eeprom_4k.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  20. {
  21. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  22. }
  23. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  24. {
  25. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  26. }
  27. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  28. static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  29. {
  30. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  31. int addr, eep_start_loc = 64;
  32. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  33. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
  34. return false;
  35. eep_data++;
  36. }
  37. return true;
  38. }
  39. static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
  40. {
  41. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  42. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
  43. return true;
  44. }
  45. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  46. {
  47. struct ath_common *common = ath9k_hw_common(ah);
  48. if (!ath9k_hw_use_flash(ah)) {
  49. ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
  50. }
  51. if (common->bus_ops->ath_bus_type == ATH_USB)
  52. return __ath9k_hw_usb_4k_fill_eeprom(ah);
  53. else
  54. return __ath9k_hw_4k_fill_eeprom(ah);
  55. }
  56. #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
  57. static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
  58. struct modal_eep_4k_header *modal_hdr)
  59. {
  60. PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
  61. PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
  62. PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
  63. PR_EEP("Switch Settle", modal_hdr->switchSettling);
  64. PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
  65. PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
  66. PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
  67. PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
  68. PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
  69. PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
  70. PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
  71. PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
  72. PR_EEP("CCA Threshold)", modal_hdr->thresh62);
  73. PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
  74. PR_EEP("xpdGain", modal_hdr->xpdGain);
  75. PR_EEP("External PD", modal_hdr->xpd);
  76. PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
  77. PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
  78. PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
  79. PR_EEP("O/D Bias Version", modal_hdr->version);
  80. PR_EEP("CCK OutputBias", modal_hdr->ob_0);
  81. PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
  82. PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
  83. PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
  84. PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
  85. PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
  86. PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
  87. PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
  88. PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
  89. PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
  90. PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
  91. PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
  92. PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
  93. PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
  94. PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
  95. PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
  96. PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
  97. PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
  98. PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
  99. PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
  100. PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
  101. PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
  102. PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
  103. PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
  104. PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
  105. PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
  106. PR_EEP("TX Diversity", modal_hdr->tx_diversity);
  107. return len;
  108. }
  109. static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  110. u8 *buf, u32 len, u32 size)
  111. {
  112. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  113. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  114. if (!dump_base_hdr) {
  115. len += scnprintf(buf + len, size - len,
  116. "%20s :\n", "2GHz modal Header");
  117. len = ath9k_dump_4k_modal_eeprom(buf, len, size,
  118. &eep->modalHeader);
  119. goto out;
  120. }
  121. PR_EEP("Major Version", pBase->version >> 12);
  122. PR_EEP("Minor Version", pBase->version & 0xFFF);
  123. PR_EEP("Checksum", pBase->checksum);
  124. PR_EEP("Length", pBase->length);
  125. PR_EEP("RegDomain1", pBase->regDmn[0]);
  126. PR_EEP("RegDomain2", pBase->regDmn[1]);
  127. PR_EEP("TX Mask", pBase->txMask);
  128. PR_EEP("RX Mask", pBase->rxMask);
  129. PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
  130. PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
  131. PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
  132. AR5416_OPFLAGS_N_2G_HT20));
