remoteproc_core.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. /*
  2. * Remote Processor Framework
  3. *
  4. * Copyright (C) 2011 Texas Instruments, Inc.
  5. * Copyright (C) 2011 Google, Inc.
  6. *
  7. * Ohad Ben-Cohen <ohad@wizery.com>
  8. * Brian Swetland <swetland@google.com>
  9. * Mark Grosen <mgrosen@ti.com>
  10. * Fernando Guzman Lugo <fernando.lugo@ti.com>
  11. * Suman Anna <s-anna@ti.com>
  12. * Robert Tivy <rtivy@ti.com>
  13. * Armando Uribe De Leon <x0095078@ti.com>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * version 2 as published by the Free Software Foundation.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. */
  24. #define pr_fmt(fmt) "%s: " fmt, __func__
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/slab.h>
  29. #include <linux/mutex.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/firmware.h>
  32. #include <linux/string.h>
  33. #include <linux/debugfs.h>
  34. #include <linux/remoteproc.h>
  35. #include <linux/iommu.h>
  36. #include <linux/idr.h>
  37. #include <linux/elf.h>
  38. #include <linux/crc32.h>
  39. #include <linux/virtio_ids.h>
  40. #include <linux/virtio_ring.h>
  41. #include <asm/byteorder.h>
  42. #include "remoteproc_internal.h"
  43. static DEFINE_MUTEX(rproc_list_mutex);
  44. static LIST_HEAD(rproc_list);
  45. typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  46. struct resource_table *table, int len);
  47. typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  48. void *, int offset, int avail);
  49. /* Unique indices for remoteproc devices */
  50. static DEFINE_IDA(rproc_dev_index);
  51. static const char * const rproc_crash_names[] = {
  52. [RPROC_MMUFAULT] = "mmufault",
  53. [RPROC_WATCHDOG] = "watchdog",
  54. [RPROC_FATAL_ERROR] = "fatal error",
  55. };
  56. /* translate rproc_crash_type to string */
  57. static const char *rproc_crash_to_string(enum rproc_crash_type type)
  58. {
  59. if (type < ARRAY_SIZE(rproc_crash_names))
  60. return rproc_crash_names[type];
  61. return "unknown";
  62. }
  63. /*
  64. * This is the IOMMU fault handler we register with the IOMMU API
  65. * (when relevant; not all remote processors access memory through
  66. * an IOMMU).
  67. *
  68. * IOMMU core will invoke this handler whenever the remote processor
  69. * will try to access an unmapped device address.
  70. */
  71. static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  72. unsigned long iova, int flags, void *token)
  73. {
  74. struct rproc *rproc = token;
  75. dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  76. rproc_report_crash(rproc, RPROC_MMUFAULT);
  77. /*
  78. * Let the iommu core know we're not really handling this fault;
  79. * we just used it as a recovery trigger.
  80. */
  81. return -ENOSYS;
  82. }
  83. static int rproc_enable_iommu(struct rproc *rproc)
  84. {
  85. struct iommu_domain *domain;
  86. struct device *dev = rproc->dev.parent;
  87. int ret;
  88. if (!rproc->has_iommu) {
  89. dev_dbg(dev, "iommu not present\n");
  90. return 0;
  91. }
  92. domain = iommu_domain_alloc(dev->bus);
  93. if (!domain) {
  94. dev_err(dev, "can't alloc iommu domain\n");
  95. return -ENOMEM;
  96. }
  97. iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
  98. ret = iommu_attach_device(domain, dev);
  99. if (ret) {
  100. dev_err(dev, "can't attach iommu device: %d\n", ret);
  101. goto free_domain;
  102. }
  103. rproc->domain = domain;
  104. return 0;
  105. free_domain:
  106. iommu_domain_free(domain);
  107. return ret;
  108. }
  109. static void rproc_disable_iommu(struct rproc *rproc)
  110. {
  111. struct iommu_domain *domain = rproc->domain;
  112. struct device *dev = rproc->dev.parent;
  113. if (!domain)
  114. return;
  115. iommu_detach_device(domain, dev);
  116. iommu_domain_free(domain);
  117. }
  118. /**
  119. * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
  120. * @rproc: handle of a remote processor
  121. * @da: remoteproc device address to translate
  122. * @len: length of the memory region @da is pointing to
  123. *
  124. * Some remote processors will ask us to allocate them physically contiguous
  125. * memory regions (which we call "carveouts"), and map them to specific
  126. * device addresses (which are hardcoded in the firmware). They may also have
  127. * dedicated memory regions internal to the processors, and use them either
  128. * exclusively or alongside carveouts.
  129. *
  130. * They may then ask us to copy objects into specific device addresses (e.g.
  131. * code/data sections) or expose us certain symbols in other device address
  132. * (e.g. their trace buffer).
  133. *
  134. * This function is a helper function with which we can go over the allocated
  135. * carveouts and translate specific device addresses to kernel virtual addresses
  136. * so we can access the referenced memory. This function also allows to perform
  137. * translations on the internal remoteproc memory regions through a platform
  138. * implementation specific da_to_va ops, if present.
  139. *
  140. * The function returns a valid kernel address on success or NULL on failure.
  141. *
  142. * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
  143. * but only on kernel direct mapped RAM memory. Instead, we're just using
  144. * here the output of the DMA API for the carveouts, which should be more
  145. * correct.
