xen-selfballoon.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. /******************************************************************************
  2. * Xen selfballoon driver (and optional frontswap self-shrinking driver)
  3. *
  4. * Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp.
  5. *
  6. * This code complements the cleancache and frontswap patchsets to optimize
  7. * support for Xen Transcendent Memory ("tmem"). The policy it implements
  8. * is rudimentary and will likely improve over time, but it does work well
  9. * enough today.
  10. *
  11. * Two functionalities are implemented here which both use "control theory"
  12. * (feedback) to optimize memory utilization. In a virtualized environment
  13. * such as Xen, RAM is often a scarce resource and we would like to ensure
  14. * that each of a possibly large number of virtual machines is using RAM
  15. * efficiently, i.e. using as little as possible when under light load
  16. * and obtaining as much as possible when memory demands are high.
  17. * Since RAM needs vary highly dynamically and sometimes dramatically,
  18. * "hysteresis" is used, that is, memory target is determined not just
  19. * on current data but also on past data stored in the system.
  20. *
  21. * "Selfballooning" creates memory pressure by managing the Xen balloon
  22. * driver to decrease and increase available kernel memory, driven
  23. * largely by the target value of "Committed_AS" (see /proc/meminfo).
  24. * Since Committed_AS does not account for clean mapped pages (i.e. pages
  25. * in RAM that are identical to pages on disk), selfballooning has the
  26. * affect of pushing less frequently used clean pagecache pages out of
  27. * kernel RAM and, presumably using cleancache, into Xen tmem where
  28. * Xen can more efficiently optimize RAM utilization for such pages.
  29. *
  30. * When kernel memory demand unexpectedly increases faster than Xen, via
  31. * the selfballoon driver, is able to (or chooses to) provide usable RAM,
  32. * the kernel may invoke swapping. In most cases, frontswap is able
  33. * to absorb this swapping into Xen tmem. However, due to the fact
  34. * that the kernel swap subsystem assumes swapping occurs to a disk,
  35. * swapped pages may sit on the disk for a very long time; even if
  36. * the kernel knows the page will never be used again. This is because
  37. * the disk space costs very little and can be overwritten when
  38. * necessary. When such stale pages are in frontswap, however, they
  39. * are taking up valuable real estate. "Frontswap selfshrinking" works
  40. * to resolve this: When frontswap activity is otherwise stable
  41. * and the guest kernel is not under memory pressure, the "frontswap
  42. * selfshrinking" accounts for this by providing pressure to remove some
  43. * pages from frontswap and return them to kernel memory.
  44. *
  45. * For both "selfballooning" and "frontswap-selfshrinking", a worker
  46. * thread is used and sysfs tunables are provided to adjust the frequency
  47. * and rate of adjustments to achieve the goal, as well as to disable one
  48. * or both functions independently.
  49. *
  50. * While some argue that this functionality can and should be implemented
  51. * in userspace, it has been observed that bad things happen (e.g. OOMs).
  52. *
  53. * System configuration note: Selfballooning should not be enabled on
  54. * systems without a sufficiently large swap device configured; for best
  55. * results, it is recommended that total swap be increased by the size
  56. * of the guest memory. Note, that selfballooning should be disabled by default
  57. * if frontswap is not configured. Similarly selfballooning should be enabled
  58. * by default if frontswap is configured and can be disabled with the
  59. * "tmem.selfballooning=0" kernel boot option. Finally, when frontswap is
  60. * configured, frontswap-selfshrinking can be disabled with the
  61. * "tmem.selfshrink=0" kernel boot option.
  62. *
  63. * Selfballooning is disallowed in domain0 and force-disabled.