  133. PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
  134. AR5416_OPFLAGS_N_2G_HT40));
  135. PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
  136. AR5416_OPFLAGS_N_5G_HT20));
  137. PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
  138. AR5416_OPFLAGS_N_5G_HT40));
  139. PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
  140. PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
  141. PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
  142. PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
  143. PR_EEP("TX Gain type", pBase->txGainType);
  144. len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
  145. pBase->macAddr);
  146. out:
  147. if (len > size)
  148. len = size;
  149. return len;
  150. }
  151. #else
  152. static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  153. u8 *buf, u32 len, u32 size)
  154. {
  155. return 0;
  156. }
  157. #endif
  158. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  159. {
  160. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  161. u32 el;
  162. bool need_swap;
  163. int i, err;
  164. err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_4K);
  165. if (err)
  166. return err;
  167. if (need_swap)
  168. el = swab16(eep->baseEepHeader.length);
  169. else
  170. el = eep->baseEepHeader.length;
  171. el = min(el / sizeof(u16), SIZE_EEPROM_4K);
  172. if (!ath9k_hw_nvram_validate_checksum(ah, el))
  173. return -EINVAL;
  174. if (need_swap) {
  175. u32 integer;
  176. u16 word;
  177. word = swab16(eep->baseEepHeader.length);
  178. eep->baseEepHeader.length = word;
  179. word = swab16(eep->baseEepHeader.checksum);
  180. eep->baseEepHeader.checksum = word;
  181. word = swab16(eep->baseEepHeader.version);
  182. eep->baseEepHeader.version = word;
  183. word = swab16(eep->baseEepHeader.regDmn[0]);
  184. eep->baseEepHeader.regDmn[0] = word;
  185. word = swab16(eep->baseEepHeader.regDmn[1]);
  186. eep->baseEepHeader.regDmn[1] = word;
  187. word = swab16(eep->baseEepHeader.rfSilent);
  188. eep->baseEepHeader.rfSilent = word;
  189. word = swab16(eep->baseEepHeader.blueToothOptions);
  190. eep->baseEepHeader.blueToothOptions = word;
  191. word = swab16(eep->baseEepHeader.deviceCap);
  192. eep->baseEepHeader.deviceCap = word;
  193. integer = swab32(eep->modalHeader.antCtrlCommon);
  194. eep->modalHeader.antCtrlCommon = integer;
  195. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  196. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  197. eep->modalHeader.antCtrlChain[i] = integer;
  198. }
  199. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  200. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  201. eep->modalHeader.spurChans[i].spurChan = word;
  202. }
  203. }
  204. if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
  205. AR5416_EEP_NO_BACK_VER))
  206. return -EINVAL;
  207. return 0;
  208. }
  209. #undef SIZE_EEPROM_4K
  210. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  211. enum eeprom_param param)
  212. {
  213. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  214. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  215. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  216. u16 ver_minor;
  217. ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
  218. switch (param) {
  219. case EEP_NFTHRESH_2:
  220. return pModal->noiseFloorThreshCh[0];
  221. case EEP_MAC_LSW:
  222. return get_unaligned_be16(pBase->macAddr);
  223. case EEP_MAC_MID:
  224. return get_unaligned_be16(pBase->macAddr + 2);
  225. case EEP_MAC_MSW:
  226. return get_unaligned_be16(pBase->macAddr + 4);
  227. case EEP_REG_0:
  228. return pBase->regDmn[0];
  229. case EEP_OP_CAP:
  230. return pBase->deviceCap;
  231. case EEP_OP_MODE:
  232. return pBase->opCapFlags;
  233. case EEP_RF_SILENT:
  234. return pBase->rfSilent;
  235. case EEP_OB_2:
  236. return pModal->ob_0;
  237. case EEP_DB_2:
  238. return pModal->db1_1;
  239. case EEP_MINOR_REV:
  240. return ver_minor;
  241. case EEP_TX_MASK:
  242. return pBase->txMask;
  243. case EEP_RX_MASK:
  244. return pBase->rxMask;
  245. case EEP_FRAC_N_5G:
  246. return 0;
  247. case EEP_PWR_TABLE_OFFSET:
  248. return AR5416_PWR_TABLE_OFFSET_DB;
  249. case EEP_MODAL_VER:
  250. return pModal->version;
  251. case EEP_ANT_DIV_CTL1:
  252. return pModal->antdiv_ctl1;
  253. case EEP_TXGAIN_TYPE:
  254. return pBase->txGainType;
  255. case EEP_ANTENNA_GAIN_2G:
  256. return pModal->antennaGainCh[0];
  257. default:
  258. return 0;
  259. }
  260. }
  261. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  262. struct ath9k_channel *chan)
  263. {
  264. struct ath_common *common = ath9k_hw_common(ah);
  265. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  266. struct cal_data_per_freq_4k *pRawDataset;
  267. u8 *pCalBChans = NULL;
  268. u16 pdGainOverlap_t2;
  269. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  270. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  271. u16 numPiers, i, j;
  272. u16 numXpdGain, xpdMask;
  273. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  274. u32 reg32, regOffset, regChainOffset;
  275. xpdMask = pEepData->modalHeader.xpdGain;
  276. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  277. AR5416_EEP_MINOR_VER_2) {
  278. pdGainOverlap_t2 =
  279. pEepData->modalHeader.pdGainOverlap;
