class.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. /*
  2. * RTC subsystem, base class
  3. *
  4. * Copyright (C) 2005 Tower Technologies
  5. * Author: Alessandro Zummo <a.zummo@towertech.it>
  6. *
  7. * class skeleton from drivers/hwmon/hwmon.c
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14. #include <linux/module.h>
  15. #include <linux/of.h>
  16. #include <linux/rtc.h>
  17. #include <linux/kdev_t.h>
  18. #include <linux/idr.h>
  19. #include <linux/slab.h>
  20. #include <linux/workqueue.h>
  21. #include "rtc-core.h"
  22. static DEFINE_IDA(rtc_ida);
  23. struct class *rtc_class;
  24. static void rtc_device_release(struct device *dev)
  25. {
  26. struct rtc_device *rtc = to_rtc_device(dev);
  27. ida_simple_remove(&rtc_ida, rtc->id);
  28. kfree(rtc);
  29. }
  30. #ifdef CONFIG_RTC_HCTOSYS_DEVICE
  31. /* Result of the last RTC to system clock attempt. */
  32. int rtc_hctosys_ret = -ENODEV;
  33. #endif
  34. #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
  35. /*
  36. * On suspend(), measure the delta between one RTC and the
  37. * system's wall clock; restore it on resume().
  38. */
  39. static struct timespec64 old_rtc, old_system, old_delta;
  40. static int rtc_suspend(struct device *dev)
  41. {
  42. struct rtc_device *rtc = to_rtc_device(dev);
  43. struct rtc_time tm;
  44. struct timespec64 delta, delta_delta;
  45. int err;
  46. if (timekeeping_rtc_skipsuspend())
  47. return 0;
  48. if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
  49. return 0;
  50. /* snapshot the current RTC and system time at suspend*/
  51. err = rtc_read_time(rtc, &tm);
  52. if (err < 0) {
  53. pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
  54. return 0;
  55. }
  56. getnstimeofday64(&old_system);
  57. old_rtc.tv_sec = rtc_tm_to_time64(&tm);
  58. /*
  59. * To avoid drift caused by repeated suspend/resumes,
  60. * which each can add ~1 second drift error,
  61. * try to compensate so the difference in system time
  62. * and rtc time stays close to constant.
  63. */
  64. delta = timespec64_sub(old_system, old_rtc);
  65. delta_delta = timespec64_sub(delta, old_delta);
  66. if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
  67. /*
  68. * if delta_delta is too large, assume time correction
  69. * has occured and set old_delta to the current delta.
  70. */
  71. old_delta = delta;
  72. } else {
  73. /* Otherwise try to adjust old_system to compensate */
  74. old_system = timespec64_sub(old_system, delta_delta);
  75. }
  76. return 0;
  77. }
  78. static int rtc_resume(struct device *dev)
  79. {
  80. struct rtc_device *rtc = to_rtc_device(dev);
  81. struct rtc_time tm;
  82. struct timespec64 new_system, new_rtc;
  83. struct timespec64 sleep_time;
  84. int err;
  85. if (timekeeping_rtc_skipresume())
  86. return 0;
  87. rtc_hctosys_ret = -ENODEV;
  88. if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
  89. return 0;
  90. /* snapshot the current rtc and system time at resume */
  91. getnstimeofday64(&new_system);
  92. err = rtc_read_time(rtc, &tm);
  93. if (err < 0) {
  94. pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
  95. return 0;
  96. }
  97. new_rtc.tv_sec = rtc_tm_to_time64(&tm);
  98. new_rtc.tv_nsec = 0;
  99. if (new_rtc.tv_sec < old_rtc.tv_sec) {
  100. pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
  101. return 0;
  102. }
  103. /* calculate the RTC time delta (sleep time)*/
  104. sleep_time = timespec64_sub(new_rtc, old_rtc);
  105. /*
  106. * Since these RTC suspend/resume handlers are not called
  107. * at the very end of suspend or the start of resume,
  108. * some run-time may pass on either sides of the sleep time
  109. * so subtract kernel run-time between rtc_suspend to rtc_resume
  110. * to keep things accurate.
