intel_dpll_mgr.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. struct intel_shared_dpll *
  25. skl_find_link_pll(struct drm_i915_private *dev_priv, int clock)
  26. {
  27. struct intel_shared_dpll *pll = NULL;
  28. struct intel_dpll_hw_state dpll_hw_state;
  29. enum intel_dpll_id i;
  30. bool found = false;
  31. if (!skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  32. return pll;
  33. for (i = DPLL_ID_SKL_DPLL1; i <= DPLL_ID_SKL_DPLL3; i++) {
  34. pll = &dev_priv->shared_dplls[i];
  35. /* Only want to check enabled timings first */
  36. if (pll->config.crtc_mask == 0)
  37. continue;
  38. if (memcmp(&dpll_hw_state, &pll->config.hw_state,
  39. sizeof(pll->config.hw_state)) == 0) {
  40. found = true;
  41. break;
  42. }
  43. }
  44. /* Ok no matching timings, maybe there's a free one? */
  45. for (i = DPLL_ID_SKL_DPLL1;
  46. ((found == false) && (i <= DPLL_ID_SKL_DPLL3)); i++) {
  47. pll = &dev_priv->shared_dplls[i];
  48. if (pll->config.crtc_mask == 0) {
  49. pll->config.hw_state = dpll_hw_state;
  50. break;
  51. }
  52. }
  53. return pll;
  54. }
  55. struct intel_shared_dpll *
  56. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  57. enum intel_dpll_id id)
  58. {
  59. return &dev_priv->shared_dplls[id];
  60. }
  61. enum intel_dpll_id
  62. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  63. struct intel_shared_dpll *pll)
  64. {
  65. if (WARN_ON(pll < dev_priv->shared_dplls||
  66. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  67. return -1;
  68. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  69. }
  70. void
  71. intel_shared_dpll_config_get(struct intel_shared_dpll_config *config,
  72. struct intel_shared_dpll *pll,
  73. struct intel_crtc *crtc)
  74. {
  75. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  76. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  77. config[id].crtc_mask |= 1 << crtc->pipe;
  78. }
  79. void
  80. intel_shared_dpll_config_put(struct intel_shared_dpll_config *config,
  81. struct intel_shared_dpll *pll,
  82. struct intel_crtc *crtc)
  83. {
  84. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  85. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  86. config[id].crtc_mask &= ~(1 << crtc->pipe);
  87. }
  88. /* For ILK+ */
  89. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  90. struct intel_shared_dpll *pll,
  91. bool state)
  92. {
  93. bool cur_state;
  94. struct intel_dpll_hw_state hw_state;
  95. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  96. return;
  97. cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
  98. I915_STATE_WARN(cur_state != state,
  99. "%s assertion failure (expected %s, current %s)\n",
  100. pll->name, onoff(state), onoff(cur_state));
  101. }
  102. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  103. {
  104. struct drm_device *dev = crtc->base.dev;
  105. struct drm_i915_private *dev_priv = to_i915(dev);
  106. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  107. if (WARN_ON(pll == NULL))
  108. return;
  109. mutex_lock(&dev_priv->dpll_lock);
  110. WARN_ON(!pll->config.crtc_mask);
  111. if (!pll->active_mask) {
  112. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  113. WARN_ON(pll->on);
  114. assert_shared_dpll_disabled(dev_priv, pll);
  115. pll->funcs.mode_set(dev_priv, pll);
  116. }
  117. mutex_unlock(&dev_priv->dpll_lock);
  118. }
  119. /**
  120. * intel_enable_shared_dpll - enable PCH PLL
  121. * @dev_priv: i915 private structure
  122. * @pipe: pipe PLL to enable
  123. *
  124. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  125. * drives the transcoder clock.
