone_start_pfn, zone_end_pfn);
  4758. /* Check that this node has pages within the zone's required range */
  4759. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4760. return 0;
  4761. /* Move the zone boundaries inside the node if necessary */
  4762. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4763. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4764. /* Return the spanned pages */
  4765. return *zone_end_pfn - *zone_start_pfn;
  4766. }
  4767. /*
  4768. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4769. * then all holes in the requested range will be accounted for.
  4770. */
  4771. unsigned long __meminit __absent_pages_in_range(int nid,
  4772. unsigned long range_start_pfn,
  4773. unsigned long range_end_pfn)
  4774. {
  4775. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4776. unsigned long start_pfn, end_pfn;
  4777. int i;
  4778. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4779. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4780. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4781. nr_absent -= end_pfn - start_pfn;
  4782. }
  4783. return nr_absent;
  4784. }
  4785. /**
  4786. * absent_pages_in_range - Return number of page frames in holes within a range
  4787. * @start_pfn: The start PFN to start searching for holes
  4788. * @end_pfn: The end PFN to stop searching for holes
  4789. *
  4790. * It returns the number of pages frames in memory holes within a range.
  4791. */
  4792. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4793. unsigned long end_pfn)
  4794. {
  4795. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4796. }
  4797. /* Return the number of page frames in holes in a zone on a node */
  4798. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4799. unsigned long zone_type,
  4800. unsigned long node_start_pfn,
  4801. unsigned long node_end_pfn,
  4802. unsigned long *ignored)
  4803. {
  4804. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4805. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4806. unsigned long zone_start_pfn, zone_end_pfn;
  4807. unsigned long nr_absent;
  4808. /* When hotadd a new node from cpu_up(), the node should be empty */
  4809. if (!node_start_pfn && !node_end_pfn)
  4810. return 0;
  4811. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4812. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4813. adjust_zone_range_for_zone_movable(nid, zone_type,
  4814. node_start_pfn, node_end_pfn,
  4815. &zone_start_pfn, &zone_end_pfn);
  4816. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4817. /*
  4818. * ZONE_MOVABLE handling.
  4819. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4820. * and vice versa.
  4821. */
  4822. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  4823. unsigned long start_pfn, end_pfn;
  4824. struct memblock_region *r;
  4825. for_each_memblock(memory, r) {
  4826. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4827. zone_start_pfn, zone_end_pfn);
  4828. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4829. zone_start_pfn, zone_end_pfn);
  4830. if (zone_type == ZONE_MOVABLE &&
  4831. memblock_is_mirror(r))
  4832. nr_absent += end_pfn - start_pfn;
  4833. if (zone_type == ZONE_NORMAL &&
  4834. !memblock_is_mirror(r))
  4835. nr_absent += end_pfn - start_pfn;
  4836. }
  4837. }
  4838. return nr_absent;
  4839. }
  4840. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4841. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4842. unsigned long zone_type,
  4843. unsigned long node_start_pfn,
  4844. unsigned long node_end_pfn,
  4845. unsigned long *zone_start_pfn,
  4846. unsigned long *zone_end_pfn,
  4847. unsigned long *zones_size)
  4848. {
  4849. unsigned int zone;
  4850. *zone_start_pfn = node_start_pfn;
  4851. for (zone = 0; zone < zone_type; zone++)
  4852. *zone_start_pfn += zones_size[zone];
  4853. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4854. return zones_size[zone_type];
  4855. }
  4856. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4857. unsigned long zone_type,
  4858. unsigned long node_start_pfn,
  4859. unsigned long node_end_pfn,
  4860. unsigned long *zholes_size)
  4861. {
  4862. if (!zholes_size)
  4863. return 0;
  4864. return zholes_size[zone_type];
  4865. }
  4866. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4867. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4868. unsigned long node_start_pfn,
  4869. unsigned long node_end_pfn,
  4870. unsigned long *zones_size,
  4871. unsigned long *zholes_size)
  4872. {
  4873. unsigned long realtotalpages = 0, totalpages = 0;
  4874. enum zone_type i;
  4875. for (i = 0; i < MAX_NR_ZONES; i++) {
  4876. struct zone *zone = pgdat->node_zones + i;
  4877. unsigned long zone_start_pfn, zone_end_pfn;
  4878. unsigned long size, real_size;
  4879. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4880. node_start_pfn,
  4881. node_end_pfn,
  4882. &zone_start_pfn,
  4883. &zone_end_pfn,
  4884. zones_size);
  4885. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4886. node_start_pfn, node_end_pfn,
  4887. zholes_size);
  4888. if (size)
  4889. zone->zone_start_pfn = zone_start_pfn;
  4890. else
  4891. zone->zone_start_pfn = 0;
  4892. zone->spanned_pages = size;
  4893. zone->present_pages = real_size;
  4894. totalpages += size;
  4895. realtotalpages += real_size;
  4896. }
  4897. pgdat->node_spanned_pages = totalpages;
  4898. pgdat->node_present_pages = realtotalpages;
  4899. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4900. realtotalpages);
  4901. }
  4902. #ifndef CONFIG_SPARSEMEM
  4903. /*
  4904. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4905. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4906. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4907. * round what is now in bits to nearest long in bits, then return it in
  4908. * bytes.
  4909. */
  4910. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4911. {
  4912. unsigned long usemapsize;
  4913. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4914. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4915. usemapsize = usemapsize >> pageblock_order;
  4916. usemapsize *= NR_PAGEBLOCK_BITS;
  4917. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4918. return usemapsize / 8;
  4919. }
  4920. static void __init setup_usemap(struct pglist_data *pgdat,
  4921. struct zone *zone,
  4922. unsigned long zone_start_pfn,
  4923. unsigned long zonesize)
  4924. {
  4925. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4926. zone->pageblock_flags = NULL;
  4927. if (usemapsize)
  4928. zone->pageblock_flags =
  4929. memblock_virt_alloc_node_nopanic(usemapsize,
  4930. pgdat->node_id);
  4931. }
  4932. #else
  4933. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4934. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4935. #endif /* CONFIG_SPARSEMEM */
  4936. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4937. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4938. void __paginginit set_pageblock_order(void)
  4939. {
  4940. unsigned int order;
  4941. /* Check that pageblock_nr_pages has not already been setup */
  4942. if (pageblock_order)
  4943. return;
  4944. if (HPAGE_SHIFT > PAGE_SHIFT)
  4945. order = HUGETLB_PAGE_ORDER;
  4946. else
  4947. order = MAX_ORDER - 1;
  4948. /*
  4949. * Assume the largest contiguous order of interest is a huge page.
  4950. * This value may be variable depending on boot parameters on IA64 and
  4951. * powerpc.
  4952. */
  4953. pageblock_order = order;
  4954. }
  4955. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4956. /*
  4957. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4958. * is unused as pageblock_order is set at compile-time. See
  4959. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4960. * the kernel config
  4961. */
  4962. void __paginginit set_pageblock_order(void)
  4963. {
  4964. }
  4965. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4966. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4967. unsigned long present_pages)
  4968. {
  4969. unsigned long pages = spanned_pages;
  4970. /*
  4971. * Provide a more accurate estimation if there are holes within
  4972. * the zone and SPARSEMEM is in use. If there are holes within the
  4973. * zone, each populated memory region may cost us one or two extra
  4974. * memmap pages due to alignment because memmap pages for each
  4975. * populated regions may not naturally algined on page boundary.
  4976. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4977. */
  4978. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4979. IS_ENABLED(CONFIG_SPARSEMEM))
  4980. pages = present_pages;
  4981. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4982. }
  4983. /*
  4984. * Set up the zone data structures:
  4985. * - mark all pages reserved
  4986. * - mark all memory queues empty
  4987. * - clear the memory bitmaps
  4988. *
  4989. * NOTE: pgdat should get zeroed by caller.
