adm1025.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. /*
  2. * adm1025.c
  3. *
  4. * Copyright (C) 2000 Chen-Yuan Wu <gwu@esoft.com>
  5. * Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de>
  6. *
  7. * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6
  8. * voltages (including its own power source) and up to two temperatures
  9. * (its own plus up to one external one). Voltages are scaled internally
  10. * (which is not the common way) with ratios such that the nominal value
  11. * of each voltage correspond to a register value of 192 (which means a
  12. * resolution of about 0.5% of the nominal value). Temperature values are
  13. * reported with a 1 deg resolution and a 3 deg accuracy. Complete
  14. * datasheet can be obtained from Analog's website at:
  15. * http://www.onsemi.com/PowerSolutions/product.do?id=ADM1025
  16. *
  17. * This driver also supports the ADM1025A, which differs from the ADM1025
  18. * only in that it has "open-drain VID inputs while the ADM1025 has
  19. * on-chip 100k pull-ups on the VID inputs". It doesn't make any
  20. * difference for us.
  21. *
  22. * This driver also supports the NE1619, a sensor chip made by Philips.
  23. * That chip is similar to the ADM1025A, with a few differences. The only
  24. * difference that matters to us is that the NE1619 has only two possible
  25. * addresses while the ADM1025A has a third one. Complete datasheet can be
  26. * obtained from Philips's website at:
  27. * http://www.semiconductors.philips.com/pip/NE1619DS.html
  28. *
  29. * Since the ADM1025 was the first chipset supported by this driver, most
  30. * comments will refer to this chipset, but are actually general and
  31. * concern all supported chipsets, unless mentioned otherwise.
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  46. */
  47. #include <linux/module.h>
  48. #include <linux/init.h>
  49. #include <linux/slab.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/i2c.h>
  52. #include <linux/hwmon.h>
  53. #include <linux/hwmon-sysfs.h>
  54. #include <linux/hwmon-vid.h>
  55. #include <linux/err.h>
  56. #include <linux/mutex.h>
  57. /*
  58. * Addresses to scan
  59. * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e.
  60. * NE1619 has two possible addresses: 0x2c and 0x2d.
  61. */
  62. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  63. enum chips { adm1025, ne1619 };
  64. /*
  65. * The ADM1025 registers
  66. */
  67. #define ADM1025_REG_MAN_ID 0x3E
  68. #define ADM1025_REG_CHIP_ID 0x3F
  69. #define ADM1025_REG_CONFIG 0x40
  70. #define ADM1025_REG_STATUS1 0x41
  71. #define ADM1025_REG_STATUS2 0x42
  72. #define ADM1025_REG_IN(nr) (0x20 + (nr))
  73. #define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2)
  74. #define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2)
  75. #define ADM1025_REG_TEMP(nr) (0x26 + (nr))
  76. #define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2)
  77. #define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2)
  78. #define ADM1025_REG_VID 0x47
  79. #define ADM1025_REG_VID4 0x49
  80. /*
  81. * Conversions and various macros
  82. * The ADM1025 uses signed 8-bit values for temperatures.