  64. *
  65. */
  66. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  67. #include <linux/kernel.h>
  68. #include <linux/bootmem.h>
  69. #include <linux/swap.h>
  70. #include <linux/mm.h>
  71. #include <linux/mman.h>
  72. #include <linux/workqueue.h>
  73. #include <linux/device.h>
  74. #include <xen/balloon.h>
  75. #include <xen/tmem.h>
  76. #include <xen/xen.h>
  77. /* Enable/disable with sysfs. */
  78. static int xen_selfballooning_enabled __read_mostly;
  79. /*
  80. * Controls rate at which memory target (this iteration) approaches
  81. * ultimate goal when memory need is increasing (up-hysteresis) or
  82. * decreasing (down-hysteresis). Higher values of hysteresis cause
  83. * slower increases/decreases. The default values for the various
  84. * parameters were deemed reasonable by experimentation, may be
  85. * workload-dependent, and can all be adjusted via sysfs.
  86. */
  87. static unsigned int selfballoon_downhysteresis __read_mostly = 8;
  88. static unsigned int selfballoon_uphysteresis __read_mostly = 1;
  89. /* In HZ, controls frequency of worker invocation. */
  90. static unsigned int selfballoon_interval __read_mostly = 5;
  91. /*
  92. * Minimum usable RAM in MB for selfballooning target for balloon.
  93. * If non-zero, it is added to totalreserve_pages and self-ballooning
  94. * will not balloon below the sum. If zero, a piecewise linear function
  95. * is calculated as a minimum and added to totalreserve_pages. Note that
  96. * setting this value indiscriminately may cause OOMs and crashes.
  97. */
  98. static unsigned int selfballoon_min_usable_mb;
  99. /*
  100. * Amount of RAM in MB to add to the target number of pages.
  101. * Can be used to reserve some more room for caches and the like.
  102. */
  103. static unsigned int selfballoon_reserved_mb;
  104. static void selfballoon_process(struct work_struct *work);
  105. static DECLARE_DELAYED_WORK(selfballoon_worker, selfballoon_process);
  106. #ifdef CONFIG_FRONTSWAP
  107. #include <linux/frontswap.h>
  108. /* Enable/disable with sysfs. */
  109. static bool frontswap_selfshrinking __read_mostly;
  110. /*
  111. * The default values for the following parameters were deemed reasonable
  112. * by experimentation, may be workload-dependent, and can all be
  113. * adjusted via sysfs.
  114. */
  115. /* Control rate for frontswap shrinking. Higher hysteresis is slower. */
  116. static unsigned int frontswap_hysteresis __read_mostly = 20;
  117. /*
  118. * Number of selfballoon worker invocations to wait before observing that
  119. * frontswap selfshrinking should commence. Note that selfshrinking does
  120. * not use a separate worker thread.
  121. */
  122. static unsigned int frontswap_inertia __read_mostly = 3;
  123. /* Countdown to next invocation of frontswap_shrink() */
  124. static unsigned long frontswap_inertia_counter;
  125. /*
  126. * Invoked by the selfballoon worker thread, uses current number of pages
  127. * in frontswap (frontswap_curr_pages()), previous status, and control
  128. * values (hysteresis and inertia) to determine if frontswap should be
  129. * shrunk and what the new frontswap size should be. Note that
  130. * frontswap_shrink is essentially a partial swapoff that immediately
  131. * transfers pages from the "swap device" (frontswap) back into kernel
  132. * RAM; despite the name, frontswap "shrinking" is very different from
  133. * the "shrinker" interface used by the kernel MM subsystem to reclaim
  134. * memory.