  4990. */
  4991. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  4992. {
  4993. enum zone_type j;
  4994. int nid = pgdat->node_id;
  4995. int ret;
  4996. pgdat_resize_init(pgdat);
  4997. #ifdef CONFIG_NUMA_BALANCING
  4998. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4999. pgdat->numabalancing_migrate_nr_pages = 0;
  5000. pgdat->numabalancing_migrate_next_window = jiffies;
  5001. #endif
  5002. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5003. spin_lock_init(&pgdat->split_queue_lock);
  5004. INIT_LIST_HEAD(&pgdat->split_queue);
  5005. pgdat->split_queue_len = 0;
  5006. #endif
  5007. init_waitqueue_head(&pgdat->kswapd_wait);
  5008. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5009. #ifdef CONFIG_COMPACTION
  5010. init_waitqueue_head(&pgdat->kcompactd_wait);
  5011. #endif
  5012. pgdat_page_ext_init(pgdat);
  5013. spin_lock_init(&pgdat->lru_lock);
  5014. lruvec_init(node_lruvec(pgdat));
  5015. for (j = 0; j < MAX_NR_ZONES; j++) {
  5016. struct zone *zone = pgdat->node_zones + j;
  5017. unsigned long size, realsize, freesize, memmap_pages;
  5018. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5019. size = zone->spanned_pages;
  5020. realsize = freesize = zone->present_pages;
  5021. /*
  5022. * Adjust freesize so that it accounts for how much memory
  5023. * is used by this zone for memmap. This affects the watermark
  5024. * and per-cpu initialisations
  5025. */
  5026. memmap_pages = calc_memmap_size(size, realsize);
  5027. if (!is_highmem_idx(j)) {
  5028. if (freesize >= memmap_pages) {
  5029. freesize -= memmap_pages;
  5030. if (memmap_pages)
  5031. printk(KERN_DEBUG
  5032. " %s zone: %lu pages used for memmap\n",
  5033. zone_names[j], memmap_pages);
  5034. } else
  5035. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5036. zone_names[j], memmap_pages, freesize);
  5037. }
  5038. /* Account for reserved pages */
  5039. if (j == 0 && freesize > dma_reserve) {
  5040. freesize -= dma_reserve;
  5041. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5042. zone_names[0], dma_reserve);
  5043. }
  5044. if (!is_highmem_idx(j))
  5045. nr_kernel_pages += freesize;
  5046. /* Charge for highmem memmap if there are enough kernel pages */
  5047. else if (nr_kernel_pages > memmap_pages * 2)
  5048. nr_kernel_pages -= memmap_pages;
  5049. nr_all_pages += freesize;
  5050. /*
  5051. * Set an approximate value for lowmem here, it will be adjusted
  5052. * when the bootmem allocator frees pages into the buddy system.
  5053. * And all highmem pages will be managed by the buddy system.
  5054. */
  5055. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5056. #ifdef CONFIG_NUMA
  5057. zone->node = nid;
  5058. #endif
  5059. zone->name = zone_names[j];
  5060. zone->zone_pgdat = pgdat;
  5061. spin_lock_init(&zone->lock);
  5062. zone_seqlock_init(zone);
  5063. zone_pcp_init(zone);
  5064. if (!size)
  5065. continue;
  5066. set_pageblock_order();
  5067. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5068. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5069. BUG_ON(ret);
  5070. memmap_init(size, nid, j, zone_start_pfn);
  5071. }
  5072. }
  5073. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5074. {
  5075. unsigned long __maybe_unused start = 0;
  5076. unsigned long __maybe_unused offset = 0;
  5077. /* Skip empty nodes */
  5078. if (!pgdat->node_spanned_pages)
  5079. return;
  5080. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5081. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5082. offset = pgdat->node_start_pfn - start;
  5083. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5084. if (!pgdat->node_mem_map) {
  5085. unsigned long size, end;
  5086. struct page *map;
  5087. /*
  5088. * The zone's endpoints aren't required to be MAX_ORDER
  5089. * aligned but the node_mem_map endpoints must be in order
  5090. * for the buddy allocator to function correctly.
  5091. */
  5092. end = pgdat_end_pfn(pgdat);
  5093. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5094. size = (end - start) * sizeof(struct page);
  5095. map = alloc_remap(pgdat->node_id, size);
  5096. if (!map)
  5097. map = memblock_virt_alloc_node_nopanic(size,
  5098. pgdat->node_id);
  5099. pgdat->node_mem_map = map + offset;
  5100. }
  5101. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5102. /*
  5103. * With no DISCONTIG, the global mem_map is just set as node 0's
  5104. */
  5105. if (pgdat == NODE_DATA(0)) {
  5106. mem_map = NODE_DATA(0)->node_mem_map;
  5107. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5108. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5109. mem_map -= offset;
  5110. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5111. }
  5112. #endif
  5113. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5114. }
  5115. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5116. unsigned long node_start_pfn, unsigned long *zholes_size)
  5117. {
  5118. pg_data_t *pgdat = NODE_DATA(nid);
  5119. unsigned long start_pfn = 0;
  5120. unsigned long end_pfn = 0;
  5121. /* pg_data_t should be reset to zero when it's allocated */
  5122. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5123. pgdat->node_id = nid;
  5124. pgdat->node_start_pfn = node_start_pfn;
  5125. pgdat->per_cpu_nodestats = NULL;
  5126. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5127. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5128. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5129. (u64)start_pfn << PAGE_SHIFT,
  5130. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5131. #else
  5132. start_pfn = node_start_pfn;
  5133. #endif
  5134. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5135. zones_size, zholes_size);
  5136. alloc_node_mem_map(pgdat);
  5137. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5138. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5139. nid, (unsigned long)pgdat,
  5140. (unsigned long)pgdat->node_mem_map);
  5141. #endif
  5142. reset_deferred_meminit(pgdat);
  5143. free_area_init_core(pgdat);
  5144. }
  5145. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5146. #if MAX_NUMNODES > 1
  5147. /*
  5148. * Figure out the number of possible node ids.
  5149. */
  5150. void __init setup_nr_node_ids(void)
  5151. {
  5152. unsigned int highest;
  5153. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5154. nr_node_ids = highest + 1;
  5155. }
  5156. #endif
  5157. /**
  5158. * node_map_pfn_alignment - determine the maximum internode alignment
  5159. *
  5160. * This function should be called after node map is populated and sorted.
  5161. * It calculates the maximum power of two alignment which can distinguish
  5162. * all the nodes.
  5163. *
  5164. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5165. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5166. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5167. * shifted, 1GiB is enough and this function will indicate so.
  5168. *
  5169. * This is used to test whether pfn -> nid mapping of the chosen memory
  5170. * model has fine enough granularity to avoid incorrect mapping for the
  5171. * populated node map.
  5172. *
  5173. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5174. * requirement (single node).
  5175. */
  5176. unsigned long __init node_map_pfn_alignment(void)
  5177. {
  5178. unsigned long accl_mask = 0, last_end = 0;
  5179. unsigned long start, end, mask;
  5180. int last_nid = -1;
  5181. int i, nid;
  5182. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5183. if (!start || last_nid < 0 || last_nid == nid) {
  5184. last_nid = nid;
  5185. last_end = end;
  5186. continue;
  5187. }
  5188. /*
  5189. * Start with a mask granular enough to pin-point to the
  5190. * start pfn and tick off bits one-by-one until it becomes
  5191. * too coarse to separate the current node from the last.