  83. */
  84. static const int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 };
  85. #define IN_FROM_REG(reg, scale) (((reg) * (scale) + 96) / 192)
  86. #define IN_TO_REG(val, scale) ((val) <= 0 ? 0 : \
  87. (val) * 192 >= (scale) * 255 ? 255 : \
  88. ((val) * 192 + (scale) / 2) / (scale))
  89. #define TEMP_FROM_REG(reg) ((reg) * 1000)
  90. #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \
  91. (val) >= 126500 ? 127 : \
  92. (((val) < 0 ? (val) - 500 : \
  93. (val) + 500) / 1000))
  94. /*
  95. * Client data (each client gets its own)
  96. */
  97. struct adm1025_data {
  98. struct i2c_client *client;
  99. const struct attribute_group *groups[3];
  100. struct mutex update_lock;
  101. char valid; /* zero until following fields are valid */
  102. unsigned long last_updated; /* in jiffies */
  103. u8 in[6]; /* register value */
  104. u8 in_max[6]; /* register value */
  105. u8 in_min[6]; /* register value */
  106. s8 temp[2]; /* register value */
  107. s8 temp_min[2]; /* register value */
  108. s8 temp_max[2]; /* register value */
  109. u16 alarms; /* register values, combined */
  110. u8 vid; /* register values, combined */
  111. u8 vrm;
  112. };
  113. static struct adm1025_data *adm1025_update_device(struct device *dev)
  114. {
  115. struct adm1025_data *data = dev_get_drvdata(dev);
  116. struct i2c_client *client = data->client;
  117. mutex_lock(&data->update_lock);
  118. if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
  119. int i;
  120. dev_dbg(&client->dev, "Updating data.\n");
  121. for (i = 0; i < 6; i++) {
  122. data->in[i] = i2c_smbus_read_byte_data(client,
  123. ADM1025_REG_IN(i));
  124. data->in_min[i] = i2c_smbus_read_byte_data(client,
  125. ADM1025_REG_IN_MIN(i));
  126. data->in_max[i] = i2c_smbus_read_byte_data(client,
  127. ADM1025_REG_IN_MAX(i));
  128. }
  129. for (i = 0; i < 2; i++) {
  130. data->temp[i] = i2c_smbus_read_byte_data(client,
  131. ADM1025_REG_TEMP(i));
  132. data->temp_min[i] = i2c_smbus_read_byte_data(client,
  133. ADM1025_REG_TEMP_LOW(i));
  134. data->temp_max[i] = i2c_smbus_read_byte_data(client,
  135. ADM1025_REG_TEMP_HIGH(i));
  136. }
  137. data->alarms = i2c_smbus_read_byte_data(client,
  138. ADM1025_REG_STATUS1)
  139. | (i2c_smbus_read_byte_data(client,
  140. ADM1025_REG_STATUS2) << 8);
  141. data->vid = (i2c_smbus_read_byte_data(client,
  142. ADM1025_REG_VID) & 0x0f)
  143. | ((i2c_smbus_read_byte_data(client,
  144. ADM1025_REG_VID4) & 0x01) << 4);
  145. data->last_updated = jiffies;
  146. data->valid = 1;
  147. }
  148. mutex_unlock(&data->update_lock);
  149. return data;
  150. }
  151. /*
  152. * Sysfs stuff
  153. */
  154. static ssize_t
  155. show_in(struct device *dev, struct device_attribute *attr, char *buf)
  156. {
  157. int index = to_sensor_dev_attr(attr)->index;
  158. struct adm1025_data *data = adm1025_update_device(dev);
  159. return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index],
  160. in_scale[index]));
  161. }
  162. static ssize_t
  163. show_in_min(struct device *dev, struct device_attribute *attr, char *buf)
  164. {
  165. int index = to_sensor_dev_attr(attr)->index;
  166. struct adm1025_data *data = adm1025_update_device(dev);
  167. return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index],
  168. in_scale[index]));
  169. }
  170. static ssize_t
  171. show_in_max(struct device *dev, struct device_attribute *attr, char *buf)
  172. {
  173. int index = to_sensor_dev_attr(attr)->index;
  174. struct adm1025_data *data = adm1025_update_device(dev);
  175. return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index],
  176. in_scale[index]));
  177. }
  178. static ssize_t
  179. show_temp(struct device *dev, struct device_attribute *attr, char *buf)
  180. {
  181. int index = to_sensor_dev_attr(attr)->index;
  182. struct adm1025_data *data = adm1025_update_device(dev);
  183. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index]));
  184. }
  185. static ssize_t
  186. show_temp_min(struct device *dev, struct device_attribute *attr, char *buf)