  126. */
  127. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  128. {
  129. struct drm_device *dev = crtc->base.dev;
  130. struct drm_i915_private *dev_priv = to_i915(dev);
  131. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  132. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  133. unsigned old_mask;
  134. if (WARN_ON(pll == NULL))
  135. return;
  136. mutex_lock(&dev_priv->dpll_lock);
  137. old_mask = pll->active_mask;
  138. if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) ||
  139. WARN_ON(pll->active_mask & crtc_mask))
  140. goto out;
  141. pll->active_mask |= crtc_mask;
  142. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  143. pll->name, pll->active_mask, pll->on,
  144. crtc->base.base.id);
  145. if (old_mask) {
  146. WARN_ON(!pll->on);
  147. assert_shared_dpll_enabled(dev_priv, pll);
  148. goto out;
  149. }
  150. WARN_ON(pll->on);
  151. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  152. pll->funcs.enable(dev_priv, pll);
  153. pll->on = true;
  154. out:
  155. mutex_unlock(&dev_priv->dpll_lock);
  156. }
  157. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  158. {
  159. struct drm_device *dev = crtc->base.dev;
  160. struct drm_i915_private *dev_priv = to_i915(dev);
  161. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  162. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  163. /* PCH only available on ILK+ */
  164. if (INTEL_INFO(dev)->gen < 5)
  165. return;
  166. if (pll == NULL)
  167. return;
  168. mutex_lock(&dev_priv->dpll_lock);
  169. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  170. goto out;
  171. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  172. pll->name, pll->active_mask, pll->on,
  173. crtc->base.base.id);
  174. assert_shared_dpll_enabled(dev_priv, pll);
  175. WARN_ON(!pll->on);
  176. pll->active_mask &= ~crtc_mask;
  177. if (pll->active_mask)
  178. goto out;
  179. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  180. pll->funcs.disable(dev_priv, pll);
  181. pll->on = false;
  182. out:
  183. mutex_unlock(&dev_priv->dpll_lock);
  184. }
  185. static struct intel_shared_dpll *
  186. intel_find_shared_dpll(struct intel_crtc *crtc,
  187. struct intel_crtc_state *crtc_state,
  188. enum intel_dpll_id range_min,
  189. enum intel_dpll_id range_max)
  190. {
  191. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  192. struct intel_shared_dpll *pll;
  193. struct intel_shared_dpll_config *shared_dpll;
  194. enum intel_dpll_id i;
  195. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  196. for (i = range_min; i <= range_max; i++) {
  197. pll = &dev_priv->shared_dplls[i];
  198. /* Only want to check enabled timings first */
  199. if (shared_dpll[i].crtc_mask == 0)
  200. continue;
  201. if (memcmp(&crtc_state->dpll_hw_state,
  202. &shared_dpll[i].hw_state,
  203. sizeof(crtc_state->dpll_hw_state)) == 0) {
  204. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  205. crtc->base.base.id, crtc->base.name, pll->name,
  206. shared_dpll[i].crtc_mask,
  207. pll->active_mask);
  208. return pll;
  209. }
  210. }
  211. /* Ok no matching timings, maybe there's a free one? */
  212. for (i = range_min; i <= range_max; i++) {
  213. pll = &dev_priv->shared_dplls[i];
  214. if (shared_dpll[i].crtc_mask == 0) {
  215. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  216. crtc->base.base.id, crtc->base.name, pll->name);
  217. return pll;
  218. }
  219. }
  220. return NULL;
  221. }
  222. static void
  223. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  224. struct intel_crtc_state *crtc_state)
  225. {
  226. struct intel_shared_dpll_config *shared_dpll;
  227. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  228. enum intel_dpll_id i = pll->id;
  229. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  230. if (shared_dpll[i].crtc_mask == 0)
  231. shared_dpll[i].hw_state =
  232. crtc_state->dpll_hw_state;
  233. crtc_state->shared_dpll = pll;
  234. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  235. pipe_name(crtc->pipe));
  236. intel_shared_dpll_config_get(shared_dpll, pll, crtc);
  237. }