  146. */
  147. void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
  148. {
  149. struct rproc_mem_entry *carveout;
  150. void *ptr = NULL;
  151. if (rproc->ops->da_to_va) {
  152. ptr = rproc->ops->da_to_va(rproc, da, len);
  153. if (ptr)
  154. goto out;
  155. }
  156. list_for_each_entry(carveout, &rproc->carveouts, node) {
  157. int offset = da - carveout->da;
  158. /* try next carveout if da is too small */
  159. if (offset < 0)
  160. continue;
  161. /* try next carveout if da is too large */
  162. if (offset + len > carveout->len)
  163. continue;
  164. ptr = carveout->va + offset;
  165. break;
  166. }
  167. out:
  168. return ptr;
  169. }
  170. EXPORT_SYMBOL(rproc_da_to_va);
  171. int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
  172. {
  173. struct rproc *rproc = rvdev->rproc;
  174. struct device *dev = &rproc->dev;
  175. struct rproc_vring *rvring = &rvdev->vring[i];
  176. struct fw_rsc_vdev *rsc;
  177. dma_addr_t dma;
  178. void *va;
  179. int ret, size, notifyid;
  180. /* actual size of vring (in bytes) */
  181. size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
  182. /*
  183. * Allocate non-cacheable memory for the vring. In the future
  184. * this call will also configure the IOMMU for us
  185. */
  186. va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
  187. if (!va) {
  188. dev_err(dev->parent, "dma_alloc_coherent failed\n");
  189. return -EINVAL;
  190. }
  191. /*
  192. * Assign an rproc-wide unique index for this vring
  193. * TODO: assign a notifyid for rvdev updates as well
  194. * TODO: support predefined notifyids (via resource table)
  195. */
  196. ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
  197. if (ret < 0) {
  198. dev_err(dev, "idr_alloc failed: %d\n", ret);
  199. dma_free_coherent(dev->parent, size, va, dma);
  200. return ret;
  201. }
  202. notifyid = ret;
  203. dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
  204. i, va, &dma, size, notifyid);
  205. rvring->va = va;
  206. rvring->dma = dma;
  207. rvring->notifyid = notifyid;
  208. /*
  209. * Let the rproc know the notifyid and da of this vring.
  210. * Not all platforms use dma_alloc_coherent to automatically
  211. * set up the iommu. In this case the device address (da) will
  212. * hold the physical address and not the device address.
  213. */
  214. rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
  215. rsc->vring[i].da = dma;
  216. rsc->vring[i].notifyid = notifyid;
  217. return 0;
  218. }
  219. static int
  220. rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
  221. {
  222. struct rproc *rproc = rvdev->rproc;
  223. struct device *dev = &rproc->dev;
  224. struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
  225. struct rproc_vring *rvring = &rvdev->vring[i];
  226. dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
  227. i, vring->da, vring->num, vring->align);
  228. /* verify queue size and vring alignment are sane */
  229. if (!vring->num || !vring->align) {
  230. dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
  231. vring->num, vring->align);
  232. return -EINVAL;
  233. }
  234. rvring->len = vring->num;
  235. rvring->align = vring->align;
  236. rvring->rvdev = rvdev;
  237. return 0;
  238. }
  239. void rproc_free_vring(struct rproc_vring *rvring)
  240. {
  241. int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
  242. struct rproc *rproc = rvring->rvdev->rproc;
  243. int idx = rvring->rvdev->vring - rvring;
  244. struct fw_rsc_vdev *rsc;
  245. dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
  246. idr_remove(&rproc->notifyids, rvring->notifyid);
  247. /* reset resource entry info */
  248. rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
  249. rsc->vring[idx].da = 0;
  250. rsc->vring[idx].notifyid = -1;
  251. }
  252. /**
  253. * rproc_handle_vdev() - handle a vdev fw resource
  254. * @rproc: the remote processor
  255. * @rsc: the vring resource descriptor
  256. * @avail: size of available data (for sanity checking the image)
  257. *
  258. * This resource entry requests the host to statically register a virtio
  259. * device (vdev), and setup everything needed to support it. It contains
  260. * everything needed to make it possible: the virtio device id, virtio
  261. * device features, vrings information, virtio config space, etc...
  262. *
  263. * Before registering the vdev, the vrings are allocated from non-cacheable
  264. * physically contiguous memory. Currently we only support two vrings per
  265. * remote processor (temporary limitation). We might also want to consider
  266. * doing the vring allocation only later when ->find_vqs() is invoked, and
  267. * then release them upon ->del_vqs().
  268. *
  269. * Note: @da is currently not really handled correctly: we dynamically
  270. * allocate it using the DMA API, ignoring requested hard coded addresses,
  271. * and we don't take care of any required IOMMU programming. This is all
  272. * going to be taken care of when the generic iommu-based DMA API will be
  273. * merged. Meanwhile, statically-addressed iommu-based firmware images should
  274. * use RSC_DEVMEM resource entries to map their required @da to the physical
  275. * address of their base CMA region (ouch, hacky!).
  276. *
  277. * Returns 0 on success, or an appropriate error code otherwise
  278. */
  279. static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
  280. int offset, int avail)
  281. {
  282. struct device *dev = &rproc->dev;
  283. struct rproc_vdev *rvdev;
  284. int i, ret;
  285. /* make sure resource isn't truncated */
  286. if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
  287. + rsc->config_len > avail) {
  288. dev_err(dev, "vdev rsc is truncated\n");
  289. return -EINVAL;
  290. }
  291. /* make sure reserved bytes are zeroes */
  292. if (rsc->reserved[0] || rsc->reserved[1]) {
  293. dev_err(dev, "vdev rsc has non zero reserved bytes\n");
  294. return -EINVAL;
  295. }
  296. dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
  297. rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
  298. /* we currently support only two vrings per rvdev */
  299. if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
  300. dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
  301. return -EINVAL;
  302. }
  303. rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
  304. if (!rvdev)
  305. return -ENOMEM;
  306. rvdev->rproc = rproc;
  307. /* parse the vrings */
  308. for (i = 0; i < rsc->num_of_vrings; i++) {
  309. ret = rproc_parse_vring(rvdev, rsc, i);
  310. if (ret)
  311. goto free_rvdev;
  312. }
  313. /* remember the resource offset*/
  314. rvdev->rsc_offset = offset;
  315. list_add_tail(&rvdev->node, &rproc->rvdevs);
  316. /* it is now safe to add the virtio device */
  317. ret = rproc_add_virtio_dev(rvdev, rsc->id);
  318. if (ret)
  319. goto remove_rvdev;
  320. return 0;
  321. remove_rvdev:
  322. list_del(&rvdev->node);
  323. free_rvdev:
  324. kfree(rvdev);
  325. return ret;
  326. }
  327. /**
  328. * rproc_handle_trace() - handle a shared trace buffer resource
  329. * @rproc: the remote processor
  330. * @rsc: the trace resource descriptor
  331. * @avail: size of available data (for sanity checking the image)
  332. *
  333. * In case the remote processor dumps trace logs into memory,
  334. * export it via debugfs.