  280. } else {
  281. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  282. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  283. }
  284. pCalBChans = pEepData->calFreqPier2G;
  285. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  286. numXpdGain = 0;
  287. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  288. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  289. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  290. break;
  291. xpdGainValues[numXpdGain] =
  292. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  293. numXpdGain++;
  294. }
  295. }
  296. ENABLE_REG_RMW_BUFFER(ah);
  297. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  298. (numXpdGain - 1) & 0x3);
  299. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  300. xpdGainValues[0]);
  301. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  302. xpdGainValues[1]);
  303. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  304. REG_RMW_BUFFER_FLUSH(ah);
  305. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  306. regChainOffset = i * 0x1000;
  307. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  308. pRawDataset = pEepData->calPierData2G[i];
  309. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  310. pRawDataset, pCalBChans,
  311. numPiers, pdGainOverlap_t2,
  312. gainBoundaries,
  313. pdadcValues, numXpdGain);
  314. ENABLE_REGWRITE_BUFFER(ah);
  315. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  316. SM(pdGainOverlap_t2,
  317. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  318. | SM(gainBoundaries[0],
  319. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  320. | SM(gainBoundaries[1],
  321. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  322. | SM(gainBoundaries[2],
  323. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  324. | SM(gainBoundaries[3],
  325. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  326. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  327. for (j = 0; j < 32; j++) {
  328. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  329. REG_WRITE(ah, regOffset, reg32);
  330. ath_dbg(common, EEPROM,
  331. "PDADC (%d,%4x): %4.4x %8.8x\n",
  332. i, regChainOffset, regOffset,
  333. reg32);
  334. ath_dbg(common, EEPROM,
  335. "PDADC: Chain %d | "
  336. "PDADC %3d Value %3d | "
  337. "PDADC %3d Value %3d | "
  338. "PDADC %3d Value %3d | "
  339. "PDADC %3d Value %3d |\n",
  340. i, 4 * j, pdadcValues[4 * j],
  341. 4 * j + 1, pdadcValues[4 * j + 1],
  342. 4 * j + 2, pdadcValues[4 * j + 2],
  343. 4 * j + 3, pdadcValues[4 * j + 3]);
  344. regOffset += 4;
  345. }
  346. REGWRITE_BUFFER_FLUSH(ah);
  347. }
  348. }
  349. }
  350. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  351. struct ath9k_channel *chan,
  352. int16_t *ratesArray,
  353. u16 cfgCtl,
  354. u16 antenna_reduction,
  355. u16 powerLimit)
  356. {
  357. #define CMP_TEST_GRP \
  358. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  359. pEepData->ctlIndex[i]) \
  360. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  361. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  362. int i;
  363. u16 twiceMinEdgePower;
  364. u16 twiceMaxEdgePower;
  365. u16 scaledPower = 0, minCtlPower;
  366. u16 numCtlModes;
  367. const u16 *pCtlMode;
  368. u16 ctlMode, freq;
  369. struct chan_centers centers;
  370. struct cal_ctl_data_4k *rep;
  371. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  372. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  373. 0, { 0, 0, 0, 0}
  374. };
  375. struct cal_target_power_leg targetPowerOfdmExt = {
  376. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  377. 0, { 0, 0, 0, 0 }
  378. };
  379. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  380. 0, {0, 0, 0, 0}
  381. };
  382. static const u16 ctlModesFor11g[] = {
  383. CTL_11B, CTL_11G, CTL_2GHT20,
  384. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  385. };
  386. ath9k_hw_get_channel_centers(ah, chan, &centers);
  387. scaledPower = powerLimit - antenna_reduction;
  388. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  389. pCtlMode = ctlModesFor11g;
  390. ath9k_hw_get_legacy_target_powers(ah, chan,
  391. pEepData->calTargetPowerCck,
  392. AR5416_NUM_2G_CCK_TARGET_POWERS,
  393. &targetPowerCck, 4, false);
  394. ath9k_hw_get_legacy_target_powers(ah, chan,
  395. pEepData->calTargetPower2G,
  396. AR5416_NUM_2G_20_TARGET_POWERS,
  397. &targetPowerOfdm, 4, false);
  398. ath9k_hw_get_target_powers(ah, chan,
  399. pEepData->calTargetPower2GHT20,
  400. AR5416_NUM_2G_20_TARGET_POWERS,
  401. &targetPowerHt20, 8, false);
  402. if (IS_CHAN_HT40(chan)) {
  403. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  404. ath9k_hw_get_target_powers(ah, chan,
  405. pEepData->calTargetPower2GHT40,
  406. AR5416_NUM_2G_40_TARGET_POWERS,
  407. &targetPowerHt40, 8, true);
  408. ath9k_hw_get_legacy_target_powers(ah, chan,
  409. pEepData->calTargetPowerCck,
  410. AR5416_NUM_2G_CCK_TARGET_POWERS,
  411. &targetPowerCckExt, 4, true);
  412. ath9k_hw_get_legacy_target_powers(ah, chan,
  413. pEepData->calTargetPower2G,
  414. AR5416_NUM_2G_20_TARGET_POWERS,
  415. &targetPowerOfdmExt, 4, true);
  416. }
  417. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  418. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  419. (pCtlMode[ctlMode] == CTL_2GHT40);