  238. void intel_shared_dpll_commit(struct drm_atomic_state *state)
  239. {
  240. struct drm_i915_private *dev_priv = to_i915(state->dev);
  241. struct intel_shared_dpll_config *shared_dpll;
  242. struct intel_shared_dpll *pll;
  243. enum intel_dpll_id i;
  244. if (!to_intel_atomic_state(state)->dpll_set)
  245. return;
  246. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  247. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  248. pll = &dev_priv->shared_dplls[i];
  249. pll->config = shared_dpll[i];
  250. }
  251. }
  252. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  253. struct intel_shared_dpll *pll,
  254. struct intel_dpll_hw_state *hw_state)
  255. {
  256. uint32_t val;
  257. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  258. return false;
  259. val = I915_READ(PCH_DPLL(pll->id));
  260. hw_state->dpll = val;
  261. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  262. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  263. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  264. return val & DPLL_VCO_ENABLE;
  265. }
  266. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  267. struct intel_shared_dpll *pll)
  268. {
  269. I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  270. I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  271. }
  272. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  273. {
  274. u32 val;
  275. bool enabled;
  276. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  277. val = I915_READ(PCH_DREF_CONTROL);
  278. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  279. DREF_SUPERSPREAD_SOURCE_MASK));
  280. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  281. }
  282. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  283. struct intel_shared_dpll *pll)
  284. {
  285. /* PCH refclock must be enabled first */
  286. ibx_assert_pch_refclk_enabled(dev_priv);
  287. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  288. /* Wait for the clocks to stabilize. */
  289. POSTING_READ(PCH_DPLL(pll->id));
  290. udelay(150);
  291. /* The pixel multiplier can only be updated once the
  292. * DPLL is enabled and the clocks are stable.
  293. *
  294. * So write it again.
  295. */
  296. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  297. POSTING_READ(PCH_DPLL(pll->id));
  298. udelay(200);
  299. }
  300. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  301. struct intel_shared_dpll *pll)
  302. {
  303. struct drm_device *dev = &dev_priv->drm;
  304. struct intel_crtc *crtc;
  305. /* Make sure no transcoder isn't still depending on us. */
  306. for_each_intel_crtc(dev, crtc) {
  307. if (crtc->config->shared_dpll == pll)
  308. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  309. }
  310. I915_WRITE(PCH_DPLL(pll->id), 0);
  311. POSTING_READ(PCH_DPLL(pll->id));
  312. udelay(200);
  313. }
  314. static struct intel_shared_dpll *
  315. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  316. struct intel_encoder *encoder)
  317. {
  318. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  319. struct intel_shared_dpll *pll;
  320. enum intel_dpll_id i;
  321. if (HAS_PCH_IBX(dev_priv)) {
  322. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  323. i = (enum intel_dpll_id) crtc->pipe;
  324. pll = &dev_priv->shared_dplls[i];
  325. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  326. crtc->base.base.id, crtc->base.name, pll->name);
  327. } else {
  328. pll = intel_find_shared_dpll(crtc, crtc_state,
  329. DPLL_ID_PCH_PLL_A,
  330. DPLL_ID_PCH_PLL_B);
  331. }
  332. if (!pll)
  333. return NULL;
  334. /* reference the pll */
  335. intel_reference_shared_dpll(pll, crtc_state);
  336. return pll;
  337. }
  338. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  339. .mode_set = ibx_pch_dpll_mode_set,
  340. .enable = ibx_pch_dpll_enable,
  341. .disable = ibx_pch_dpll_disable,
  342. .get_hw_state = ibx_pch_dpll_get_hw_state,
  343. };
  344. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  345. struct intel_shared_dpll *pll)
  346. {
  347. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  348. POSTING_READ(WRPLL_CTL(pll->id));