  335. *
  336. * Currently, the 'da' member of @rsc should contain the device address
  337. * where the remote processor is dumping the traces. Later we could also
  338. * support dynamically allocating this address using the generic
  339. * DMA API (but currently there isn't a use case for that).
  340. *
  341. * Returns 0 on success, or an appropriate error code otherwise
  342. */
  343. static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
  344. int offset, int avail)
  345. {
  346. struct rproc_mem_entry *trace;
  347. struct device *dev = &rproc->dev;
  348. void *ptr;
  349. char name[15];
  350. if (sizeof(*rsc) > avail) {
  351. dev_err(dev, "trace rsc is truncated\n");
  352. return -EINVAL;
  353. }
  354. /* make sure reserved bytes are zeroes */
  355. if (rsc->reserved) {
  356. dev_err(dev, "trace rsc has non zero reserved bytes\n");
  357. return -EINVAL;
  358. }
  359. /* what's the kernel address of this resource ? */
  360. ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
  361. if (!ptr) {
  362. dev_err(dev, "erroneous trace resource entry\n");
  363. return -EINVAL;
  364. }
  365. trace = kzalloc(sizeof(*trace), GFP_KERNEL);
  366. if (!trace)
  367. return -ENOMEM;
  368. /* set the trace buffer dma properties */
  369. trace->len = rsc->len;
  370. trace->va = ptr;
  371. /* make sure snprintf always null terminates, even if truncating */
  372. snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
  373. /* create the debugfs entry */
  374. trace->priv = rproc_create_trace_file(name, rproc, trace);
  375. if (!trace->priv) {
  376. trace->va = NULL;
  377. kfree(trace);
  378. return -EINVAL;
  379. }
  380. list_add_tail(&trace->node, &rproc->traces);
  381. rproc->num_traces++;
  382. dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
  383. name, ptr, rsc->da, rsc->len);
  384. return 0;
  385. }
  386. /**
  387. * rproc_handle_devmem() - handle devmem resource entry
  388. * @rproc: remote processor handle
  389. * @rsc: the devmem resource entry
  390. * @avail: size of available data (for sanity checking the image)
  391. *
  392. * Remote processors commonly need to access certain on-chip peripherals.
  393. *
  394. * Some of these remote processors access memory via an iommu device,
  395. * and might require us to configure their iommu before they can access
  396. * the on-chip peripherals they need.
  397. *
  398. * This resource entry is a request to map such a peripheral device.
  399. *
  400. * These devmem entries will contain the physical address of the device in
  401. * the 'pa' member. If a specific device address is expected, then 'da' will
  402. * contain it (currently this is the only use case supported). 'len' will
  403. * contain the size of the physical region we need to map.
  404. *
  405. * Currently we just "trust" those devmem entries to contain valid physical
  406. * addresses, but this is going to change: we want the implementations to
  407. * tell us ranges of physical addresses the firmware is allowed to request,
  408. * and not allow firmwares to request access to physical addresses that
  409. * are outside those ranges.
  410. */
  411. static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
  412. int offset, int avail)
  413. {
  414. struct rproc_mem_entry *mapping;
  415. struct device *dev = &rproc->dev;
  416. int ret;
  417. /* no point in handling this resource without a valid iommu domain */
  418. if (!rproc->domain)
  419. return -EINVAL;
  420. if (sizeof(*rsc) > avail) {
  421. dev_err(dev, "devmem rsc is truncated\n");
  422. return -EINVAL;
  423. }
  424. /* make sure reserved bytes are zeroes */
  425. if (rsc->reserved) {
  426. dev_err(dev, "devmem rsc has non zero reserved bytes\n");
  427. return -EINVAL;
  428. }
  429. mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
  430. if (!mapping)
  431. return -ENOMEM;
  432. ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
  433. if (ret) {
  434. dev_err(dev, "failed to map devmem: %d\n", ret);
  435. goto out;
  436. }
  437. /*
  438. * We'll need this info later when we'll want to unmap everything
  439. * (e.g. on shutdown).
  440. *
  441. * We can't trust the remote processor not to change the resource
  442. * table, so we must maintain this info independently.
  443. */
  444. mapping->da = rsc->da;
  445. mapping->len = rsc->len;
  446. list_add_tail(&mapping->node, &rproc->mappings);
  447. dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
  448. rsc->pa, rsc->da, rsc->len);
  449. return 0;
  450. out:
  451. kfree(mapping);
  452. return ret;
  453. }
  454. /**
  455. * rproc_handle_carveout() - handle phys contig memory allocation requests
  456. * @rproc: rproc handle
  457. * @rsc: the resource entry
  458. * @avail: size of available data (for image validation)
  459. *
  460. * This function will handle firmware requests for allocation of physically
  461. * contiguous memory regions.
  462. *
  463. * These request entries should come first in the firmware's resource table,
  464. * as other firmware entries might request placing other data objects inside
  465. * these memory regions (e.g. data/code segments, trace resource entries, ...).
  466. *
  467. * Allocating memory this way helps utilizing the reserved physical memory
  468. * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
  469. * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
  470. * pressure is important; it may have a substantial impact on performance.