  420. if (isHt40CtlMode)
  421. freq = centers.synth_center;
  422. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  423. freq = centers.ext_center;
  424. else
  425. freq = centers.ctl_center;
  426. twiceMaxEdgePower = MAX_RATE_POWER;
  427. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  428. pEepData->ctlIndex[i]; i++) {
  429. if (CMP_TEST_GRP) {
  430. rep = &(pEepData->ctlData[i]);
  431. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  432. freq,
  433. rep->ctlEdges[
  434. ar5416_get_ntxchains(ah->txchainmask) - 1],
  435. IS_CHAN_2GHZ(chan),
  436. AR5416_EEP4K_NUM_BAND_EDGES);
  437. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  438. twiceMaxEdgePower =
  439. min(twiceMaxEdgePower,
  440. twiceMinEdgePower);
  441. } else {
  442. twiceMaxEdgePower = twiceMinEdgePower;
  443. break;
  444. }
  445. }
  446. }
  447. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  448. switch (pCtlMode[ctlMode]) {
  449. case CTL_11B:
  450. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  451. targetPowerCck.tPow2x[i] =
  452. min((u16)targetPowerCck.tPow2x[i],
  453. minCtlPower);
  454. }
  455. break;
  456. case CTL_11G:
  457. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  458. targetPowerOfdm.tPow2x[i] =
  459. min((u16)targetPowerOfdm.tPow2x[i],
  460. minCtlPower);
  461. }
  462. break;
  463. case CTL_2GHT20:
  464. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  465. targetPowerHt20.tPow2x[i] =
  466. min((u16)targetPowerHt20.tPow2x[i],
  467. minCtlPower);
  468. }
  469. break;
  470. case CTL_11B_EXT:
  471. targetPowerCckExt.tPow2x[0] =
  472. min((u16)targetPowerCckExt.tPow2x[0],
  473. minCtlPower);
  474. break;
  475. case CTL_11G_EXT:
  476. targetPowerOfdmExt.tPow2x[0] =
  477. min((u16)targetPowerOfdmExt.tPow2x[0],
  478. minCtlPower);
  479. break;
  480. case CTL_2GHT40:
  481. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  482. targetPowerHt40.tPow2x[i] =
  483. min((u16)targetPowerHt40.tPow2x[i],
  484. minCtlPower);
  485. }
  486. break;
  487. default:
  488. break;
  489. }
  490. }
  491. ratesArray[rate6mb] =
  492. ratesArray[rate9mb] =
  493. ratesArray[rate12mb] =
  494. ratesArray[rate18mb] =
  495. ratesArray[rate24mb] =
  496. targetPowerOfdm.tPow2x[0];
  497. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  498. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  499. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  500. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  501. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  502. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  503. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  504. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  505. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  506. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  507. if (IS_CHAN_HT40(chan)) {
  508. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  509. ratesArray[rateHt40_0 + i] =
  510. targetPowerHt40.tPow2x[i];
  511. }
  512. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  513. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  514. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  515. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  516. }
  517. #undef CMP_TEST_GRP
  518. }
  519. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  520. struct ath9k_channel *chan,
  521. u16 cfgCtl,
  522. u8 twiceAntennaReduction,
  523. u8 powerLimit, bool test)
  524. {
  525. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  526. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  527. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  528. int16_t ratesArray[Ar5416RateSize];
  529. u8 ht40PowerIncForPdadc = 2;
  530. int i;
  531. memset(ratesArray, 0, sizeof(ratesArray));
  532. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  533. AR5416_EEP_MINOR_VER_2) {
  534. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  535. }
  536. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  537. &ratesArray[0], cfgCtl,
  538. twiceAntennaReduction,
  539. powerLimit);
  540. ath9k_hw_set_4k_power_cal_table(ah, chan);
  541. regulatory->max_power_level = 0;
  542. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  543. if (ratesArray[i] > MAX_RATE_POWER)
  544. ratesArray[i] = MAX_RATE_POWER;
  545. if (ratesArray[i] > regulatory->max_power_level)
  546. regulatory->max_power_level = ratesArray[i];
  547. }
  548. if (test)
  549. return;
  550. for (i = 0; i < Ar5416RateSize; i++)
  551. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  552. ENABLE_REGWRITE_BUFFER(ah);
  553. /* OFDM power per rate */
  554. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  555. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  556. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  557. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  558. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  559. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  560. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  561. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  562. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  563. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  564. /* CCK power per rate */