  187. {
  188. int index = to_sensor_dev_attr(attr)->index;
  189. struct adm1025_data *data = adm1025_update_device(dev);
  190. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index]));
  191. }
  192. static ssize_t
  193. show_temp_max(struct device *dev, struct device_attribute *attr, char *buf)
  194. {
  195. int index = to_sensor_dev_attr(attr)->index;
  196. struct adm1025_data *data = adm1025_update_device(dev);
  197. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
  198. }
  199. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  200. const char *buf, size_t count)
  201. {
  202. int index = to_sensor_dev_attr(attr)->index;
  203. struct adm1025_data *data = dev_get_drvdata(dev);
  204. struct i2c_client *client = data->client;
  205. long val;
  206. int err;
  207. err = kstrtol(buf, 10, &val);
  208. if (err)
  209. return err;
  210. mutex_lock(&data->update_lock);
  211. data->in_min[index] = IN_TO_REG(val, in_scale[index]);
  212. i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index),
  213. data->in_min[index]);
  214. mutex_unlock(&data->update_lock);
  215. return count;
  216. }
  217. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  218. const char *buf, size_t count)
  219. {
  220. int index = to_sensor_dev_attr(attr)->index;
  221. struct adm1025_data *data = dev_get_drvdata(dev);
  222. struct i2c_client *client = data->client;
  223. long val;
  224. int err;
  225. err = kstrtol(buf, 10, &val);
  226. if (err)
  227. return err;
  228. mutex_lock(&data->update_lock);
  229. data->in_max[index] = IN_TO_REG(val, in_scale[index]);
  230. i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index),
  231. data->in_max[index]);
  232. mutex_unlock(&data->update_lock);
  233. return count;
  234. }
  235. #define set_in(offset) \
  236. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  237. show_in, NULL, offset); \
  238. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IWUSR | S_IRUGO, \
  239. show_in_min, set_in_min, offset); \
  240. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IWUSR | S_IRUGO, \
  241. show_in_max, set_in_max, offset)
  242. set_in(0);
  243. set_in(1);
  244. set_in(2);
  245. set_in(3);
  246. set_in(4);
  247. set_in(5);
  248. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  249. const char *buf, size_t count)
  250. {
  251. int index = to_sensor_dev_attr(attr)->index;
  252. struct adm1025_data *data = dev_get_drvdata(dev);
  253. struct i2c_client *client = data->client;
  254. long val;
  255. int err;
  256. err = kstrtol(buf, 10, &val);
  257. if (err)
  258. return err;
  259. mutex_lock(&data->update_lock);
  260. data->temp_min[index] = TEMP_TO_REG(val);
  261. i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index),
  262. data->temp_min[index]);
  263. mutex_unlock(&data->update_lock);
  264. return count;
  265. }
  266. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  267. const char *buf, size_t count)
  268. {
  269. int index = to_sensor_dev_attr(attr)->index;
  270. struct adm1025_data *data = dev_get_drvdata(dev);
  271. struct i2c_client *client = data->client;
  272. long val;
  273. int err;
  274. err = kstrtol(buf, 10, &val);
  275. if (err)
  276. return err;
  277. mutex_lock(&data->update_lock);
  278. data->temp_max[index] = TEMP_TO_REG(val);
  279. i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index),
  280. data->temp_max[index]);
  281. mutex_unlock(&data->update_lock);
  282. return count;
  283. }
  284. #define set_temp(offset) \
  285. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  286. show_temp, NULL, offset - 1); \
  287. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IWUSR | S_IRUGO, \
  288. show_temp_min, set_temp_min, offset - 1); \
  289. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IWUSR | S_IRUGO, \
  290. show_temp_max, set_temp_max, offset - 1)
  291. set_temp(1);
  292. set_temp(2);
  293. static ssize_t
  294. show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
  295. {
  296. struct adm1025_data *data = adm1025_update_device(dev);