  471. */
  472. static int rproc_handle_carveout(struct rproc *rproc,
  473. struct fw_rsc_carveout *rsc,
  474. int offset, int avail)
  475. {
  476. struct rproc_mem_entry *carveout, *mapping;
  477. struct device *dev = &rproc->dev;
  478. dma_addr_t dma;
  479. void *va;
  480. int ret;
  481. if (sizeof(*rsc) > avail) {
  482. dev_err(dev, "carveout rsc is truncated\n");
  483. return -EINVAL;
  484. }
  485. /* make sure reserved bytes are zeroes */
  486. if (rsc->reserved) {
  487. dev_err(dev, "carveout rsc has non zero reserved bytes\n");
  488. return -EINVAL;
  489. }
  490. dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
  491. rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
  492. carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
  493. if (!carveout)
  494. return -ENOMEM;
  495. va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
  496. if (!va) {
  497. dev_err(dev->parent,
  498. "failed to allocate dma memory: len 0x%x\n", rsc->len);
  499. ret = -ENOMEM;
  500. goto free_carv;
  501. }
  502. dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
  503. va, &dma, rsc->len);
  504. /*
  505. * Ok, this is non-standard.
  506. *
  507. * Sometimes we can't rely on the generic iommu-based DMA API
  508. * to dynamically allocate the device address and then set the IOMMU
  509. * tables accordingly, because some remote processors might
  510. * _require_ us to use hard coded device addresses that their
  511. * firmware was compiled with.
  512. *
  513. * In this case, we must use the IOMMU API directly and map
  514. * the memory to the device address as expected by the remote
  515. * processor.
  516. *
  517. * Obviously such remote processor devices should not be configured
  518. * to use the iommu-based DMA API: we expect 'dma' to contain the
  519. * physical address in this case.
  520. */
  521. if (rproc->domain) {
  522. mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
  523. if (!mapping) {
  524. ret = -ENOMEM;
  525. goto dma_free;
  526. }
  527. ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
  528. rsc->flags);
  529. if (ret) {
  530. dev_err(dev, "iommu_map failed: %d\n", ret);
  531. goto free_mapping;
  532. }
  533. /*
  534. * We'll need this info later when we'll want to unmap
  535. * everything (e.g. on shutdown).
  536. *
  537. * We can't trust the remote processor not to change the
  538. * resource table, so we must maintain this info independently.
  539. */
  540. mapping->da = rsc->da;
  541. mapping->len = rsc->len;
  542. list_add_tail(&mapping->node, &rproc->mappings);
  543. dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
  544. rsc->da, &dma);
  545. }
  546. /*
  547. * Some remote processors might need to know the pa
  548. * even though they are behind an IOMMU. E.g., OMAP4's
  549. * remote M3 processor needs this so it can control
  550. * on-chip hardware accelerators that are not behind
  551. * the IOMMU, and therefor must know the pa.
  552. *
  553. * Generally we don't want to expose physical addresses
  554. * if we don't have to (remote processors are generally
  555. * _not_ trusted), so we might want to do this only for
  556. * remote processor that _must_ have this (e.g. OMAP4's
  557. * dual M3 subsystem).
  558. *
  559. * Non-IOMMU processors might also want to have this info.
  560. * In this case, the device address and the physical address
  561. * are the same.
  562. */
  563. rsc->pa = dma;
  564. carveout->va = va;
  565. carveout->len = rsc->len;
  566. carveout->dma = dma;
  567. carveout->da = rsc->da;
  568. list_add_tail(&carveout->node, &rproc->carveouts);
  569. return 0;
  570. free_mapping:
  571. kfree(mapping);
  572. dma_free:
  573. dma_free_coherent(dev->parent, rsc->len, va, dma);
  574. free_carv:
  575. kfree(carveout);
  576. return ret;
  577. }
  578. static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
  579. int offset, int avail)
  580. {
  581. /* Summarize the number of notification IDs */
  582. rproc->max_notifyid += rsc->num_of_vrings;
  583. return 0;
  584. }
  585. /*
  586. * A lookup table for resource handlers. The indices are defined in
  587. * enum fw_resource_type.
  588. */
  589. static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
  590. [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
  591. [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
  592. [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
  593. [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
  594. };
  595. static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
  596. [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
  597. };
  598. /* handle firmware resource entries before booting the remote processor */
  599. static int rproc_handle_resources(struct rproc *rproc, int len,
  600. rproc_handle_resource_t handlers[RSC_LAST])
  601. {
  602. struct device *dev = &rproc->dev;
  603. rproc_handle_resource_t handler;
  604. int ret = 0, i;
  605. for (i = 0; i < rproc->table_ptr->num; i++) {
  606. int offset = rproc->table_ptr->offset[i];
  607. struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
  608. int avail = len - offset - sizeof(*hdr);
  609. void *rsc = (void *)hdr + sizeof(*hdr);
  610. /* make sure table isn't truncated */
  611. if (avail < 0) {
  612. dev_err(dev, "rsc table is truncated\n");
  613. return -EINVAL;
  614. }
  615. dev_dbg(dev, "rsc: type %d\n", hdr->type);
  616. if (hdr->type >= RSC_LAST) {
  617. dev_warn(dev, "unsupported resource %d\n", hdr->type);
  618. continue;
  619. }
  620. handler = handlers[hdr->type];
  621. if (!handler)
  622. continue;
  623. ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
  624. if (ret)
  625. break;
  626. }
  627. return ret;
  628. }
  629. /**
  630. * rproc_resource_cleanup() - clean up and free all acquired resources
  631. * @rproc: rproc handle
  632. *
  633. * This function will free all resources acquired for @rproc, and it
  634. * is called whenever @rproc either shuts down or fails to boot.
  635. */
  636. static void rproc_resource_cleanup(struct rproc *rproc)
  637. {
  638. struct rproc_mem_entry *entry, *tmp;
  639. struct rproc_vdev *rvdev, *rvtmp;
  640. struct device *dev = &rproc->dev;
  641. /* clean up debugfs trace entries */
  642. list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
  643. rproc_remove_trace_file(entry->priv);
  644. rproc->num_traces--;
  645. list_del(&entry->node);
  646. kfree(entry);
  647. }
  648. /* clean up iommu mapping entries */
  649. list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
  650. size_t unmapped;
  651. unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
  652. if (unmapped != entry->len) {
  653. /* nothing much to do besides complaining */
  654. dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
  655. unmapped);
  656. }
  657. list_del(&entry->node);
  658. kfree(entry);
  659. }
  660. /* clean up carveout allocations */
  661. list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
  662. dma_free_coherent(dev->parent, entry->len, entry->va,
  663. entry->dma);
  664. list_del(&entry->node);
  665. kfree(entry);
  666. }
  667. /* clean up remote vdev entries */
  668. list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
  669. rproc_remove_virtio_dev(rvdev);
  670. }
  671. /*
  672. * take a firmware and boot a remote processor with it.