  349. udelay(20);
  350. }
  351. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  352. struct intel_shared_dpll *pll)
  353. {
  354. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  355. POSTING_READ(SPLL_CTL);
  356. udelay(20);
  357. }
  358. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  359. struct intel_shared_dpll *pll)
  360. {
  361. uint32_t val;
  362. val = I915_READ(WRPLL_CTL(pll->id));
  363. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  364. POSTING_READ(WRPLL_CTL(pll->id));
  365. }
  366. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  367. struct intel_shared_dpll *pll)
  368. {
  369. uint32_t val;
  370. val = I915_READ(SPLL_CTL);
  371. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  372. POSTING_READ(SPLL_CTL);
  373. }
  374. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  375. struct intel_shared_dpll *pll,
  376. struct intel_dpll_hw_state *hw_state)
  377. {
  378. uint32_t val;
  379. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  380. return false;
  381. val = I915_READ(WRPLL_CTL(pll->id));
  382. hw_state->wrpll = val;
  383. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  384. return val & WRPLL_PLL_ENABLE;
  385. }
  386. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  387. struct intel_shared_dpll *pll,
  388. struct intel_dpll_hw_state *hw_state)
  389. {
  390. uint32_t val;
  391. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  392. return false;
  393. val = I915_READ(SPLL_CTL);
  394. hw_state->spll = val;
  395. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  396. return val & SPLL_PLL_ENABLE;
  397. }
  398. #define LC_FREQ 2700
  399. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  400. #define P_MIN 2
  401. #define P_MAX 64
  402. #define P_INC 2
  403. /* Constraints for PLL good behavior */
  404. #define REF_MIN 48
  405. #define REF_MAX 400
  406. #define VCO_MIN 2400
  407. #define VCO_MAX 4800
  408. struct hsw_wrpll_rnp {
  409. unsigned p, n2, r2;
  410. };
  411. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  412. {
  413. unsigned budget;
  414. switch (clock) {
  415. case 25175000:
  416. case 25200000:
  417. case 27000000:
  418. case 27027000:
  419. case 37762500:
  420. case 37800000:
  421. case 40500000:
  422. case 40541000:
  423. case 54000000:
  424. case 54054000:
  425. case 59341000:
  426. case 59400000:
  427. case 72000000:
  428. case 74176000:
  429. case 74250000:
  430. case 81000000:
  431. case 81081000:
  432. case 89012000:
  433. case 89100000:
  434. case 108000000:
  435. case 108108000:
  436. case 111264000:
  437. case 111375000:
  438. case 148352000:
  439. case 148500000:
  440. case 162000000:
  441. case 162162000:
  442. case 222525000:
  443. case 222750000:
  444. case 296703000:
  445. case 297000000:
  446. budget = 0;
  447. break;
  448. case 233500000:
  449. case 245250000:
  450. case 247750000:
  451. case 253250000:
  452. case 298000000:
  453. budget = 1500;
  454. break;
  455. case 169128000:
  456. case 169500000:
  457. case 179500000:
  458. case 202000000:
  459. budget = 2000;
  460. break;
  461. case 256250000:
  462. case 262500000:
  463. case 270000000:
  464. case 272500000:
  465. case 273750000:
  466. case 280750000:
  467. case 281250000:
  468. case 286000000:
  469. case 291750000:
  470. budget = 4000;
  471. break;
  472. case 267250000:
  473. case 268500000:
  474. budget = 5000;
  475. break;
  476. default:
  477. budget = 1000;
  478. break;
  479. }
  480. return budget;
  481. }
  482. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  483. unsigned r2, unsigned n2, unsigned p,
  484. struct hsw_wrpll_rnp *best)
  485. {
  486. uint64_t a, b, c, d, diff, diff_best;
  487. /* No best (r,n,p) yet */
  488. if (best->p == 0) {
  489. best->p = p;
  490. best->n2 = n2;
  491. best->r2 = r2;
  492. return;
  493. }
  494. /*
  495. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  496. * freq2k.
  497. *
  498. * delta = 1e6 *
  499. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  500. * freq2k;
  501. *
  502. * and we would like delta <= budget.