  565. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  566. ATH9K_POW_SM(ratesArray[rate2s], 24)
  567. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  568. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  569. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  570. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  571. ATH9K_POW_SM(ratesArray[rate11s], 24)
  572. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  573. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  574. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  575. /* HT20 power per rate */
  576. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  577. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  578. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  579. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  580. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  581. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  582. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  583. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  584. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  585. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  586. /* HT40 power per rate */
  587. if (IS_CHAN_HT40(chan)) {
  588. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  589. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  590. ht40PowerIncForPdadc, 24)
  591. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  592. ht40PowerIncForPdadc, 16)
  593. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  594. ht40PowerIncForPdadc, 8)
  595. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  596. ht40PowerIncForPdadc, 0));
  597. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  598. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  599. ht40PowerIncForPdadc, 24)
  600. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  601. ht40PowerIncForPdadc, 16)
  602. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  603. ht40PowerIncForPdadc, 8)
  604. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  605. ht40PowerIncForPdadc, 0));
  606. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  607. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  608. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  609. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  610. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  611. }
  612. /* TPC initializations */
  613. if (ah->tpc_enabled) {
  614. int ht40_delta;
  615. ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
  616. ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
  617. /* Enable TPC */
  618. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
  619. MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
  620. } else {
  621. /* Disable TPC */
  622. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
  623. }
  624. REGWRITE_BUFFER_FLUSH(ah);
  625. }
  626. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  627. struct modal_eep_4k_header *pModal,
  628. struct ar5416_eeprom_4k *eep,
  629. u8 txRxAttenLocal)
  630. {
  631. ENABLE_REG_RMW_BUFFER(ah);
  632. REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
  633. pModal->antCtrlChain[0], 0);
  634. REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
  635. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  636. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF),
  637. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF);
  638. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  639. AR5416_EEP_MINOR_VER_3) {
  640. txRxAttenLocal = pModal->txRxAttenCh[0];
  641. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  642. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  643. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  644. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  645. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  646. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  647. pModal->xatten2Margin[0]);
  648. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  649. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  650. /* Set the block 1 value to block 0 value */
  651. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  652. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  653. pModal->bswMargin[0]);
  654. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  655. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  656. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  657. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  658. pModal->xatten2Margin[0]);
  659. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  660. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  661. pModal->xatten2Db[0]);
  662. }
  663. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  664. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  665. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  666. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  667. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  668. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  669. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  670. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  671. REG_RMW_BUFFER_FLUSH(ah);
  672. }
  673. /*
  674. * Read EEPROM header info and program the device for correct operation
  675. * given the channel value.