  673. */
  674. static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
  675. {
  676. struct device *dev = &rproc->dev;
  677. const char *name = rproc->firmware;
  678. struct resource_table *table, *loaded_table;
  679. int ret, tablesz;
  680. ret = rproc_fw_sanity_check(rproc, fw);
  681. if (ret)
  682. return ret;
  683. dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
  684. /*
  685. * if enabling an IOMMU isn't relevant for this rproc, this is
  686. * just a nop
  687. */
  688. ret = rproc_enable_iommu(rproc);
  689. if (ret) {
  690. dev_err(dev, "can't enable iommu: %d\n", ret);
  691. return ret;
  692. }
  693. rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
  694. ret = -EINVAL;
  695. /* look for the resource table */
  696. table = rproc_find_rsc_table(rproc, fw, &tablesz);
  697. if (!table) {
  698. dev_err(dev, "Failed to find resource table\n");
  699. goto clean_up;
  700. }
  701. /*
  702. * Create a copy of the resource table. When a virtio device starts
  703. * and calls vring_new_virtqueue() the address of the allocated vring
  704. * will be stored in the cached_table. Before the device is started,
  705. * cached_table will be copied into device memory.
  706. */
  707. rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
  708. if (!rproc->cached_table)
  709. goto clean_up;
  710. rproc->table_ptr = rproc->cached_table;
  711. /* reset max_notifyid */
  712. rproc->max_notifyid = -1;
  713. /* look for virtio devices and register them */
  714. ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
  715. if (ret) {
  716. dev_err(dev, "Failed to handle vdev resources: %d\n", ret);
  717. goto clean_up;
  718. }
  719. /* handle fw resources which are required to boot rproc */
  720. ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
  721. if (ret) {
  722. dev_err(dev, "Failed to process resources: %d\n", ret);
  723. goto clean_up_resources;
  724. }
  725. /* load the ELF segments to memory */
  726. ret = rproc_load_segments(rproc, fw);
  727. if (ret) {
  728. dev_err(dev, "Failed to load program segments: %d\n", ret);
  729. goto clean_up_resources;
  730. }
  731. /*
  732. * The starting device has been given the rproc->cached_table as the
  733. * resource table. The address of the vring along with the other
  734. * allocated resources (carveouts etc) is stored in cached_table.
  735. * In order to pass this information to the remote device we must copy
  736. * this information to device memory. We also update the table_ptr so
  737. * that any subsequent changes will be applied to the loaded version.
  738. */
  739. loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
  740. if (loaded_table) {
  741. memcpy(loaded_table, rproc->cached_table, tablesz);
  742. rproc->table_ptr = loaded_table;
  743. }
  744. /* power up the remote processor */
  745. ret = rproc->ops->start(rproc);
  746. if (ret) {
  747. dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
  748. goto clean_up_resources;
  749. }
  750. rproc->state = RPROC_RUNNING;
  751. dev_info(dev, "remote processor %s is now up\n", rproc->name);
  752. return 0;
  753. clean_up_resources:
  754. rproc_resource_cleanup(rproc);
  755. clean_up:
  756. kfree(rproc->cached_table);
  757. rproc->cached_table = NULL;
  758. rproc->table_ptr = NULL;
  759. rproc_disable_iommu(rproc);
  760. return ret;
  761. }
  762. /*
  763. * take a firmware and look for virtio devices to register.
  764. *
  765. * Note: this function is called asynchronously upon registration of the
  766. * remote processor (so we must wait until it completes before we try
  767. * to unregister the device. one other option is just to use kref here,
  768. * that might be cleaner).
  769. */
  770. static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
  771. {
  772. struct rproc *rproc = context;
  773. /* if rproc is marked always-on, request it to boot */
  774. if (rproc->auto_boot)
  775. rproc_boot_nowait(rproc);
  776. release_firmware(fw);
  777. /* allow rproc_del() contexts, if any, to proceed */
  778. complete_all(&rproc->firmware_loading_complete);
  779. }
  780. static int rproc_add_virtio_devices(struct rproc *rproc)
  781. {
  782. int ret;
  783. /* rproc_del() calls must wait until async loader completes */
  784. init_completion(&rproc->firmware_loading_complete);
  785. /*
  786. * We must retrieve early virtio configuration info from
  787. * the firmware (e.g. whether to register a virtio device,
  788. * what virtio features does it support, ...).
  789. *
  790. * We're initiating an asynchronous firmware loading, so we can
  791. * be built-in kernel code, without hanging the boot process.
  792. */
  793. ret = maybe_reject_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
  794. rproc->firmware, &rproc->dev, GFP_KERNEL,
  795. rproc, rproc_fw_config_virtio);
  796. if (ret < 0) {
  797. dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
  798. complete_all(&rproc->firmware_loading_complete);
  799. }
  800. return ret;
  801. }
  802. /**
  803. * rproc_trigger_recovery() - recover a remoteproc
  804. * @rproc: the remote processor
  805. *
  806. * The recovery is done by resetting all the virtio devices, that way all the
  807. * rpmsg drivers will be reseted along with the remote processor making the
  808. * remoteproc functional again.
  809. *
  810. * This function can sleep, so it cannot be called from atomic context.