  5192. */
  5193. mask = ~((1 << __ffs(start)) - 1);
  5194. while (mask && last_end <= (start & (mask << 1)))
  5195. mask <<= 1;
  5196. /* accumulate all internode masks */
  5197. accl_mask |= mask;
  5198. }
  5199. /* convert mask to number of pages */
  5200. return ~accl_mask + 1;
  5201. }
  5202. /* Find the lowest pfn for a node */
  5203. static unsigned long __init find_min_pfn_for_node(int nid)
  5204. {
  5205. unsigned long min_pfn = ULONG_MAX;
  5206. unsigned long start_pfn;
  5207. int i;
  5208. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5209. min_pfn = min(min_pfn, start_pfn);
  5210. if (min_pfn == ULONG_MAX) {
  5211. pr_warn("Could not find start_pfn for node %d\n", nid);
  5212. return 0;
  5213. }
  5214. return min_pfn;
  5215. }
  5216. /**
  5217. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5218. *
  5219. * It returns the minimum PFN based on information provided via
  5220. * memblock_set_node().
  5221. */
  5222. unsigned long __init find_min_pfn_with_active_regions(void)
  5223. {
  5224. return find_min_pfn_for_node(MAX_NUMNODES);
  5225. }
  5226. /*
  5227. * early_calculate_totalpages()
  5228. * Sum pages in active regions for movable zone.
  5229. * Populate N_MEMORY for calculating usable_nodes.
  5230. */
  5231. static unsigned long __init early_calculate_totalpages(void)
  5232. {
  5233. unsigned long totalpages = 0;
  5234. unsigned long start_pfn, end_pfn;
  5235. int i, nid;
  5236. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5237. unsigned long pages = end_pfn - start_pfn;
  5238. totalpages += pages;
  5239. if (pages)
  5240. node_set_state(nid, N_MEMORY);
  5241. }
  5242. return totalpages;
  5243. }
  5244. /*
  5245. * Find the PFN the Movable zone begins in each node. Kernel memory
  5246. * is spread evenly between nodes as long as the nodes have enough
  5247. * memory. When they don't, some nodes will have more kernelcore than
  5248. * others
  5249. */
  5250. static void __init find_zone_movable_pfns_for_nodes(void)
  5251. {
  5252. int i, nid;
  5253. unsigned long usable_startpfn;
  5254. unsigned long kernelcore_node, kernelcore_remaining;
  5255. /* save the state before borrow the nodemask */
  5256. nodemask_t saved_node_state = node_states[N_MEMORY];
  5257. unsigned long totalpages = early_calculate_totalpages();
  5258. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5259. struct memblock_region *r;
  5260. /* Need to find movable_zone earlier when movable_node is specified. */
  5261. find_usable_zone_for_movable();
  5262. /*
  5263. * If movable_node is specified, ignore kernelcore and movablecore
  5264. * options.
  5265. */
  5266. if (movable_node_is_enabled()) {
  5267. for_each_memblock(memory, r) {
  5268. if (!memblock_is_hotpluggable(r))
  5269. continue;
  5270. nid = r->nid;
  5271. usable_startpfn = PFN_DOWN(r->base);
  5272. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5273. min(usable_startpfn, zone_movable_pfn[nid]) :
  5274. usable_startpfn;
  5275. }
  5276. goto out2;
  5277. }
  5278. /*
  5279. * If kernelcore=mirror is specified, ignore movablecore option
  5280. */
  5281. if (mirrored_kernelcore) {
  5282. bool mem_below_4gb_not_mirrored = false;
  5283. for_each_memblock(memory, r) {
  5284. if (memblock_is_mirror(r))
  5285. continue;
  5286. nid = r->nid;
  5287. usable_startpfn = memblock_region_memory_base_pfn(r);
  5288. if (usable_startpfn < 0x100000) {
  5289. mem_below_4gb_not_mirrored = true;
  5290. continue;
  5291. }
  5292. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5293. min(usable_startpfn, zone_movable_pfn[nid]) :
  5294. usable_startpfn;
  5295. }
  5296. if (mem_below_4gb_not_mirrored)
  5297. pr_warn("This configuration results in unmirrored kernel memory.");
  5298. goto out2;
  5299. }
  5300. /*
  5301. * If movablecore=nn[KMG] was specified, calculate what size of
  5302. * kernelcore that corresponds so that memory usable for
  5303. * any allocation type is evenly spread. If both kernelcore
  5304. * and movablecore are specified, then the value of kernelcore
  5305. * will be used for required_kernelcore if it's greater than
  5306. * what movablecore would have allowed.
  5307. */
  5308. if (required_movablecore) {
  5309. unsigned long corepages;
  5310. /*
  5311. * Round-up so that ZONE_MOVABLE is at least as large as what
  5312. * was requested by the user
  5313. */
  5314. required_movablecore =
  5315. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5316. required_movablecore = min(totalpages, required_movablecore);
  5317. corepages = totalpages - required_movablecore;
  5318. required_kernelcore = max(required_kernelcore, corepages);
  5319. }
  5320. /*
  5321. * If kernelcore was not specified or kernelcore size is larger
  5322. * than totalpages, there is no ZONE_MOVABLE.
  5323. */
  5324. if (!required_kernelcore || required_kernelcore >= totalpages)
  5325. goto out;
  5326. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5327. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5328. restart:
  5329. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5330. kernelcore_node = required_kernelcore / usable_nodes;
  5331. for_each_node_state(nid, N_MEMORY) {
  5332. unsigned long start_pfn, end_pfn;
  5333. /*
  5334. * Recalculate kernelcore_node if the division per node
  5335. * now exceeds what is necessary to satisfy the requested
  5336. * amount of memory for the kernel
  5337. */
  5338. if (required_kernelcore < kernelcore_node)
  5339. kernelcore_node = required_kernelcore / usable_nodes;
  5340. /*
  5341. * As the map is walked, we track how much memory is usable
  5342. * by the kernel using kernelcore_remaining. When it is
  5343. * 0, the rest of the node is usable by ZONE_MOVABLE
  5344. */
  5345. kernelcore_remaining = kernelcore_node;
  5346. /* Go through each range of PFNs within this node */
  5347. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5348. unsigned long size_pages;
  5349. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5350. if (start_pfn >= end_pfn)
  5351. continue;
  5352. /* Account for what is only usable for kernelcore */
  5353. if (start_pfn < usable_startpfn) {
  5354. unsigned long kernel_pages;
  5355. kernel_pages = min(end_pfn, usable_startpfn)
  5356. - start_pfn;
  5357. kernelcore_remaining -= min(kernel_pages,
  5358. kernelcore_remaining);
  5359. required_kernelcore -= min(kernel_pages,
  5360. required_kernelcore);
  5361. /* Continue if range is now fully accounted */
  5362. if (end_pfn <= usable_startpfn) {
  5363. /*
  5364. * Push zone_movable_pfn to the end so
  5365. * that if we have to rebalance
  5366. * kernelcore across nodes, we will
  5367. * not double account here
  5368. */
  5369. zone_movable_pfn[nid] = end_pfn;
  5370. continue;
  5371. }
  5372. start_pfn = usable_startpfn;
  5373. }
  5374. /*
  5375. * The usable PFN range for ZONE_MOVABLE is from
  5376. * start_pfn->end_pfn. Calculate size_pages as the
  5377. * number of pages used as kernelcore
  5378. */
  5379. size_pages = end_pfn - start_pfn;
  5380. if (size_pages > kernelcore_remaining)
  5381. size_pages = kernelcore_remaining;
  5382. zone_movable_pfn[nid] = start_pfn + size_pages;
  5383. /*
  5384. * Some kernelcore has been met, update counts and
  5385. * break if the kernelcore for this node has been
  5386. * satisfied
  5387. */
  5388. required_kernelcore -= min(required_kernelcore,
  5389. size_pages);
  5390. kernelcore_remaining -= size_pages;
  5391. if (!kernelcore_remaining)
  5392. break;
  5393. }
  5394. }
  5395. /*
  5396. * If there is still required_kernelcore, we do another pass with one
  5397. * less node in the count. This will push zone_movable_pfn[nid] further
  5398. * along on the nodes that still have memory until kernelcore is
  5399. * satisfied
  5400. */
  5401. usable_nodes--;
  5402. if (usable_nodes && required_kernelcore > usable_nodes)
  5403. goto restart;
  5404. out2:
  5405. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5406. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5407. zone_movable_pfn[nid] =
  5408. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5409. out:
  5410. /* restore the node_state */
  5411. node_states[N_MEMORY] = saved_node_state;
  5412. }
  5413. /* Any regular or high memory on that node ? */
  5414. static void check_for_memory(pg_data_t *pgdat, int nid)
  5415. {
  5416. enum zone_type zone_type;
  5417. if (N_MEMORY == N_NORMAL_MEMORY)
  5418. return;
  5419. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5420. struct zone *zone = &pgdat->node_zones[zone_type];
  5421. if (populated_zone(zone)) {
  5422. node_set_state(nid, N_HIGH_MEMORY);
  5423. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5424. zone_type <= ZONE_NORMAL)
  5425. node_set_state(nid, N_NORMAL_MEMORY);
  5426. break;
  5427. }
  5428. }
  5429. }
  5430. /**
  5431. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5432. * @max_zone_pfn: an array of max PFNs for each zone
  5433. *
  5434. * This will call free_area_init_node() for each active node in the system.