  135. */
  136. static void frontswap_selfshrink(void)
  137. {
  138. static unsigned long cur_frontswap_pages;
  139. static unsigned long last_frontswap_pages;
  140. static unsigned long tgt_frontswap_pages;
  141. last_frontswap_pages = cur_frontswap_pages;
  142. cur_frontswap_pages = frontswap_curr_pages();
  143. if (!cur_frontswap_pages ||
  144. (cur_frontswap_pages > last_frontswap_pages)) {
  145. frontswap_inertia_counter = frontswap_inertia;
  146. return;
  147. }
  148. if (frontswap_inertia_counter && --frontswap_inertia_counter)
  149. return;
  150. if (cur_frontswap_pages <= frontswap_hysteresis)
  151. tgt_frontswap_pages = 0;
  152. else
  153. tgt_frontswap_pages = cur_frontswap_pages -
  154. (cur_frontswap_pages / frontswap_hysteresis);
  155. frontswap_shrink(tgt_frontswap_pages);
  156. frontswap_inertia_counter = frontswap_inertia;
  157. }
  158. #endif /* CONFIG_FRONTSWAP */
  159. #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
  160. #define PAGES2MB(pages) ((pages) >> (20 - PAGE_SHIFT))
  161. /*
  162. * Use current balloon size, the goal (vm_committed_as), and hysteresis
  163. * parameters to set a new target balloon size
  164. */
  165. static void selfballoon_process(struct work_struct *work)
  166. {
  167. unsigned long cur_pages, goal_pages, tgt_pages, floor_pages;
  168. unsigned long useful_pages;
  169. bool reset_timer = false;
  170. if (xen_selfballooning_enabled) {
  171. cur_pages = totalram_pages;
  172. tgt_pages = cur_pages; /* default is no change */
  173. goal_pages = vm_memory_committed() +
  174. totalreserve_pages +
  175. MB2PAGES(selfballoon_reserved_mb);
  176. #ifdef CONFIG_FRONTSWAP
  177. /* allow space for frontswap pages to be repatriated */
  178. if (frontswap_selfshrinking)
  179. goal_pages += frontswap_curr_pages();
  180. #endif
  181. if (cur_pages > goal_pages)
  182. tgt_pages = cur_pages -
  183. ((cur_pages - goal_pages) /
  184. selfballoon_downhysteresis);
  185. else if (cur_pages < goal_pages)
  186. tgt_pages = cur_pages +
  187. ((goal_pages - cur_pages) /
  188. selfballoon_uphysteresis);
  189. /* else if cur_pages == goal_pages, no change */
  190. useful_pages = max_pfn - totalreserve_pages;
  191. if (selfballoon_min_usable_mb != 0)
  192. floor_pages = totalreserve_pages +
  193. MB2PAGES(selfballoon_min_usable_mb);
  194. /* piecewise linear function ending in ~3% slope */
  195. else if (useful_pages < MB2PAGES(16))
  196. floor_pages = max_pfn; /* not worth ballooning */
  197. else if (useful_pages < MB2PAGES(64))
  198. floor_pages = totalreserve_pages + MB2PAGES(16) +
  199. ((useful_pages - MB2PAGES(16)) >> 1);
  200. else if (useful_pages < MB2PAGES(512))
  201. floor_pages = totalreserve_pages + MB2PAGES(40) +
  202. ((useful_pages - MB2PAGES(40)) >> 3);
  203. else /* useful_pages >= MB2PAGES(512) */
  204. floor_pages = totalreserve_pages + MB2PAGES(99) +
  205. ((useful_pages - MB2PAGES(99)) >> 5);
  206. if (tgt_pages < floor_pages)
  207. tgt_pages = floor_pages;
  208. balloon_set_new_target(tgt_pages +
  209. balloon_stats.current_pages - totalram_pages);
  210. reset_timer = true;
  211. }
  212. #ifdef CONFIG_FRONTSWAP
  213. if (frontswap_selfshrinking) {
  214. frontswap_selfshrink();