  811. */
  812. int rproc_trigger_recovery(struct rproc *rproc)
  813. {
  814. dev_err(&rproc->dev, "recovering %s\n", rproc->name);
  815. init_completion(&rproc->crash_comp);
  816. /* shut down the remote */
  817. /* TODO: make sure this works with rproc->power > 1 */
  818. rproc_shutdown(rproc);
  819. /* wait until there is no more rproc users */
  820. wait_for_completion(&rproc->crash_comp);
  821. /*
  822. * boot the remote processor up again
  823. */
  824. rproc_boot(rproc);
  825. return 0;
  826. }
  827. /**
  828. * rproc_crash_handler_work() - handle a crash
  829. *
  830. * This function needs to handle everything related to a crash, like cpu
  831. * registers and stack dump, information to help to debug the fatal error, etc.
  832. */
  833. static void rproc_crash_handler_work(struct work_struct *work)
  834. {
  835. struct rproc *rproc = container_of(work, struct rproc, crash_handler);
  836. struct device *dev = &rproc->dev;
  837. dev_dbg(dev, "enter %s\n", __func__);
  838. mutex_lock(&rproc->lock);
  839. if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
  840. /* handle only the first crash detected */
  841. mutex_unlock(&rproc->lock);
  842. return;
  843. }
  844. rproc->state = RPROC_CRASHED;
  845. dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
  846. rproc->name);
  847. mutex_unlock(&rproc->lock);
  848. if (!rproc->recovery_disabled)
  849. rproc_trigger_recovery(rproc);
  850. }
  851. /**
  852. * __rproc_boot() - boot a remote processor
  853. * @rproc: handle of a remote processor
  854. * @wait: wait for rproc registration completion
  855. *
  856. * Boot a remote processor (i.e. load its firmware, power it on, ...).
  857. *
  858. * If the remote processor is already powered on, this function immediately
  859. * returns (successfully).
  860. *
  861. * Returns 0 on success, and an appropriate error value otherwise.
  862. */
  863. static int __rproc_boot(struct rproc *rproc, bool wait)
  864. {
  865. const struct firmware *firmware_p;
  866. struct device *dev;
  867. int ret;
  868. if (!rproc) {
  869. pr_err("invalid rproc handle\n");
  870. return -EINVAL;
  871. }
  872. dev = &rproc->dev;
  873. ret = mutex_lock_interruptible(&rproc->lock);
  874. if (ret) {
  875. dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
  876. return ret;
  877. }
  878. /* skip the boot process if rproc is already powered up */
  879. if (atomic_inc_return(&rproc->power) > 1) {
  880. ret = 0;
  881. goto unlock_mutex;
  882. }
  883. dev_info(dev, "powering up %s\n", rproc->name);
  884. /* load firmware */
  885. ret = maybe_reject_firmware(&firmware_p, rproc->firmware, dev);
  886. if (ret < 0) {
  887. dev_err(dev, "request_firmware failed: %d\n", ret);
  888. goto downref_rproc;
  889. }
  890. /* if rproc virtio is not yet configured, wait */
  891. if (wait)
  892. wait_for_completion(&rproc->firmware_loading_complete);
  893. ret = rproc_fw_boot(rproc, firmware_p);
  894. release_firmware(firmware_p);
  895. downref_rproc:
  896. if (ret)
  897. atomic_dec(&rproc->power);
  898. unlock_mutex:
  899. mutex_unlock(&rproc->lock);
  900. return ret;
  901. }
  902. /**
  903. * rproc_boot() - boot a remote processor
  904. * @rproc: handle of a remote processor
  905. */
  906. int rproc_boot(struct rproc *rproc)
  907. {
  908. return __rproc_boot(rproc, true);
  909. }
  910. EXPORT_SYMBOL(rproc_boot);
  911. /**
  912. * rproc_boot_nowait() - boot a remote processor
  913. * @rproc: handle of a remote processor
  914. *
  915. * Same as rproc_boot() but don't wait for rproc registration completion
  916. */
  917. int rproc_boot_nowait(struct rproc *rproc)
  918. {
  919. return __rproc_boot(rproc, false);
  920. }
  921. /**
  922. * rproc_shutdown() - power off the remote processor
  923. * @rproc: the remote processor
  924. *
  925. * Power off a remote processor (previously booted with rproc_boot()).
  926. *
  927. * In case @rproc is still being used by an additional user(s), then
  928. * this function will just decrement the power refcount and exit,
  929. * without really powering off the device.
  930. *
  931. * Every call to rproc_boot() must (eventually) be accompanied by a call
  932. * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
  933. *
  934. * Notes:
  935. * - we're not decrementing the rproc's refcount, only the power refcount.
  936. * which means that the @rproc handle stays valid even after rproc_shutdown()
  937. * returns, and users can still use it with a subsequent rproc_boot(), if
  938. * needed.
  939. */
  940. void rproc_shutdown(struct rproc *rproc)
  941. {
  942. struct device *dev = &rproc->dev;
  943. int ret;
  944. ret = mutex_lock_interruptible(&rproc->lock);
  945. if (ret) {
  946. dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
  947. return;
  948. }
  949. /* if the remote proc is still needed, bail out */
  950. if (!atomic_dec_and_test(&rproc->power))
  951. goto out;
  952. /* power off the remote processor */
  953. ret = rproc->ops->stop(rproc);
  954. if (ret) {
  955. atomic_inc(&rproc->power);
  956. dev_err(dev, "can't stop rproc: %d\n", ret);
  957. goto out;
  958. }
  959. /* clean up all acquired resources */
  960. rproc_resource_cleanup(rproc);
  961. rproc_disable_iommu(rproc);
  962. /* Free the copy of the resource table */
  963. kfree(rproc->cached_table);
  964. rproc->cached_table = NULL;
  965. rproc->table_ptr = NULL;
  966. /* if in crash state, unlock crash handler */
  967. if (rproc->state == RPROC_CRASHED)
  968. complete_all(&rproc->crash_comp);
  969. rproc->state = RPROC_OFFLINE;
  970. dev_info(dev, "stopped remote processor %s\n", rproc->name);
  971. out:
  972. mutex_unlock(&rproc->lock);
  973. }
  974. EXPORT_SYMBOL(rproc_shutdown);
  975. /**
  976. * rproc_get_by_phandle() - find a remote processor by phandle
  977. * @phandle: phandle to the rproc
  978. *
  979. * Finds an rproc handle using the remote processor's phandle, and then
  980. * return a handle to the rproc.