  5435. * Using the page ranges provided by memblock_set_node(), the size of each
  5436. * zone in each node and their holes is calculated. If the maximum PFN
  5437. * between two adjacent zones match, it is assumed that the zone is empty.
  5438. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5439. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5440. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5441. * at arch_max_dma_pfn.
  5442. */
  5443. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5444. {
  5445. unsigned long start_pfn, end_pfn;
  5446. int i, nid;
  5447. /* Record where the zone boundaries are */
  5448. memset(arch_zone_lowest_possible_pfn, 0,
  5449. sizeof(arch_zone_lowest_possible_pfn));
  5450. memset(arch_zone_highest_possible_pfn, 0,
  5451. sizeof(arch_zone_highest_possible_pfn));
  5452. start_pfn = find_min_pfn_with_active_regions();
  5453. for (i = 0; i < MAX_NR_ZONES; i++) {
  5454. if (i == ZONE_MOVABLE)
  5455. continue;
  5456. end_pfn = max(max_zone_pfn[i], start_pfn);
  5457. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5458. arch_zone_highest_possible_pfn[i] = end_pfn;
  5459. start_pfn = end_pfn;
  5460. }
  5461. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5462. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5463. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5464. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5465. find_zone_movable_pfns_for_nodes();
  5466. /* Print out the zone ranges */
  5467. pr_info("Zone ranges:\n");
  5468. for (i = 0; i < MAX_NR_ZONES; i++) {
  5469. if (i == ZONE_MOVABLE)
  5470. continue;
  5471. pr_info(" %-8s ", zone_names[i]);
  5472. if (arch_zone_lowest_possible_pfn[i] ==
  5473. arch_zone_highest_possible_pfn[i])
  5474. pr_cont("empty\n");
  5475. else
  5476. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5477. (u64)arch_zone_lowest_possible_pfn[i]
  5478. << PAGE_SHIFT,
  5479. ((u64)arch_zone_highest_possible_pfn[i]
  5480. << PAGE_SHIFT) - 1);
  5481. }
  5482. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5483. pr_info("Movable zone start for each node\n");
  5484. for (i = 0; i < MAX_NUMNODES; i++) {
  5485. if (zone_movable_pfn[i])
  5486. pr_info(" Node %d: %#018Lx\n", i,
  5487. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5488. }
  5489. /* Print out the early node map */
  5490. pr_info("Early memory node ranges\n");
  5491. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5492. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5493. (u64)start_pfn << PAGE_SHIFT,
  5494. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5495. /* Initialise every node */
  5496. mminit_verify_pageflags_layout();
  5497. setup_nr_node_ids();
  5498. for_each_online_node(nid) {
  5499. pg_data_t *pgdat = NODE_DATA(nid);
  5500. free_area_init_node(nid, NULL,
  5501. find_min_pfn_for_node(nid), NULL);
  5502. /* Any memory on that node */
  5503. if (pgdat->node_present_pages)
  5504. node_set_state(nid, N_MEMORY);
  5505. check_for_memory(pgdat, nid);
  5506. }
  5507. }
  5508. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5509. {
  5510. unsigned long long coremem;
  5511. if (!p)
  5512. return -EINVAL;
  5513. coremem = memparse(p, &p);
  5514. *core = coremem >> PAGE_SHIFT;
  5515. /* Paranoid check that UL is enough for the coremem value */
  5516. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5517. return 0;
  5518. }
  5519. /*
  5520. * kernelcore=size sets the amount of memory for use for allocations that
  5521. * cannot be reclaimed or migrated.
  5522. */
  5523. static int __init cmdline_parse_kernelcore(char *p)
  5524. {
  5525. /* parse kernelcore=mirror */
  5526. if (parse_option_str(p, "mirror")) {
  5527. mirrored_kernelcore = true;
  5528. return 0;
  5529. }
  5530. return cmdline_parse_core(p, &required_kernelcore);
  5531. }
  5532. /*
  5533. * movablecore=size sets the amount of memory for use for allocations that
  5534. * can be reclaimed or migrated.
  5535. */
  5536. static int __init cmdline_parse_movablecore(char *p)
  5537. {
  5538. return cmdline_parse_core(p, &required_movablecore);
  5539. }
  5540. early_param("kernelcore", cmdline_parse_kernelcore);
  5541. early_param("movablecore", cmdline_parse_movablecore);
  5542. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5543. void adjust_managed_page_count(struct page *page, long count)
  5544. {
  5545. spin_lock(&managed_page_count_lock);
  5546. page_zone(page)->managed_pages += count;
  5547. totalram_pages += count;
  5548. #ifdef CONFIG_HIGHMEM
  5549. if (PageHighMem(page))
  5550. totalhigh_pages += count;
  5551. #endif
  5552. spin_unlock(&managed_page_count_lock);
  5553. }
  5554. EXPORT_SYMBOL(adjust_managed_page_count);
  5555. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5556. {
  5557. void *pos;
  5558. unsigned long pages = 0;
  5559. start = (void *)PAGE_ALIGN((unsigned long)start);
  5560. end = (void *)((unsigned long)end & PAGE_MASK);
  5561. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5562. if ((unsigned int)poison <= 0xFF)
  5563. memset(pos, poison, PAGE_SIZE);
  5564. free_reserved_page(virt_to_page(pos));
  5565. }
  5566. if (pages && s)
  5567. pr_info("Freeing %s memory: %ldK\n",
  5568. s, pages << (PAGE_SHIFT - 10));
  5569. return pages;
  5570. }
  5571. EXPORT_SYMBOL(free_reserved_area);
  5572. #ifdef CONFIG_HIGHMEM
  5573. void free_highmem_page(struct page *page)
  5574. {
  5575. __free_reserved_page(page);
  5576. totalram_pages++;
  5577. page_zone(page)->managed_pages++;
  5578. totalhigh_pages++;
  5579. }
  5580. #endif
  5581. void __init mem_init_print_info(const char *str)
  5582. {
  5583. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5584. unsigned long init_code_size, init_data_size;
  5585. physpages = get_num_physpages();
  5586. codesize = _etext - _stext;
  5587. datasize = _edata - _sdata;
  5588. rosize = __end_rodata - __start_rodata;
  5589. bss_size = __bss_stop - __bss_start;
  5590. init_data_size = __init_end - __init_begin;
  5591. init_code_size = _einittext - _sinittext;
  5592. /*
  5593. * Detect special cases and adjust section sizes accordingly:
  5594. * 1) .init.* may be embedded into .data sections
  5595. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5596. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5597. * 3) .rodata.* may be embedded into .text or .data sections.