  215. reset_timer = true;
  216. }
  217. #endif
  218. if (reset_timer)
  219. schedule_delayed_work(&selfballoon_worker,
  220. selfballoon_interval * HZ);
  221. }
  222. #ifdef CONFIG_SYSFS
  223. #include <linux/capability.h>
  224. #define SELFBALLOON_SHOW(name, format, args...) \
  225. static ssize_t show_##name(struct device *dev, \
  226. struct device_attribute *attr, \
  227. char *buf) \
  228. { \
  229. return sprintf(buf, format, ##args); \
  230. }
  231. SELFBALLOON_SHOW(selfballooning, "%d\n", xen_selfballooning_enabled);
  232. static ssize_t store_selfballooning(struct device *dev,
  233. struct device_attribute *attr,
  234. const char *buf,
  235. size_t count)
  236. {
  237. bool was_enabled = xen_selfballooning_enabled;
  238. unsigned long tmp;
  239. int err;
  240. if (!capable(CAP_SYS_ADMIN))
  241. return -EPERM;
  242. err = kstrtoul(buf, 10, &tmp);
  243. if (err)
  244. return err;
  245. if ((tmp != 0) && (tmp != 1))
  246. return -EINVAL;
  247. xen_selfballooning_enabled = !!tmp;
  248. if (!was_enabled && xen_selfballooning_enabled)
  249. schedule_delayed_work(&selfballoon_worker,
  250. selfballoon_interval * HZ);
  251. return count;
  252. }
  253. static DEVICE_ATTR(selfballooning, S_IRUGO | S_IWUSR,
  254. show_selfballooning, store_selfballooning);
  255. SELFBALLOON_SHOW(selfballoon_interval, "%d\n", selfballoon_interval);
  256. static ssize_t store_selfballoon_interval(struct device *dev,
  257. struct device_attribute *attr,
  258. const char *buf,
  259. size_t count)
  260. {
  261. unsigned long val;
  262. int err;
  263. if (!capable(CAP_SYS_ADMIN))
  264. return -EPERM;
  265. err = kstrtoul(buf, 10, &val);
  266. if (err)
  267. return err;
  268. if (val == 0)
  269. return -EINVAL;
  270. selfballoon_interval = val;
  271. return count;
  272. }
  273. static DEVICE_ATTR(selfballoon_interval, S_IRUGO | S_IWUSR,
  274. show_selfballoon_interval, store_selfballoon_interval);
  275. SELFBALLOON_SHOW(selfballoon_downhys, "%d\n", selfballoon_downhysteresis);
  276. static ssize_t store_selfballoon_downhys(struct device *dev,
  277. struct device_attribute *attr,
  278. const char *buf,
  279. size_t count)
  280. {
  281. unsigned long val;
  282. int err;
  283. if (!capable(CAP_SYS_ADMIN))
  284. return -EPERM;
  285. err = kstrtoul(buf, 10, &val);
  286. if (err)
  287. return err;
  288. if (val == 0)
  289. return -EINVAL;
  290. selfballoon_downhysteresis = val;
  291. return count;
  292. }
  293. static DEVICE_ATTR(selfballoon_downhysteresis, S_IRUGO | S_IWUSR,
  294. show_selfballoon_downhys, store_selfballoon_downhys);
  295. SELFBALLOON_SHOW(selfballoon_uphys, "%d\n", selfballoon_uphysteresis);
  296. static ssize_t store_selfballoon_uphys(struct device *dev,
  297. struct device_attribute *attr,
  298. const char *buf,
  299. size_t count)
  300. {
  301. unsigned long val;
  302. int err;
  303. if (!capable(CAP_SYS_ADMIN))
  304. return -EPERM;
  305. err = kstrtoul(buf, 10, &val);
  306. if (err)
  307. return err;
  308. if (val == 0)
  309. return -EINVAL;
  310. selfballoon_uphysteresis = val;
  311. return count;
  312. }
  313. static DEVICE_ATTR(selfballoon_uphysteresis, S_IRUGO | S_IWUSR,
  314. show_selfballoon_uphys, store_selfballoon_uphys);