  676. */
  677. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  678. struct ath9k_channel *chan)
  679. {
  680. struct ath9k_hw_capabilities *pCap = &ah->caps;
  681. struct modal_eep_4k_header *pModal;
  682. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  683. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  684. u8 txRxAttenLocal;
  685. u8 ob[5], db1[5], db2[5];
  686. u8 ant_div_control1, ant_div_control2;
  687. u8 bb_desired_scale;
  688. u32 regVal;
  689. pModal = &eep->modalHeader;
  690. txRxAttenLocal = 23;
  691. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  692. /* Single chain for 4K EEPROM*/
  693. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  694. /* Initialize Ant Diversity settings from EEPROM */
  695. if (pModal->version >= 3) {
  696. ant_div_control1 = pModal->antdiv_ctl1;
  697. ant_div_control2 = pModal->antdiv_ctl2;
  698. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  699. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  700. regVal |= SM(ant_div_control1,
  701. AR_PHY_9285_ANT_DIV_CTL);
  702. regVal |= SM(ant_div_control2,
  703. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  704. regVal |= SM((ant_div_control2 >> 2),
  705. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  706. regVal |= SM((ant_div_control1 >> 1),
  707. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  708. regVal |= SM((ant_div_control1 >> 2),
  709. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  710. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  711. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  712. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  713. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  714. regVal |= SM((ant_div_control1 >> 3),
  715. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  716. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  717. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  718. if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
  719. /*
  720. * If diversity combining is enabled,
  721. * set MAIN to LNA1 and ALT to LNA2 initially.
  722. */
  723. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  724. regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
  725. AR_PHY_9285_ANT_DIV_ALT_LNACONF));
  726. regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
  727. AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
  728. regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
  729. AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
  730. regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
  731. regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
  732. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  733. }
  734. }
  735. if (pModal->version >= 2) {
  736. ob[0] = pModal->ob_0;
  737. ob[1] = pModal->ob_1;
  738. ob[2] = pModal->ob_2;
  739. ob[3] = pModal->ob_3;
  740. ob[4] = pModal->ob_4;
  741. db1[0] = pModal->db1_0;
  742. db1[1] = pModal->db1_1;
  743. db1[2] = pModal->db1_2;
  744. db1[3] = pModal->db1_3;
  745. db1[4] = pModal->db1_4;
  746. db2[0] = pModal->db2_0;
  747. db2[1] = pModal->db2_1;
  748. db2[2] = pModal->db2_2;
  749. db2[3] = pModal->db2_3;
  750. db2[4] = pModal->db2_4;