  5598. */
  5599. #define adj_init_size(start, end, size, pos, adj) \
  5600. do { \
  5601. if (start <= pos && pos < end && size > adj) \
  5602. size -= adj; \
  5603. } while (0)
  5604. adj_init_size(__init_begin, __init_end, init_data_size,
  5605. _sinittext, init_code_size);
  5606. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5607. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5608. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5609. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5610. #undef adj_init_size
  5611. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5612. #ifdef CONFIG_HIGHMEM
  5613. ", %luK highmem"
  5614. #endif
  5615. "%s%s)\n",
  5616. nr_free_pages() << (PAGE_SHIFT - 10),
  5617. physpages << (PAGE_SHIFT - 10),
  5618. codesize >> 10, datasize >> 10, rosize >> 10,
  5619. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5620. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5621. totalcma_pages << (PAGE_SHIFT - 10),
  5622. #ifdef CONFIG_HIGHMEM
  5623. totalhigh_pages << (PAGE_SHIFT - 10),
  5624. #endif
  5625. str ? ", " : "", str ? str : "");
  5626. }
  5627. /**
  5628. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5629. * @new_dma_reserve: The number of pages to mark reserved
  5630. *
  5631. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5632. * In the DMA zone, a significant percentage may be consumed by kernel image
  5633. * and other unfreeable allocations which can skew the watermarks badly. This
  5634. * function may optionally be used to account for unfreeable pages in the
  5635. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5636. * smaller per-cpu batchsize.
  5637. */
  5638. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5639. {
  5640. dma_reserve = new_dma_reserve;
  5641. }
  5642. void __init free_area_init(unsigned long *zones_size)
  5643. {
  5644. free_area_init_node(0, zones_size,
  5645. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5646. }
  5647. static int page_alloc_cpu_notify(struct notifier_block *self,
  5648. unsigned long action, void *hcpu)
  5649. {
  5650. int cpu = (unsigned long)hcpu;
  5651. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5652. lru_add_drain_cpu(cpu);
  5653. drain_pages(cpu);
  5654. /*
  5655. * Spill the event counters of the dead processor
  5656. * into the current processors event counters.
  5657. * This artificially elevates the count of the current
  5658. * processor.
  5659. */
  5660. vm_events_fold_cpu(cpu);
  5661. /*
  5662. * Zero the differential counters of the dead processor
  5663. * so that the vm statistics are consistent.
  5664. *
  5665. * This is only okay since the processor is dead and cannot
  5666. * race with what we are doing.
  5667. */
  5668. cpu_vm_stats_fold(cpu);
  5669. }
  5670. return NOTIFY_OK;
  5671. }
  5672. void __init page_alloc_init(void)
  5673. {
  5674. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5675. }
  5676. /*
  5677. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5678. * or min_free_kbytes changes.
  5679. */
  5680. static void calculate_totalreserve_pages(void)
  5681. {
  5682. struct pglist_data *pgdat;
  5683. unsigned long reserve_pages = 0;
  5684. enum zone_type i, j;
  5685. for_each_online_pgdat(pgdat) {
  5686. pgdat->totalreserve_pages = 0;
  5687. for (i = 0; i < MAX_NR_ZONES; i++) {
  5688. struct zone *zone = pgdat->node_zones + i;
  5689. long max = 0;
  5690. /* Find valid and maximum lowmem_reserve in the zone */
  5691. for (j = i; j < MAX_NR_ZONES; j++) {
  5692. if (zone->lowmem_reserve[j] > max)
  5693. max = zone->lowmem_reserve[j];
  5694. }
  5695. /* we treat the high watermark as reserved pages. */
  5696. max += high_wmark_pages(zone);
  5697. if (max > zone->managed_pages)
  5698. max = zone->managed_pages;
  5699. pgdat->totalreserve_pages += max;
  5700. reserve_pages += max;
  5701. }
  5702. }
  5703. totalreserve_pages = reserve_pages;
  5704. }
  5705. /*
  5706. * setup_per_zone_lowmem_reserve - called whenever
  5707. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5708. * has a correct pages reserved value, so an adequate number of
  5709. * pages are left in the zone after a successful __alloc_pages().
  5710. */
  5711. static void setup_per_zone_lowmem_reserve(void)
  5712. {
  5713. struct pglist_data *pgdat;
  5714. enum zone_type j, idx;
  5715. for_each_online_pgdat(pgdat) {
  5716. for (j = 0; j < MAX_NR_ZONES; j++) {
  5717. struct zone *zone = pgdat->node_zones + j;
  5718. unsigned long managed_pages = zone->managed_pages;
  5719. zone->lowmem_reserve[j] = 0;
  5720. idx = j;
  5721. while (idx) {
  5722. struct zone *lower_zone;
  5723. idx--;
  5724. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5725. sysctl_lowmem_reserve_ratio[idx] = 1;
  5726. lower_zone = pgdat->node_zones + idx;
  5727. lower_zone->lowmem_reserve[j] = managed_pages /
  5728. sysctl_lowmem_reserve_ratio[idx];
  5729. managed_pages += lower_zone->managed_pages;
  5730. }
  5731. }
  5732. }
  5733. /* update totalreserve_pages */
  5734. calculate_totalreserve_pages();
  5735. }
  5736. static void __setup_per_zone_wmarks(void)
  5737. {
  5738. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5739. unsigned long lowmem_pages = 0;
  5740. struct zone *zone;
  5741. unsigned long flags;
  5742. /* Calculate total number of !ZONE_HIGHMEM pages */
  5743. for_each_zone(zone) {
  5744. if (!is_highmem(zone))
  5745. lowmem_pages += zone->managed_pages;
  5746. }
  5747. for_each_zone(zone) {
  5748. u64 tmp;
  5749. spin_lock_irqsave(&zone->lock, flags);
  5750. tmp = (u64)pages_min * zone->managed_pages;
  5751. do_div(tmp, lowmem_pages);
  5752. if (is_highmem(zone)) {
  5753. /*
  5754. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5755. * need highmem pages, so cap pages_min to a small
  5756. * value here.
  5757. *
  5758. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5759. * deltas control asynch page reclaim, and so should
  5760. * not be capped for highmem.
  5761. */
  5762. unsigned long min_pages;
  5763. min_pages = zone->managed_pages / 1024;
  5764. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5765. zone->watermark[WMARK_MIN] = min_pages;
  5766. } else {
  5767. /*
  5768. * If it's a lowmem zone, reserve a number of pages
  5769. * proportionate to the zone's size.
  5770. */
  5771. zone->watermark[WMARK_MIN] = tmp;
  5772. }
  5773. /*
  5774. * Set the kswapd watermarks distance according to the
  5775. * scale factor in proportion to available memory, but
  5776. * ensure a minimum size on small systems.
  5777. */
  5778. tmp = max_t(u64, tmp >> 2,
  5779. mult_frac(zone->managed_pages,
  5780. watermark_scale_factor, 10000));
  5781. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5782. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5783. spin_unlock_irqrestore(&zone->lock, flags);
  5784. }
  5785. /* update totalreserve_pages */
  5786. calculate_totalreserve_pages();
  5787. }
  5788. /**
  5789. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5790. * or when memory is hot-{added|removed}
  5791. *
  5792. * Ensures that the watermark[min,low,high] values for each zone are set
  5793. * correctly with respect to min_free_kbytes.
  5794. */
  5795. void setup_per_zone_wmarks(void)
  5796. {
  5797. mutex_lock(&zonelists_mutex);
  5798. __setup_per_zone_wmarks();
  5799. mutex_unlock(&zonelists_mutex);
  5800. }
  5801. /*
  5802. * Initialise min_free_kbytes.