  297. return sprintf(buf, "%u\n", data->alarms);
  298. }
  299. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
  300. static ssize_t
  301. show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
  302. {
  303. int bitnr = to_sensor_dev_attr(attr)->index;
  304. struct adm1025_data *data = adm1025_update_device(dev);
  305. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  306. }
  307. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  308. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  309. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  310. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  311. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  312. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9);
  313. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 5);
  314. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 4);
  315. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  316. static ssize_t
  317. show_vid(struct device *dev, struct device_attribute *attr, char *buf)
  318. {
  319. struct adm1025_data *data = adm1025_update_device(dev);
  320. return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm));
  321. }
  322. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
  323. static ssize_t
  324. show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
  325. {
  326. struct adm1025_data *data = dev_get_drvdata(dev);
  327. return sprintf(buf, "%u\n", data->vrm);
  328. }
  329. static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
  330. const char *buf, size_t count)
  331. {
  332. struct adm1025_data *data = dev_get_drvdata(dev);
  333. unsigned long val;
  334. int err;
  335. err = kstrtoul(buf, 10, &val);
  336. if (err)
  337. return err;
  338. if (val > 255)
  339. return -EINVAL;
  340. data->vrm = val;
  341. return count;
  342. }
  343. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
  344. /*
  345. * Real code
  346. */
  347. static struct attribute *adm1025_attributes[] = {
  348. &sensor_dev_attr_in0_input.dev_attr.attr,
  349. &sensor_dev_attr_in1_input.dev_attr.attr,
  350. &sensor_dev_attr_in2_input.dev_attr.attr,
  351. &sensor_dev_attr_in3_input.dev_attr.attr,
  352. &sensor_dev_attr_in5_input.dev_attr.attr,
  353. &sensor_dev_attr_in0_min.dev_attr.attr,
  354. &sensor_dev_attr_in1_min.dev_attr.attr,
  355. &sensor_dev_attr_in2_min.dev_attr.attr,
  356. &sensor_dev_attr_in3_min.dev_attr.attr,
  357. &sensor_dev_attr_in5_min.dev_attr.attr,
  358. &sensor_dev_attr_in0_max.dev_attr.attr,
  359. &sensor_dev_attr_in1_max.dev_attr.attr,
  360. &sensor_dev_attr_in2_max.dev_attr.attr,
  361. &sensor_dev_attr_in3_max.dev_attr.attr,
  362. &sensor_dev_attr_in5_max.dev_attr.attr,
  363. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  364. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  365. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  366. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  367. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  368. &sensor_dev_attr_temp1_input.dev_attr.attr,
  369. &sensor_dev_attr_temp2_input.dev_attr.attr,
  370. &sensor_dev_attr_temp1_min.dev_attr.attr,
  371. &sensor_dev_attr_temp2_min.dev_attr.attr,
  372. &sensor_dev_attr_temp1_max.dev_attr.attr,
  373. &sensor_dev_attr_temp2_max.dev_attr.attr,
  374. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  375. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  376. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  377. &dev_attr_alarms.attr,
  378. &dev_attr_cpu0_vid.attr,
  379. &dev_attr_vrm.attr,
  380. NULL
  381. };
  382. static const struct attribute_group adm1025_group = {
  383. .attrs = adm1025_attributes,
  384. };
  385. static struct attribute *adm1025_attributes_in4[] = {
  386. &sensor_dev_attr_in4_input.dev_attr.attr,
  387. &sensor_dev_attr_in4_min.dev_attr.attr,
  388. &sensor_dev_attr_in4_max.dev_attr.attr,
  389. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  390. NULL
  391. };
  392. static const struct attribute_group adm1025_group_in4 = {