  751. } else if (pModal->version == 1) {
  752. ob[0] = pModal->ob_0;
  753. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  754. db1[0] = pModal->db1_0;
  755. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  756. db2[0] = pModal->db2_0;
  757. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  758. } else {
  759. int i;
  760. for (i = 0; i < 5; i++) {
  761. ob[i] = pModal->ob_0;
  762. db1[i] = pModal->db1_0;
  763. db2[i] = pModal->db1_0;
  764. }
  765. }
  766. ENABLE_REG_RMW_BUFFER(ah);
  767. if (AR_SREV_9271(ah)) {
  768. ath9k_hw_analog_shift_rmw(ah,
  769. AR9285_AN_RF2G3,
  770. AR9271_AN_RF2G3_OB_cck,
  771. AR9271_AN_RF2G3_OB_cck_S,
  772. ob[0]);
  773. ath9k_hw_analog_shift_rmw(ah,
  774. AR9285_AN_RF2G3,
  775. AR9271_AN_RF2G3_OB_psk,
  776. AR9271_AN_RF2G3_OB_psk_S,
  777. ob[1]);
  778. ath9k_hw_analog_shift_rmw(ah,
  779. AR9285_AN_RF2G3,
  780. AR9271_AN_RF2G3_OB_qam,
  781. AR9271_AN_RF2G3_OB_qam_S,
  782. ob[2]);
  783. ath9k_hw_analog_shift_rmw(ah,
  784. AR9285_AN_RF2G3,
  785. AR9271_AN_RF2G3_DB_1,
  786. AR9271_AN_RF2G3_DB_1_S,
  787. db1[0]);
  788. ath9k_hw_analog_shift_rmw(ah,
  789. AR9285_AN_RF2G4,
  790. AR9271_AN_RF2G4_DB_2,
  791. AR9271_AN_RF2G4_DB_2_S,
  792. db2[0]);
  793. } else {
  794. ath9k_hw_analog_shift_rmw(ah,
  795. AR9285_AN_RF2G3,
  796. AR9285_AN_RF2G3_OB_0,
  797. AR9285_AN_RF2G3_OB_0_S,
  798. ob[0]);
  799. ath9k_hw_analog_shift_rmw(ah,
  800. AR9285_AN_RF2G3,
  801. AR9285_AN_RF2G3_OB_1,
  802. AR9285_AN_RF2G3_OB_1_S,
  803. ob[1]);
  804. ath9k_hw_analog_shift_rmw(ah,
  805. AR9285_AN_RF2G3,
  806. AR9285_AN_RF2G3_OB_2,
  807. AR9285_AN_RF2G3_OB_2_S,
  808. ob[2]);
  809. ath9k_hw_analog_shift_rmw(ah,
  810. AR9285_AN_RF2G3,
  811. AR9285_AN_RF2G3_OB_3,
  812. AR9285_AN_RF2G3_OB_3_S,
  813. ob[3]);
  814. ath9k_hw_analog_shift_rmw(ah,
  815. AR9285_AN_RF2G3,
  816. AR9285_AN_RF2G3_OB_4,
  817. AR9285_AN_RF2G3_OB_4_S,
  818. ob[4]);
  819. ath9k_hw_analog_shift_rmw(ah,
  820. AR9285_AN_RF2G3,
  821. AR9285_AN_RF2G3_DB1_0,
  822. AR9285_AN_RF2G3_DB1_0_S,
  823. db1[0]);
  824. ath9k_hw_analog_shift_rmw(ah,
  825. AR9285_AN_RF2G3,
  826. AR9285_AN_RF2G3_DB1_1,
  827. AR9285_AN_RF2G3_DB1_1_S,
  828. db1[1]);
  829. ath9k_hw_analog_shift_rmw(ah,
  830. AR9285_AN_RF2G3,
  831. AR9285_AN_RF2G3_DB1_2,
  832. AR9285_AN_RF2G3_DB1_2_S,
  833. db1[2]);
  834. ath9k_hw_analog_shift_rmw(ah,
  835. AR9285_AN_RF2G4,
  836. AR9285_AN_RF2G4_DB1_3,
  837. AR9285_AN_RF2G4_DB1_3_S,
  838. db1[3]);
  839. ath9k_hw_analog_shift_rmw(ah,
  840. AR9285_AN_RF2G4,
  841. AR9285_AN_RF2G4_DB1_4,
  842. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  843. ath9k_hw_analog_shift_rmw(ah,
  844. AR9285_AN_RF2G4,
  845. AR9285_AN_RF2G4_DB2_0,
  846. AR9285_AN_RF2G4_DB2_0_S,
  847. db2[0]);
  848. ath9k_hw_analog_shift_rmw(ah,
  849. AR9285_AN_RF2G4,
  850. AR9285_AN_RF2G4_DB2_1,
  851. AR9285_AN_RF2G4_DB2_1_S,
  852. db2[1]);
  853. ath9k_hw_analog_shift_rmw(ah,
  854. AR9285_AN_RF2G4,
  855. AR9285_AN_RF2G4_DB2_2,
  856. AR9285_AN_RF2G4_DB2_2_S,
  857. db2[2]);
  858. ath9k_hw_analog_shift_rmw(ah,
  859. AR9285_AN_RF2G4,
  860. AR9285_AN_RF2G4_DB2_3,
  861. AR9285_AN_RF2G4_DB2_3_S,
  862. db2[3]);
  863. ath9k_hw_analog_shift_rmw(ah,