  5803. *
  5804. * For small machines we want it small (128k min). For large machines
  5805. * we want it large (64MB max). But it is not linear, because network
  5806. * bandwidth does not increase linearly with machine size. We use
  5807. *
  5808. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5809. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5810. *
  5811. * which yields
  5812. *
  5813. * 16MB: 512k
  5814. * 32MB: 724k
  5815. * 64MB: 1024k
  5816. * 128MB: 1448k
  5817. * 256MB: 2048k
  5818. * 512MB: 2896k
  5819. * 1024MB: 4096k
  5820. * 2048MB: 5792k
  5821. * 4096MB: 8192k
  5822. * 8192MB: 11584k
  5823. * 16384MB: 16384k
  5824. */
  5825. int __meminit init_per_zone_wmark_min(void)
  5826. {
  5827. unsigned long lowmem_kbytes;
  5828. int new_min_free_kbytes;
  5829. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5830. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5831. if (new_min_free_kbytes > user_min_free_kbytes) {
  5832. min_free_kbytes = new_min_free_kbytes;
  5833. if (min_free_kbytes < 128)
  5834. min_free_kbytes = 128;
  5835. if (min_free_kbytes > 65536)
  5836. min_free_kbytes = 65536;
  5837. } else {
  5838. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5839. new_min_free_kbytes, user_min_free_kbytes);
  5840. }
  5841. setup_per_zone_wmarks();
  5842. refresh_zone_stat_thresholds();
  5843. setup_per_zone_lowmem_reserve();
  5844. #ifdef CONFIG_NUMA
  5845. setup_min_unmapped_ratio();
  5846. setup_min_slab_ratio();
  5847. #endif
  5848. return 0;
  5849. }
  5850. core_initcall(init_per_zone_wmark_min)
  5851. /*
  5852. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5853. * that we can call two helper functions whenever min_free_kbytes
  5854. * changes.
  5855. */
  5856. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5857. void __user *buffer, size_t *length, loff_t *ppos)
  5858. {
  5859. int rc;
  5860. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5861. if (rc)
  5862. return rc;
  5863. if (write) {
  5864. user_min_free_kbytes = min_free_kbytes;
  5865. setup_per_zone_wmarks();
  5866. }
  5867. return 0;
  5868. }
  5869. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5870. void __user *buffer, size_t *length, loff_t *ppos)
  5871. {
  5872. int rc;
  5873. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5874. if (rc)
  5875. return rc;
  5876. if (write)
  5877. setup_per_zone_wmarks();
  5878. return 0;
  5879. }
  5880. #ifdef CONFIG_NUMA
  5881. static void setup_min_unmapped_ratio(void)
  5882. {
  5883. pg_data_t *pgdat;
  5884. struct zone *zone;
  5885. for_each_online_pgdat(pgdat)
  5886. pgdat->min_unmapped_pages = 0;
  5887. for_each_zone(zone)
  5888. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  5889. sysctl_min_unmapped_ratio) / 100;
  5890. }
  5891. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5892. void __user *buffer, size_t *length, loff_t *ppos)
  5893. {
  5894. int rc;
  5895. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5896. if (rc)
  5897. return rc;
  5898. setup_min_unmapped_ratio();
  5899. return 0;
  5900. }
  5901. static void setup_min_slab_ratio(void)
  5902. {
  5903. pg_data_t *pgdat;
  5904. struct zone *zone;
  5905. for_each_online_pgdat(pgdat)
  5906. pgdat->min_slab_pages = 0;
  5907. for_each_zone(zone)
  5908. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  5909. sysctl_min_slab_ratio) / 100;
  5910. }
  5911. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5912. void __user *buffer, size_t *length, loff_t *ppos)
  5913. {
  5914. int rc;
  5915. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5916. if (rc)
  5917. return rc;
  5918. setup_min_slab_ratio();
  5919. return 0;
  5920. }
  5921. #endif
  5922. /*
  5923. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5924. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5925. * whenever sysctl_lowmem_reserve_ratio changes.
  5926. *
  5927. * The reserve ratio obviously has absolutely no relation with the
  5928. * minimum watermarks. The lowmem reserve ratio can only make sense
  5929. * if in function of the boot time zone sizes.
  5930. */
  5931. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5932. void __user *buffer, size_t *length, loff_t *ppos)
  5933. {
  5934. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5935. setup_per_zone_lowmem_reserve();
  5936. return 0;
  5937. }
  5938. /*
  5939. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5940. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5941. * pagelist can have before it gets flushed back to buddy allocator.
  5942. */
  5943. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5944. void __user *buffer, size_t *length, loff_t *ppos)
  5945. {
  5946. struct zone *zone;
  5947. int old_percpu_pagelist_fraction;
  5948. int ret;
  5949. mutex_lock(&pcp_batch_high_lock);
  5950. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5951. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5952. if (!write || ret < 0)
  5953. goto out;
  5954. /* Sanity checking to avoid pcp imbalance */
  5955. if (percpu_pagelist_fraction &&
  5956. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5957. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5958. ret = -EINVAL;
  5959. goto out;
  5960. }
  5961. /* No change? */
  5962. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5963. goto out;
  5964. for_each_populated_zone(zone) {
  5965. unsigned int cpu;
  5966. for_each_possible_cpu(cpu)
  5967. pageset_set_high_and_batch(zone,
  5968. per_cpu_ptr(zone->pageset, cpu));
  5969. }
  5970. out:
  5971. mutex_unlock(&pcp_batch_high_lock);
  5972. return ret;
  5973. }
  5974. #ifdef CONFIG_NUMA
  5975. int hashdist = HASHDIST_DEFAULT;
  5976. static int __init set_hashdist(char *str)
  5977. {
  5978. if (!str)
  5979. return 0;
  5980. hashdist = simple_strtoul(str, &str, 0);
  5981. return 1;
  5982. }
  5983. __setup("hashdist=", set_hashdist);
  5984. #endif
  5985. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  5986. /*
  5987. * Returns the number of pages that arch has reserved but
  5988. * is not known to alloc_large_system_hash().
  5989. */
  5990. static unsigned long __init arch_reserved_kernel_pages(void)
  5991. {
  5992. return 0;
  5993. }
  5994. #endif
  5995. /*
  5996. * allocate a large system hash table from bootmem
  5997. * - it is assumed that the hash table must contain an exact power-of-2
  5998. * quantity of entries
  5999. * - limit is the number of hash buckets, not the total allocation size
  6000. */
  6001. void *__init alloc_large_system_hash(const char *tablename,
  6002. unsigned long bucketsize,
  6003. unsigned long numentries,
  6004. int scale,
  6005. int flags,
  6006. unsigned int *_hash_shift,
  6007. unsigned int *_hash_mask,
  6008. unsigned long low_limit,
  6009. unsigned long high_limit)
  6010. {
  6011. unsigned long long max = high_limit;
  6012. unsigned long log2qty, size;
  6013. void *table = NULL;
  6014. /* allow the kernel cmdline to have a say */
  6015. if (!numentries) {
  6016. /* round applicable memory size up to nearest megabyte */
  6017. numentries = nr_kernel_pages;
  6018. numentries -= arch_reserved_kernel_pages();
  6019. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6020. if (PAGE_SHIFT < 20)
  6021. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6022. /* limit to 1 bucket per 2^scale bytes of low memory */
  6023. if (scale > PAGE_SHIFT)
  6024. numentries >>= (scale - PAGE_SHIFT);
  6025. else
  6026. numentries <<= (PAGE_SHIFT - scale);
  6027. /* Make sure we've got at least a 0-order allocation.. */
  6028. if (unlikely(flags & HASH_SMALL)) {
  6029. /* Makes no sense without HASH_EARLY */
  6030. WARN_ON(!(flags & HASH_EARLY));
  6031. if (!(numentries >> *_hash_shift)) {
  6032. numentries = 1UL << *_hash_shift;
  6033. BUG_ON(!numentries);
  6034. }
  6035. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6036. numentries = PAGE_SIZE / bucketsize;
  6037. }
  6038. numentries = roundup_pow_of_two(numentries);
  6039. /* limit allocation size to 1/16 total memory by default */
  6040. if (max == 0) {
  6041. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6042. do_div(max, bucketsize);
  6043. }
  6044. max = min(max, 0x80000000ULL);
  6045. if (numentries < low_limit)
  6046. numentries = low_limit;
  6047. if (numentries > max)
  6048. numentries = max;
  6049. log2qty = ilog2(numentries);
  6050. do {
  6051. size = bucketsize << log2qty;
  6052. if (flags & HASH_EARLY)
  6053. table = memblock_virt_alloc_nopanic(size, 0);
  6054. else if (hashdist)
  6055. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6056. else {
  6057. /*
  6058. * If bucketsize is not a power-of-two, we may free
  6059. * some pages at the end of hash table which
  6060. * alloc_pages_exact() automatically does
  6061. */
  6062. if (get_order(size) < MAX_ORDER) {
  6063. table = alloc_pages_exact(size, GFP_ATOMIC);
  6064. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6065. }
  6066. }
  6067. } while (!table && size > PAGE_SIZE && --log2qty);
  6068. if (!table)
  6069. panic("Failed to allocate %s hash table\n", tablename);
  6070. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6071. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6072. if (_hash_shift)
  6073. *_hash_shift = log2qty;
  6074. if (_hash_mask)
  6075. *_hash_mask = (1 << log2qty) - 1;
  6076. return table;
  6077. }
  6078. /*
  6079. * This function checks whether pageblock includes unmovable pages or not.