  393. .attrs = adm1025_attributes_in4,
  394. };
  395. /* Return 0 if detection is successful, -ENODEV otherwise */
  396. static int adm1025_detect(struct i2c_client *client,
  397. struct i2c_board_info *info)
  398. {
  399. struct i2c_adapter *adapter = client->adapter;
  400. const char *name;
  401. u8 man_id, chip_id;
  402. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  403. return -ENODEV;
  404. /* Check for unused bits */
  405. if ((i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG) & 0x80)
  406. || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) & 0xC0)
  407. || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) & 0xBC)) {
  408. dev_dbg(&adapter->dev, "ADM1025 detection failed at 0x%02x\n",
  409. client->addr);
  410. return -ENODEV;
  411. }
  412. /* Identification */
  413. chip_id = i2c_smbus_read_byte_data(client, ADM1025_REG_CHIP_ID);
  414. if ((chip_id & 0xF0) != 0x20)
  415. return -ENODEV;
  416. man_id = i2c_smbus_read_byte_data(client, ADM1025_REG_MAN_ID);
  417. if (man_id == 0x41)
  418. name = "adm1025";
  419. else if (man_id == 0xA1 && client->addr != 0x2E)
  420. name = "ne1619";
  421. else
  422. return -ENODEV;
  423. strlcpy(info->type, name, I2C_NAME_SIZE);
  424. return 0;
  425. }
  426. static void adm1025_init_client(struct i2c_client *client)
  427. {
  428. u8 reg;
  429. struct adm1025_data *data = i2c_get_clientdata(client);
  430. int i;
  431. data->vrm = vid_which_vrm();
  432. /*
  433. * Set high limits
  434. * Usually we avoid setting limits on driver init, but it happens
  435. * that the ADM1025 comes with stupid default limits (all registers
  436. * set to 0). In case the chip has not gone through any limit
  437. * setting yet, we better set the high limits to the max so that
  438. * no alarm triggers.
  439. */
  440. for (i = 0; i < 6; i++) {
  441. reg = i2c_smbus_read_byte_data(client,
  442. ADM1025_REG_IN_MAX(i));
  443. if (reg == 0)
  444. i2c_smbus_write_byte_data(client,
  445. ADM1025_REG_IN_MAX(i),
  446. 0xFF);
  447. }
  448. for (i = 0; i < 2; i++) {
  449. reg = i2c_smbus_read_byte_data(client,
  450. ADM1025_REG_TEMP_HIGH(i));
  451. if (reg == 0)
  452. i2c_smbus_write_byte_data(client,
  453. ADM1025_REG_TEMP_HIGH(i),
  454. 0x7F);
  455. }
  456. /*
  457. * Start the conversions
  458. */
  459. reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
  460. if (!(reg & 0x01))
  461. i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG,
  462. (reg&0x7E)|0x01);
  463. }
  464. static int adm1025_probe(struct i2c_client *client,
  465. const struct i2c_device_id *id)
  466. {
  467. struct device *dev = &client->dev;
  468. struct device *hwmon_dev;
  469. struct adm1025_data *data;
  470. u8 config;
  471. data = devm_kzalloc(dev, sizeof(struct adm1025_data), GFP_KERNEL);
  472. if (!data)
  473. return -ENOMEM;
  474. i2c_set_clientdata(client, data);
  475. data->client = client;
  476. mutex_init(&data->update_lock);
  477. /* Initialize the ADM1025 chip */
  478. adm1025_init_client(client);
  479. /* sysfs hooks */
  480. data->groups[0] = &adm1025_group;
  481. /* Pin 11 is either in4 (+12V) or VID4 */
  482. config = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
  483. if (!(config & 0x20))
  484. data->groups[1] = &adm1025_group_in4;
  485. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  486. data, data->groups);
  487. return PTR_ERR_OR_ZERO(hwmon_dev);
  488. }
  489. static const struct i2c_device_id adm1025_id[] = {
  490. { "adm1025", adm1025 },
  491. { "ne1619", ne1619 },
  492. { }
  493. };
  494. MODULE_DEVICE_TABLE(i2c, adm1025_id);
  495. static struct i2c_driver adm1025_driver = {
  496. .class = I2C_CLASS_HWMON,
  497. .driver = {
  498. .name = "adm1025",
  499. },
  500. .probe = adm1025_probe,
  501. .id_table = adm1025_id,
  502. .detect = adm1025_detect,
  503. .address_list = normal_i2c,
  504. };
  505. module_i2c_driver(adm1025_driver);
  506. MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
  507. MODULE_DESCRIPTION("ADM1025 driver");
  508. MODULE_LICENSE("GPL");