  981. *
  982. * This function increments the remote processor's refcount, so always
  983. * use rproc_put() to decrement it back once rproc isn't needed anymore.
  984. *
  985. * Returns the rproc handle on success, and NULL on failure.
  986. */
  987. #ifdef CONFIG_OF
  988. struct rproc *rproc_get_by_phandle(phandle phandle)
  989. {
  990. struct rproc *rproc = NULL, *r;
  991. struct device_node *np;
  992. np = of_find_node_by_phandle(phandle);
  993. if (!np)
  994. return NULL;
  995. mutex_lock(&rproc_list_mutex);
  996. list_for_each_entry(r, &rproc_list, node) {
  997. if (r->dev.parent && r->dev.parent->of_node == np) {
  998. /* prevent underlying implementation from being removed */
  999. if (!try_module_get(r->dev.parent->driver->owner)) {
  1000. dev_err(&r->dev, "can't get owner\n");
  1001. break;
  1002. }
  1003. rproc = r;
  1004. get_device(&rproc->dev);
  1005. break;
  1006. }
  1007. }
  1008. mutex_unlock(&rproc_list_mutex);
  1009. of_node_put(np);
  1010. return rproc;
  1011. }
  1012. #else
  1013. struct rproc *rproc_get_by_phandle(phandle phandle)
  1014. {
  1015. return NULL;
  1016. }
  1017. #endif
  1018. EXPORT_SYMBOL(rproc_get_by_phandle);
  1019. /**
  1020. * rproc_add() - register a remote processor
  1021. * @rproc: the remote processor handle to register
  1022. *
  1023. * Registers @rproc with the remoteproc framework, after it has been
  1024. * allocated with rproc_alloc().
  1025. *
  1026. * This is called by the platform-specific rproc implementation, whenever
  1027. * a new remote processor device is probed.
  1028. *
  1029. * Returns 0 on success and an appropriate error code otherwise.
  1030. *
  1031. * Note: this function initiates an asynchronous firmware loading
  1032. * context, which will look for virtio devices supported by the rproc's
  1033. * firmware.
  1034. *
  1035. * If found, those virtio devices will be created and added, so as a result
  1036. * of registering this remote processor, additional virtio drivers might be
  1037. * probed.
  1038. */
  1039. int rproc_add(struct rproc *rproc)
  1040. {
  1041. struct device *dev = &rproc->dev;
  1042. int ret;
  1043. ret = device_add(dev);
  1044. if (ret < 0)
  1045. return ret;
  1046. dev_info(dev, "%s is available\n", rproc->name);
  1047. dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
  1048. dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
  1049. /* create debugfs entries */
  1050. rproc_create_debug_dir(rproc);
  1051. ret = rproc_add_virtio_devices(rproc);
  1052. if (ret < 0)
  1053. return ret;
  1054. /* expose to rproc_get_by_phandle users */
  1055. mutex_lock(&rproc_list_mutex);
  1056. list_add(&rproc->node, &rproc_list);
  1057. mutex_unlock(&rproc_list_mutex);
  1058. return 0;
  1059. }
  1060. EXPORT_SYMBOL(rproc_add);
  1061. /**
  1062. * rproc_type_release() - release a remote processor instance
  1063. * @dev: the rproc's device
  1064. *
  1065. * This function should _never_ be called directly.
  1066. *
  1067. * It will be called by the driver core when no one holds a valid pointer
  1068. * to @dev anymore.
  1069. */
  1070. static void rproc_type_release(struct device *dev)
  1071. {
  1072. struct rproc *rproc = container_of(dev, struct rproc, dev);
  1073. dev_info(&rproc->dev, "releasing %s\n", rproc->name);
  1074. rproc_delete_debug_dir(rproc);
  1075. idr_destroy(&rproc->notifyids);
  1076. if (rproc->index >= 0)
  1077. ida_simple_remove(&rproc_dev_index, rproc->index);
  1078. kfree(rproc);
  1079. }
  1080. static struct device_type rproc_type = {
  1081. .name = "remoteproc",
  1082. .release = rproc_type_release,
  1083. };
  1084. /**
  1085. * rproc_alloc() - allocate a remote processor handle
  1086. * @dev: the underlying device
  1087. * @name: name of this remote processor
  1088. * @ops: platform-specific handlers (mainly start/stop)
  1089. * @firmware: name of firmware file to load, can be NULL
  1090. * @len: length of private data needed by the rproc driver (in bytes)
  1091. *
  1092. * Allocates a new remote processor handle, but does not register
  1093. * it yet. if @firmware is NULL, a default name is used.
  1094. *
  1095. * This function should be used by rproc implementations during initialization
  1096. * of the remote processor.
  1097. *
  1098. * After creating an rproc handle using this function, and when ready,
  1099. * implementations should then call rproc_add() to complete
  1100. * the registration of the remote processor.
  1101. *
  1102. * On success the new rproc is returned, and on failure, NULL.
  1103. *
  1104. * Note: _never_ directly deallocate @rproc, even if it was not registered
  1105. * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
  1106. */
  1107. struct rproc *rproc_alloc(struct device *dev, const char *name,
  1108. const struct rproc_ops *ops,
  1109. const char *firmware, int len)
  1110. {
  1111. struct rproc *rproc;
  1112. char *p, *template = "rproc-%s-fw";
  1113. int name_len = 0;
  1114. if (!dev || !name || !ops)
  1115. return NULL;
  1116. if (!firmware)
  1117. /*
  1118. * Make room for default firmware name (minus %s plus '\0').
  1119. * If the caller didn't pass in a firmware name then
  1120. * construct a default name. We're already glomming 'len'
  1121. * bytes onto the end of the struct rproc allocation, so do
  1122. * a few more for the default firmware name (but only if
  1123. * the caller doesn't pass one).