  6080. * If @count is not zero, it is okay to include less @count unmovable pages
  6081. *
  6082. * PageLRU check without isolation or lru_lock could race so that
  6083. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6084. * expect this function should be exact.
  6085. */
  6086. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6087. bool skip_hwpoisoned_pages)
  6088. {
  6089. unsigned long pfn, iter, found;
  6090. int mt;
  6091. /*
  6092. * For avoiding noise data, lru_add_drain_all() should be called
  6093. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6094. */
  6095. if (zone_idx(zone) == ZONE_MOVABLE)
  6096. return false;
  6097. mt = get_pageblock_migratetype(page);
  6098. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6099. return false;
  6100. pfn = page_to_pfn(page);
  6101. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6102. unsigned long check = pfn + iter;
  6103. if (!pfn_valid_within(check))
  6104. continue;
  6105. page = pfn_to_page(check);
  6106. /*
  6107. * Hugepages are not in LRU lists, but they're movable.
  6108. * We need not scan over tail pages bacause we don't
  6109. * handle each tail page individually in migration.
  6110. */
  6111. if (PageHuge(page)) {
  6112. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6113. continue;
  6114. }
  6115. /*
  6116. * We can't use page_count without pin a page
  6117. * because another CPU can free compound page.
  6118. * This check already skips compound tails of THP
  6119. * because their page->_refcount is zero at all time.
  6120. */
  6121. if (!page_ref_count(page)) {
  6122. if (PageBuddy(page))
  6123. iter += (1 << page_order(page)) - 1;
  6124. continue;
  6125. }
  6126. /*
  6127. * The HWPoisoned page may be not in buddy system, and
  6128. * page_count() is not 0.
  6129. */
  6130. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6131. continue;
  6132. if (!PageLRU(page))
  6133. found++;
  6134. /*
  6135. * If there are RECLAIMABLE pages, we need to check
  6136. * it. But now, memory offline itself doesn't call
  6137. * shrink_node_slabs() and it still to be fixed.
  6138. */
  6139. /*
  6140. * If the page is not RAM, page_count()should be 0.
  6141. * we don't need more check. This is an _used_ not-movable page.
  6142. *
  6143. * The problematic thing here is PG_reserved pages. PG_reserved
  6144. * is set to both of a memory hole page and a _used_ kernel
  6145. * page at boot.
  6146. */
  6147. if (found > count)
  6148. return true;
  6149. }
  6150. return false;
  6151. }
  6152. bool is_pageblock_removable_nolock(struct page *page)
  6153. {
  6154. struct zone *zone;
  6155. unsigned long pfn;
  6156. /*
  6157. * We have to be careful here because we are iterating over memory
  6158. * sections which are not zone aware so we might end up outside of
  6159. * the zone but still within the section.
  6160. * We have to take care about the node as well. If the node is offline
  6161. * its NODE_DATA will be NULL - see page_zone.
  6162. */
  6163. if (!node_online(page_to_nid(page)))
  6164. return false;
  6165. zone = page_zone(page);
  6166. pfn = page_to_pfn(page);
  6167. if (!zone_spans_pfn(zone, pfn))
  6168. return false;
  6169. return !has_unmovable_pages(zone, page, 0, true);
  6170. }
  6171. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6172. static unsigned long pfn_max_align_down(unsigned long pfn)
  6173. {
  6174. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6175. pageblock_nr_pages) - 1);
  6176. }
  6177. static unsigned long pfn_max_align_up(unsigned long pfn)
  6178. {
  6179. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6180. pageblock_nr_pages));
  6181. }
  6182. /* [start, end) must belong to a single zone. */
  6183. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6184. unsigned long start, unsigned long end)
  6185. {
  6186. /* This function is based on compact_zone() from compaction.c. */
  6187. unsigned long nr_reclaimed;
  6188. unsigned long pfn = start;
  6189. unsigned int tries = 0;
  6190. int ret = 0;
  6191. migrate_prep();
  6192. while (pfn < end || !list_empty(&cc->migratepages)) {
  6193. if (fatal_signal_pending(current)) {
  6194. ret = -EINTR;
  6195. break;
  6196. }
  6197. if (list_empty(&cc->migratepages)) {
  6198. cc->nr_migratepages = 0;
  6199. pfn = isolate_migratepages_range(cc, pfn, end);
  6200. if (!pfn) {
  6201. ret = -EINTR;
  6202. break;
  6203. }
  6204. tries = 0;
  6205. } else if (++tries == 5) {
  6206. ret = ret < 0 ? ret : -EBUSY;
  6207. break;
  6208. }
  6209. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6210. &cc->migratepages);
  6211. cc->nr_migratepages -= nr_reclaimed;
  6212. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6213. NULL, 0, cc->mode, MR_CMA);
  6214. }
  6215. if (ret < 0) {
  6216. putback_movable_pages(&cc->migratepages);
  6217. return ret;
  6218. }
  6219. return 0;
  6220. }
  6221. /**
  6222. * alloc_contig_range() -- tries to allocate given range of pages
  6223. * @start: start PFN to allocate
  6224. * @end: one-past-the-last PFN to allocate
  6225. * @migratetype: migratetype of the underlaying pageblocks (either
  6226. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6227. * in range must have the same migratetype and it must
  6228. * be either of the two.
  6229. *
  6230. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6231. * aligned, however it's the caller's responsibility to guarantee that
  6232. * we are the only thread that changes migrate type of pageblocks the
  6233. * pages fall in.
  6234. *
  6235. * The PFN range must belong to a single zone.
  6236. *
  6237. * Returns zero on success or negative error code. On success all
  6238. * pages which PFN is in [start, end) are allocated for the caller and
  6239. * need to be freed with free_contig_range().
  6240. */
  6241. int alloc_contig_range(unsigned long start, unsigned long end,
  6242. unsigned migratetype)
  6243. {
  6244. unsigned long outer_start, outer_end;
  6245. unsigned int order;
  6246. int ret = 0;
  6247. struct compact_control cc = {
  6248. .nr_migratepages = 0,
  6249. .order = -1,
  6250. .zone = page_zone(pfn_to_page(start)),
  6251. .mode = MIGRATE_SYNC,
  6252. .ignore_skip_hint = true,
  6253. };
  6254. INIT_LIST_HEAD(&cc.migratepages);
  6255. /*
  6256. * What we do here is we mark all pageblocks in range as
  6257. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6258. * have different sizes, and due to the way page allocator
  6259. * work, we align the range to biggest of the two pages so
  6260. * that page allocator won't try to merge buddies from
  6261. * different pageblocks and change MIGRATE_ISOLATE to some
  6262. * other migration type.