  111. */
  112. sleep_time = timespec64_sub(sleep_time,
  113. timespec64_sub(new_system, old_system));
  114. if (sleep_time.tv_sec >= 0)
  115. timekeeping_inject_sleeptime64(&sleep_time);
  116. rtc_hctosys_ret = 0;
  117. return 0;
  118. }
  119. static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
  120. #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
  121. #else
  122. #define RTC_CLASS_DEV_PM_OPS NULL
  123. #endif
  124. /**
  125. * rtc_device_register - register w/ RTC class
  126. * @dev: the device to register
  127. *
  128. * rtc_device_unregister() must be called when the class device is no
  129. * longer needed.
  130. *
  131. * Returns the pointer to the new struct class device.
  132. */
  133. struct rtc_device *rtc_device_register(const char *name, struct device *dev,
  134. const struct rtc_class_ops *ops,
  135. struct module *owner)
  136. {
  137. struct rtc_device *rtc;
  138. struct rtc_wkalrm alrm;
  139. int of_id = -1, id = -1, err;
  140. if (dev->of_node)
  141. of_id = of_alias_get_id(dev->of_node, "rtc");
  142. else if (dev->parent && dev->parent->of_node)
  143. of_id = of_alias_get_id(dev->parent->of_node, "rtc");
  144. if (of_id >= 0) {
  145. id = ida_simple_get(&rtc_ida, of_id, of_id + 1,
  146. GFP_KERNEL);
  147. if (id < 0)
  148. dev_warn(dev, "/aliases ID %d not available\n",
  149. of_id);
  150. }
  151. if (id < 0) {
  152. id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
  153. if (id < 0) {
  154. err = id;
  155. goto exit;
  156. }
  157. }
  158. rtc = kzalloc(sizeof(struct rtc_device), GFP_KERNEL);
  159. if (rtc == NULL) {
  160. err = -ENOMEM;
  161. goto exit_ida;
  162. }
  163. rtc->id = id;
  164. rtc->ops = ops;
  165. rtc->owner = owner;
  166. rtc->irq_freq = 1;
  167. rtc->max_user_freq = 64;
  168. rtc->dev.parent = dev;
  169. rtc->dev.class = rtc_class;
  170. rtc->dev.groups = rtc_get_dev_attribute_groups();
  171. rtc->dev.release = rtc_device_release;
  172. mutex_init(&rtc->ops_lock);
  173. spin_lock_init(&rtc->irq_lock);
  174. spin_lock_init(&rtc->irq_task_lock);
  175. init_waitqueue_head(&rtc->irq_queue);
  176. /* Init timerqueue */
  177. timerqueue_init_head(&rtc->timerqueue);
  178. INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
  179. /* Init aie timer */
  180. rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
  181. /* Init uie timer */
  182. rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
  183. /* Init pie timer */
  184. hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rtc->pie_timer.function = rtc_pie_update_irq;
  186. rtc->pie_enabled = 0;
  187. strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE);
  188. dev_set_name(&rtc->dev, "rtc%d", id);
  189. /* Check to see if there is an ALARM already set in hw */
  190. err = __rtc_read_alarm(rtc, &alrm);
  191. if (!err && !rtc_valid_tm(&alrm.time))
  192. rtc_initialize_alarm(rtc, &alrm);
  193. rtc_dev_prepare(rtc);
  194. err = device_register(&rtc->dev);
  195. if (err) {
  196. /* This will free both memory and the ID */
  197. put_device(&rtc->dev);
  198. goto exit;
  199. }
  200. rtc_dev_add_device(rtc);
  201. rtc_proc_add_device(rtc);
  202. dev_info(dev, "rtc core: registered %s as %s\n",
  203. rtc->name, dev_name(&rtc->dev));
  204. return rtc;
  205. exit_ida:
  206. ida_simple_remove(&rtc_ida, id);