  1124. */
  1125. name_len = strlen(name) + strlen(template) - 2 + 1;
  1126. rproc = kzalloc(sizeof(*rproc) + len + name_len, GFP_KERNEL);
  1127. if (!rproc)
  1128. return NULL;
  1129. if (!firmware) {
  1130. p = (char *)rproc + sizeof(struct rproc) + len;
  1131. snprintf(p, name_len, template, name);
  1132. } else {
  1133. p = (char *)firmware;
  1134. }
  1135. rproc->firmware = p;
  1136. rproc->name = name;
  1137. rproc->ops = ops;
  1138. rproc->priv = &rproc[1];
  1139. rproc->auto_boot = true;
  1140. device_initialize(&rproc->dev);
  1141. rproc->dev.parent = dev;
  1142. rproc->dev.type = &rproc_type;
  1143. /* Assign a unique device index and name */
  1144. rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
  1145. if (rproc->index < 0) {
  1146. dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
  1147. put_device(&rproc->dev);
  1148. return NULL;
  1149. }
  1150. dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
  1151. atomic_set(&rproc->power, 0);
  1152. /* Set ELF as the default fw_ops handler */
  1153. rproc->fw_ops = &rproc_elf_fw_ops;
  1154. mutex_init(&rproc->lock);
  1155. idr_init(&rproc->notifyids);
  1156. INIT_LIST_HEAD(&rproc->carveouts);
  1157. INIT_LIST_HEAD(&rproc->mappings);
  1158. INIT_LIST_HEAD(&rproc->traces);
  1159. INIT_LIST_HEAD(&rproc->rvdevs);
  1160. INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
  1161. init_completion(&rproc->crash_comp);
  1162. rproc->state = RPROC_OFFLINE;
  1163. return rproc;
  1164. }
  1165. EXPORT_SYMBOL(rproc_alloc);
  1166. /**
  1167. * rproc_free() - unroll rproc_alloc()
  1168. * @rproc: the remote processor handle
  1169. *
  1170. * This function decrements the rproc dev refcount.
  1171. *
  1172. * If no one holds any reference to rproc anymore, then its refcount would
  1173. * now drop to zero, and it would be freed.
  1174. */
  1175. void rproc_free(struct rproc *rproc)
  1176. {
  1177. put_device(&rproc->dev);
  1178. }
  1179. EXPORT_SYMBOL(rproc_free);
  1180. /**
  1181. * rproc_put() - release rproc reference
  1182. * @rproc: the remote processor handle
  1183. *
  1184. * This function decrements the rproc dev refcount.
  1185. *
  1186. * If no one holds any reference to rproc anymore, then its refcount would
  1187. * now drop to zero, and it would be freed.
  1188. */
  1189. void rproc_put(struct rproc *rproc)
  1190. {
  1191. module_put(rproc->dev.parent->driver->owner);
  1192. put_device(&rproc->dev);
  1193. }
  1194. EXPORT_SYMBOL(rproc_put);
  1195. /**
  1196. * rproc_del() - unregister a remote processor
  1197. * @rproc: rproc handle to unregister
  1198. *
  1199. * This function should be called when the platform specific rproc
  1200. * implementation decides to remove the rproc device. it should
  1201. * _only_ be called if a previous invocation of rproc_add()
  1202. * has completed successfully.
  1203. *
  1204. * After rproc_del() returns, @rproc isn't freed yet, because
  1205. * of the outstanding reference created by rproc_alloc. To decrement that
  1206. * one last refcount, one still needs to call rproc_free().
  1207. *
  1208. * Returns 0 on success and -EINVAL if @rproc isn't valid.
  1209. */
  1210. int rproc_del(struct rproc *rproc)
  1211. {
  1212. struct rproc_vdev *rvdev, *tmp;
  1213. if (!rproc)
  1214. return -EINVAL;
  1215. /* if rproc is just being registered, wait */
  1216. wait_for_completion(&rproc->firmware_loading_complete);
  1217. /* if rproc is marked always-on, rproc_add() booted it */
  1218. /* TODO: make sure this works with rproc->power > 1 */
  1219. if (rproc->auto_boot)
  1220. rproc_shutdown(rproc);
  1221. /* clean up remote vdev entries */
  1222. list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
  1223. rproc_remove_virtio_dev(rvdev);
  1224. /* the rproc is downref'ed as soon as it's removed from the klist */
  1225. mutex_lock(&rproc_list_mutex);
  1226. list_del(&rproc->node);
  1227. mutex_unlock(&rproc_list_mutex);
  1228. device_del(&rproc->dev);
  1229. return 0;
  1230. }
  1231. EXPORT_SYMBOL(rproc_del);
  1232. /**
  1233. * rproc_report_crash() - rproc crash reporter function
  1234. * @rproc: remote processor
  1235. * @type: crash type
  1236. *
  1237. * This function must be called every time a crash is detected by the low-level
  1238. * drivers implementing a specific remoteproc. This should not be called from a
  1239. * non-remoteproc driver.
  1240. *
  1241. * This function can be called from atomic/interrupt context.
  1242. */
  1243. void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
  1244. {
  1245. if (!rproc) {
  1246. pr_err("NULL rproc pointer\n");
  1247. return;
  1248. }
  1249. dev_err(&rproc->dev, "crash detected in %s: type %s\n",
  1250. rproc->name, rproc_crash_to_string(type));
  1251. /* create a new task to handle the error */
  1252. schedule_work(&rproc->crash_handler);
  1253. }
  1254. EXPORT_SYMBOL(rproc_report_crash);
  1255. static int __init remoteproc_init(void)
  1256. {
  1257. rproc_init_debugfs();
  1258. return 0;
  1259. }
  1260. module_init(remoteproc_init);
  1261. static void __exit remoteproc_exit(void)
  1262. {
  1263. ida_destroy(&rproc_dev_index);
  1264. rproc_exit_debugfs();
  1265. }
  1266. module_exit(remoteproc_exit);
  1267. MODULE_LICENSE("GPL v2");
  1268. MODULE_DESCRIPTION("Generic Remote Processor Framework");