  864. AR9285_AN_RF2G4,
  865. AR9285_AN_RF2G4_DB2_4,
  866. AR9285_AN_RF2G4_DB2_4_S,
  867. db2[4]);
  868. }
  869. REG_RMW_BUFFER_FLUSH(ah);
  870. ENABLE_REG_RMW_BUFFER(ah);
  871. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  872. pModal->switchSettling);
  873. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  874. pModal->adcDesiredSize);
  875. REG_RMW(ah, AR_PHY_RF_CTL4,
  876. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  877. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  878. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  879. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON), 0);
  880. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  881. pModal->txEndToRxOn);
  882. if (AR_SREV_9271_10(ah))
  883. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  884. pModal->txEndToRxOn);
  885. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  886. pModal->thresh62);
  887. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  888. pModal->thresh62);
  889. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  890. AR5416_EEP_MINOR_VER_2) {
  891. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  892. pModal->txFrameToDataStart);
  893. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  894. pModal->txFrameToPaOn);
  895. }
  896. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  897. AR5416_EEP_MINOR_VER_3) {
  898. if (IS_CHAN_HT40(chan))
  899. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  900. AR_PHY_SETTLING_SWITCH,
  901. pModal->swSettleHt40);
  902. }
  903. REG_RMW_BUFFER_FLUSH(ah);
  904. bb_desired_scale = (pModal->bb_scale_smrt_antenna &
  905. EEP_4K_BB_DESIRED_SCALE_MASK);
  906. if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
  907. u32 pwrctrl, mask, clr;
  908. mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
  909. pwrctrl = mask * bb_desired_scale;
  910. clr = mask * 0x1f;
  911. ENABLE_REG_RMW_BUFFER(ah);
  912. REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
  913. REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
  914. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
  915. mask = BIT(0)|BIT(5)|BIT(15);
  916. pwrctrl = mask * bb_desired_scale;
  917. clr = mask * 0x1f;
  918. REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
  919. mask = BIT(0)|BIT(5);
  920. pwrctrl = mask * bb_desired_scale;
  921. clr = mask * 0x1f;
  922. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
  923. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
  924. REG_RMW_BUFFER_FLUSH(ah);
  925. }
  926. }
  927. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  928. {
  929. return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan;
  930. }
  931. const struct eeprom_ops eep_4k_ops = {
  932. .check_eeprom = ath9k_hw_4k_check_eeprom,
  933. .get_eeprom = ath9k_hw_4k_get_eeprom,
  934. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  935. .dump_eeprom = ath9k_hw_4k_dump_eeprom,
  936. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  937. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  938. .set_board_values = ath9k_hw_4k_set_board_values,
  939. .set_txpower = ath9k_hw_4k_set_txpower,
  940. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  941. };