  315. SELFBALLOON_SHOW(selfballoon_min_usable_mb, "%d\n",
  316. selfballoon_min_usable_mb);
  317. static ssize_t store_selfballoon_min_usable_mb(struct device *dev,
  318. struct device_attribute *attr,
  319. const char *buf,
  320. size_t count)
  321. {
  322. unsigned long val;
  323. int err;
  324. if (!capable(CAP_SYS_ADMIN))
  325. return -EPERM;
  326. err = kstrtoul(buf, 10, &val);
  327. if (err)
  328. return err;
  329. if (val == 0)
  330. return -EINVAL;
  331. selfballoon_min_usable_mb = val;
  332. return count;
  333. }
  334. static DEVICE_ATTR(selfballoon_min_usable_mb, S_IRUGO | S_IWUSR,
  335. show_selfballoon_min_usable_mb,
  336. store_selfballoon_min_usable_mb);
  337. SELFBALLOON_SHOW(selfballoon_reserved_mb, "%d\n",
  338. selfballoon_reserved_mb);
  339. static ssize_t store_selfballoon_reserved_mb(struct device *dev,
  340. struct device_attribute *attr,
  341. const char *buf,
  342. size_t count)
  343. {
  344. unsigned long val;
  345. int err;
  346. if (!capable(CAP_SYS_ADMIN))
  347. return -EPERM;
  348. err = kstrtoul(buf, 10, &val);
  349. if (err)
  350. return err;
  351. if (val == 0)
  352. return -EINVAL;
  353. selfballoon_reserved_mb = val;
  354. return count;
  355. }
  356. static DEVICE_ATTR(selfballoon_reserved_mb, S_IRUGO | S_IWUSR,
  357. show_selfballoon_reserved_mb,
  358. store_selfballoon_reserved_mb);
  359. #ifdef CONFIG_FRONTSWAP
  360. SELFBALLOON_SHOW(frontswap_selfshrinking, "%d\n", frontswap_selfshrinking);
  361. static ssize_t store_frontswap_selfshrinking(struct device *dev,
  362. struct device_attribute *attr,
  363. const char *buf,
  364. size_t count)
  365. {
  366. bool was_enabled = frontswap_selfshrinking;
  367. unsigned long tmp;
  368. int err;
  369. if (!capable(CAP_SYS_ADMIN))
  370. return -EPERM;
  371. err = kstrtoul(buf, 10, &tmp);
  372. if (err)
  373. return err;
  374. if ((tmp != 0) && (tmp != 1))
  375. return -EINVAL;
  376. frontswap_selfshrinking = !!tmp;
  377. if (!was_enabled && !xen_selfballooning_enabled &&
  378. frontswap_selfshrinking)
  379. schedule_delayed_work(&selfballoon_worker,
  380. selfballoon_interval * HZ);
  381. return count;
  382. }
  383. static DEVICE_ATTR(frontswap_selfshrinking, S_IRUGO | S_IWUSR,
  384. show_frontswap_selfshrinking, store_frontswap_selfshrinking);
  385. SELFBALLOON_SHOW(frontswap_inertia, "%d\n", frontswap_inertia);
  386. static ssize_t store_frontswap_inertia(struct device *dev,
  387. struct device_attribute *attr,
  388. const char *buf,
  389. size_t count)
  390. {
  391. unsigned long val;
  392. int err;
  393. if (!capable(CAP_SYS_ADMIN))
  394. return -EPERM;
  395. err = kstrtoul(buf, 10, &val);
  396. if (err)
  397. return err;
  398. if (val == 0)
  399. return -EINVAL;
  400. frontswap_inertia = val;
  401. frontswap_inertia_counter = val;
  402. return count;
  403. }
  404. static DEVICE_ATTR(frontswap_inertia, S_IRUGO | S_IWUSR,
  405. show_frontswap_inertia, store_frontswap_inertia);
  406. SELFBALLOON_SHOW(frontswap_hysteresis, "%d\n", frontswap_hysteresis);
  407. static ssize_t store_frontswap_hysteresis(struct device *dev,
  408. struct device_attribute *attr,
  409. const char *buf,
  410. size_t count)
  411. {
  412. unsigned long val;
  413. int err;