  207. exit:
  208. dev_err(dev, "rtc core: unable to register %s, err = %d\n",
  209. name, err);
  210. return ERR_PTR(err);
  211. }
  212. EXPORT_SYMBOL_GPL(rtc_device_register);
  213. /**
  214. * rtc_device_unregister - removes the previously registered RTC class device
  215. *
  216. * @rtc: the RTC class device to destroy
  217. */
  218. void rtc_device_unregister(struct rtc_device *rtc)
  219. {
  220. mutex_lock(&rtc->ops_lock);
  221. /*
  222. * Remove innards of this RTC, then disable it, before
  223. * letting any rtc_class_open() users access it again
  224. */
  225. rtc_dev_del_device(rtc);
  226. rtc_proc_del_device(rtc);
  227. device_del(&rtc->dev);
  228. rtc->ops = NULL;
  229. mutex_unlock(&rtc->ops_lock);
  230. put_device(&rtc->dev);
  231. }
  232. EXPORT_SYMBOL_GPL(rtc_device_unregister);
  233. static void devm_rtc_device_release(struct device *dev, void *res)
  234. {
  235. struct rtc_device *rtc = *(struct rtc_device **)res;
  236. rtc_device_unregister(rtc);
  237. }
  238. static int devm_rtc_device_match(struct device *dev, void *res, void *data)
  239. {
  240. struct rtc **r = res;
  241. return *r == data;
  242. }
  243. /**
  244. * devm_rtc_device_register - resource managed rtc_device_register()
  245. * @dev: the device to register
  246. * @name: the name of the device
  247. * @ops: the rtc operations structure
  248. * @owner: the module owner
  249. *
  250. * @return a struct rtc on success, or an ERR_PTR on error
  251. *
  252. * Managed rtc_device_register(). The rtc_device returned from this function
  253. * are automatically freed on driver detach. See rtc_device_register()
  254. * for more information.
  255. */
  256. struct rtc_device *devm_rtc_device_register(struct device *dev,
  257. const char *name,
  258. const struct rtc_class_ops *ops,
  259. struct module *owner)
  260. {
  261. struct rtc_device **ptr, *rtc;
  262. ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL);
  263. if (!ptr)
  264. return ERR_PTR(-ENOMEM);
  265. rtc = rtc_device_register(name, dev, ops, owner);
  266. if (!IS_ERR(rtc)) {
  267. *ptr = rtc;
  268. devres_add(dev, ptr);
  269. } else {
  270. devres_free(ptr);
  271. }
  272. return rtc;
  273. }
  274. EXPORT_SYMBOL_GPL(devm_rtc_device_register);
  275. /**
  276. * devm_rtc_device_unregister - resource managed devm_rtc_device_unregister()
  277. * @dev: the device to unregister
  278. * @rtc: the RTC class device to unregister
  279. *
  280. * Deallocated a rtc allocated with devm_rtc_device_register(). Normally this
  281. * function will not need to be called and the resource management code will
  282. * ensure that the resource is freed.
  283. */
  284. void devm_rtc_device_unregister(struct device *dev, struct rtc_device *rtc)
  285. {
  286. int rc;
  287. rc = devres_release(dev, devm_rtc_device_release,
  288. devm_rtc_device_match, rtc);
  289. WARN_ON(rc);
  290. }
  291. EXPORT_SYMBOL_GPL(devm_rtc_device_unregister);
  292. static int __init rtc_init(void)
  293. {
  294. rtc_class = class_create(THIS_MODULE, "rtc");
  295. if (IS_ERR(rtc_class)) {
  296. pr_err("couldn't create class\n");
  297. return PTR_ERR(rtc_class);
  298. }
  299. rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
  300. rtc_dev_init();
  301. return 0;
  302. }
  303. subsys_initcall(rtc_init);