  6263. *
  6264. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6265. * migrate the pages from an unaligned range (ie. pages that
  6266. * we are interested in). This will put all the pages in
  6267. * range back to page allocator as MIGRATE_ISOLATE.
  6268. *
  6269. * When this is done, we take the pages in range from page
  6270. * allocator removing them from the buddy system. This way
  6271. * page allocator will never consider using them.
  6272. *
  6273. * This lets us mark the pageblocks back as
  6274. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6275. * aligned range but not in the unaligned, original range are
  6276. * put back to page allocator so that buddy can use them.
  6277. */
  6278. ret = start_isolate_page_range(pfn_max_align_down(start),
  6279. pfn_max_align_up(end), migratetype,
  6280. false);
  6281. if (ret)
  6282. return ret;
  6283. /*
  6284. * In case of -EBUSY, we'd like to know which page causes problem.
  6285. * So, just fall through. test_pages_isolated() has a tracepoint
  6286. * which will report the busy page.
  6287. *
  6288. * It is possible that busy pages could become available before
  6289. * the call to test_pages_isolated, and the range will actually be
  6290. * allocated. So, if we fall through be sure to clear ret so that
  6291. * -EBUSY is not accidentally used or returned to caller.
  6292. */
  6293. ret = __alloc_contig_migrate_range(&cc, start, end);
  6294. if (ret && ret != -EBUSY)
  6295. goto done;
  6296. ret =0;
  6297. /*
  6298. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6299. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6300. * more, all pages in [start, end) are free in page allocator.
  6301. * What we are going to do is to allocate all pages from
  6302. * [start, end) (that is remove them from page allocator).
  6303. *
  6304. * The only problem is that pages at the beginning and at the
  6305. * end of interesting range may be not aligned with pages that
  6306. * page allocator holds, ie. they can be part of higher order
  6307. * pages. Because of this, we reserve the bigger range and
  6308. * once this is done free the pages we are not interested in.
  6309. *
  6310. * We don't have to hold zone->lock here because the pages are
  6311. * isolated thus they won't get removed from buddy.
  6312. */
  6313. lru_add_drain_all();
  6314. drain_all_pages(cc.zone);
  6315. order = 0;
  6316. outer_start = start;
  6317. while (!PageBuddy(pfn_to_page(outer_start))) {
  6318. if (++order >= MAX_ORDER) {
  6319. outer_start = start;
  6320. break;
  6321. }
  6322. outer_start &= ~0UL << order;
  6323. }
  6324. if (outer_start != start) {
  6325. order = page_order(pfn_to_page(outer_start));
  6326. /*
  6327. * outer_start page could be small order buddy page and
  6328. * it doesn't include start page. Adjust outer_start
  6329. * in this case to report failed page properly
  6330. * on tracepoint in test_pages_isolated()
  6331. */
  6332. if (outer_start + (1UL << order) <= start)
  6333. outer_start = start;
  6334. }
  6335. /* Make sure the range is really isolated. */
  6336. if (test_pages_isolated(outer_start, end, false)) {
  6337. pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
  6338. __func__, outer_start, end);
  6339. ret = -EBUSY;
  6340. goto done;
  6341. }
  6342. /* Grab isolated pages from freelists. */
  6343. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6344. if (!outer_end) {
  6345. ret = -EBUSY;
  6346. goto done;
  6347. }
  6348. /* Free head and tail (if any) */
  6349. if (start != outer_start)
  6350. free_contig_range(outer_start, start - outer_start);
  6351. if (end != outer_end)
  6352. free_contig_range(end, outer_end - end);
  6353. done:
  6354. undo_isolate_page_range(pfn_max_align_down(start),
  6355. pfn_max_align_up(end), migratetype);
  6356. return ret;
  6357. }
  6358. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6359. {
  6360. unsigned int count = 0;
  6361. for (; nr_pages--; pfn++) {
  6362. struct page *page = pfn_to_page(pfn);
  6363. count += page_count(page) != 1;
  6364. __free_page(page);
  6365. }
  6366. WARN(count != 0, "%d pages are still in use!\n", count);
  6367. }
  6368. #endif
  6369. #ifdef CONFIG_MEMORY_HOTPLUG
  6370. /*
  6371. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6372. * page high values need to be recalulated.
  6373. */
  6374. void __meminit zone_pcp_update(struct zone *zone)
  6375. {
  6376. unsigned cpu;
  6377. mutex_lock(&pcp_batch_high_lock);
  6378. for_each_possible_cpu(cpu)
  6379. pageset_set_high_and_batch(zone,
  6380. per_cpu_ptr(zone->pageset, cpu));
  6381. mutex_unlock(&pcp_batch_high_lock);
  6382. }
  6383. #endif
  6384. void zone_pcp_reset(struct zone *zone)
  6385. {
  6386. unsigned long flags;
  6387. int cpu;
  6388. struct per_cpu_pageset *pset;
  6389. /* avoid races with drain_pages() */
  6390. local_irq_save(flags);
  6391. if (zone->pageset != &boot_pageset) {
  6392. for_each_online_cpu(cpu) {
  6393. pset = per_cpu_ptr(zone->pageset, cpu);
  6394. drain_zonestat(zone, pset);
  6395. }
  6396. free_percpu(zone->pageset);
  6397. zone->pageset = &boot_pageset;
  6398. }
  6399. local_irq_restore(flags);
  6400. }
  6401. #ifdef CONFIG_MEMORY_HOTREMOVE
  6402. /*
  6403. * All pages in the range must be in a single zone and isolated
  6404. * before calling this.
  6405. */
  6406. void
  6407. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6408. {
  6409. struct page *page;
  6410. struct zone *zone;
  6411. unsigned int order, i;
  6412. unsigned long pfn;
  6413. unsigned long flags;
  6414. /* find the first valid pfn */
  6415. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6416. if (pfn_valid(pfn))
  6417. break;
  6418. if (pfn == end_pfn)
  6419. return;
  6420. zone = page_zone(pfn_to_page(pfn));
  6421. spin_lock_irqsave(&zone->lock, flags);
  6422. pfn = start_pfn;
  6423. while (pfn < end_pfn) {
  6424. if (!pfn_valid(pfn)) {
  6425. pfn++;
  6426. continue;
  6427. }
  6428. page = pfn_to_page(pfn);
  6429. /*
  6430. * The HWPoisoned page may be not in buddy system, and
  6431. * page_count() is not 0.
  6432. */
  6433. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6434. pfn++;
  6435. SetPageReserved(page);
  6436. continue;
  6437. }
  6438. BUG_ON(page_count(page));
  6439. BUG_ON(!PageBuddy(page));
  6440. order = page_order(page);
  6441. #ifdef CONFIG_DEBUG_VM
  6442. pr_info("remove from free list %lx %d %lx\n",
  6443. pfn, 1 << order, end_pfn);
  6444. #endif
  6445. list_del(&page->lru);
  6446. rmv_page_order(page);
  6447. zone->free_area[order].nr_free--;
  6448. for (i = 0; i < (1 << order); i++)
  6449. SetPageReserved((page+i));
  6450. pfn += (1 << order);
  6451. }
  6452. spin_unlock_irqrestore(&zone->lock, flags);
  6453. }
  6454. #endif
  6455. bool is_free_buddy_page(struct page *page)
  6456. {
  6457. struct zone *zone = page_zone(page);
  6458. unsigned long pfn = page_to_pfn(page);
  6459. unsigned long flags;
  6460. unsigned int order;
  6461. spin_lock_irqsave(&zone->lock, flags);
  6462. for (order = 0; order < MAX_ORDER; order++) {
  6463. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6464. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6465. break;
  6466. }
  6467. spin_unlock_irqrestore(&zone->lock, flags);
  6468. return order < MAX_ORDER;
  6469. }