  414. if (!capable(CAP_SYS_ADMIN))
  415. return -EPERM;
  416. err = kstrtoul(buf, 10, &val);
  417. if (err)
  418. return err;
  419. if (val == 0)
  420. return -EINVAL;
  421. frontswap_hysteresis = val;
  422. return count;
  423. }
  424. static DEVICE_ATTR(frontswap_hysteresis, S_IRUGO | S_IWUSR,
  425. show_frontswap_hysteresis, store_frontswap_hysteresis);
  426. #endif /* CONFIG_FRONTSWAP */
  427. static struct attribute *selfballoon_attrs[] = {
  428. &dev_attr_selfballooning.attr,
  429. &dev_attr_selfballoon_interval.attr,
  430. &dev_attr_selfballoon_downhysteresis.attr,
  431. &dev_attr_selfballoon_uphysteresis.attr,
  432. &dev_attr_selfballoon_min_usable_mb.attr,
  433. &dev_attr_selfballoon_reserved_mb.attr,
  434. #ifdef CONFIG_FRONTSWAP
  435. &dev_attr_frontswap_selfshrinking.attr,
  436. &dev_attr_frontswap_hysteresis.attr,
  437. &dev_attr_frontswap_inertia.attr,
  438. #endif
  439. NULL
  440. };
  441. static const struct attribute_group selfballoon_group = {
  442. .name = "selfballoon",
  443. .attrs = selfballoon_attrs
  444. };
  445. #endif
  446. int register_xen_selfballooning(struct device *dev)
  447. {
  448. int error = -1;
  449. #ifdef CONFIG_SYSFS
  450. error = sysfs_create_group(&dev->kobj, &selfballoon_group);
  451. #endif
  452. return error;
  453. }
  454. EXPORT_SYMBOL(register_xen_selfballooning);
  455. int xen_selfballoon_init(bool use_selfballooning, bool use_frontswap_selfshrink)
  456. {
  457. bool enable = false;
  458. unsigned long reserve_pages;
  459. if (!xen_domain())
  460. return -ENODEV;
  461. if (xen_initial_domain()) {
  462. pr_info("Xen selfballooning driver disabled for domain0\n");
  463. return -ENODEV;
  464. }
  465. xen_selfballooning_enabled = tmem_enabled && use_selfballooning;
  466. if (xen_selfballooning_enabled) {
  467. pr_info("Initializing Xen selfballooning driver\n");
  468. enable = true;
  469. }
  470. #ifdef CONFIG_FRONTSWAP
  471. frontswap_selfshrinking = tmem_enabled && use_frontswap_selfshrink;
  472. if (frontswap_selfshrinking) {
  473. pr_info("Initializing frontswap selfshrinking driver\n");
  474. enable = true;
  475. }
  476. #endif
  477. if (!enable)
  478. return -ENODEV;
  479. /*
  480. * Give selfballoon_reserved_mb a default value(10% of total ram pages)
  481. * to make selfballoon not so aggressive.
  482. *
  483. * There are mainly two reasons:
  484. * 1) The original goal_page didn't consider some pages used by kernel
  485. * space, like slab pages and memory used by device drivers.
  486. *
  487. * 2) The balloon driver may not give back memory to guest OS fast
  488. * enough when the workload suddenly aquries a lot of physical memory.
  489. *
  490. * In both cases, the guest OS will suffer from memory pressure and
  491. * OOM killer may be triggered.
  492. * By reserving extra 10% of total ram pages, we can keep the system
  493. * much more reliably and response faster in some cases.
  494. */
  495. if (!selfballoon_reserved_mb) {
  496. reserve_pages = totalram_pages / 10;
  497. selfballoon_reserved_mb = PAGES2MB(reserve_pages);
  498. }
  499. schedule_delayed_work(&selfballoon_worker, selfballoon_interval * HZ);
  500. return 0;
  501. }
  502. EXPORT_SYMBOL(xen_selfballoon_init);