  503. *
  504. * If the discrepancy is above the PPM-based budget, always prefer to
  505. * improve upon the previous solution. However, if you're within the
  506. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  507. */
  508. a = freq2k * budget * p * r2;
  509. b = freq2k * budget * best->p * best->r2;
  510. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  511. diff_best = abs_diff(freq2k * best->p * best->r2,
  512. LC_FREQ_2K * best->n2);
  513. c = 1000000 * diff;
  514. d = 1000000 * diff_best;
  515. if (a < c && b < d) {
  516. /* If both are above the budget, pick the closer */
  517. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  518. best->p = p;
  519. best->n2 = n2;
  520. best->r2 = r2;
  521. }
  522. } else if (a >= c && b < d) {
  523. /* If A is below the threshold but B is above it? Update. */
  524. best->p = p;
  525. best->n2 = n2;
  526. best->r2 = r2;
  527. } else if (a >= c && b >= d) {
  528. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  529. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  530. best->p = p;
  531. best->n2 = n2;
  532. best->r2 = r2;
  533. }
  534. }
  535. /* Otherwise a < c && b >= d, do nothing */
  536. }
  537. static void
  538. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  539. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  540. {
  541. uint64_t freq2k;
  542. unsigned p, n2, r2;
  543. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  544. unsigned budget;
  545. freq2k = clock / 100;
  546. budget = hsw_wrpll_get_budget_for_freq(clock);
  547. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  548. * and directly pass the LC PLL to it. */
  549. if (freq2k == 5400000) {
  550. *n2_out = 2;
  551. *p_out = 1;
  552. *r2_out = 2;
  553. return;
  554. }
  555. /*
  556. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  557. * the WR PLL.
  558. *
  559. * We want R so that REF_MIN <= Ref <= REF_MAX.
  560. * Injecting R2 = 2 * R gives:
  561. * REF_MAX * r2 > LC_FREQ * 2 and
  562. * REF_MIN * r2 < LC_FREQ * 2
  563. *
  564. * Which means the desired boundaries for r2 are:
  565. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  566. *
  567. */
  568. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  569. r2 <= LC_FREQ * 2 / REF_MIN;
  570. r2++) {
  571. /*
  572. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  573. *
  574. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  575. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  576. * VCO_MAX * r2 > n2 * LC_FREQ and
  577. * VCO_MIN * r2 < n2 * LC_FREQ)
  578. *
  579. * Which means the desired boundaries for n2 are:
  580. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  581. */
  582. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  583. n2 <= VCO_MAX * r2 / LC_FREQ;
  584. n2++) {
  585. for (p = P_MIN; p <= P_MAX; p += P_INC)
  586. hsw_wrpll_update_rnp(freq2k, budget,
  587. r2, n2, p, &best);
  588. }
  589. }
  590. *n2_out = best.n2;
  591. *p_out = best.p;
  592. *r2_out = best.r2;
  593. }
  594. static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
  595. struct intel_crtc *crtc,
  596. struct intel_crtc_state *crtc_state)
  597. {
  598. struct intel_shared_dpll *pll;
  599. uint32_t val;
  600. unsigned int p, n2, r2;
  601. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  602. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  603. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  604. WRPLL_DIVIDER_POST(p);
  605. crtc_state->dpll_hw_state.wrpll = val;
  606. pll = intel_find_shared_dpll(crtc, crtc_state,
  607. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  608. if (!pll)
  609. return NULL;
  610. return pll;
  611. }
  612. struct intel_shared_dpll *hsw_ddi_dp_get_dpll(struct intel_encoder *encoder,
  613. int clock)
  614. {
  615. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  616. struct intel_shared_dpll *pll;
  617. enum intel_dpll_id pll_id;
  618. switch (clock / 2) {
  619. case 81000:
  620. pll_id = DPLL_ID_LCPLL_810;
  621. break;
  622. case 135000:
  623. pll_id = DPLL_ID_LCPLL_1350;
  624. break;
  625. case 270000:
  626. pll_id = DPLL_ID_LCPLL_2700;
  627. break;
  628. default:
  629. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  630. return NULL;
  631. }
  632. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  633. if (!pll)
  634. return NULL;
  635. return pll;
  636. }
  637. static struct intel_shared_dpll *
  638. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  639. struct intel_encoder *encoder)
  640. {
  641. struct intel_shared_dpll *pll;
  642. int clock = crtc_state->port_clock;
  643. memset(&crtc_state->dpll_hw_state, 0,
  644. sizeof(crtc_state->dpll_hw_state));
  645. if (encoder->type == INTEL_OUTPUT_HDMI) {
  646. pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
  647. } else if (encoder->type == INTEL_OUTPUT_DP ||
  648. encoder->type == INTEL_OUTPUT_DP_MST ||
  649. encoder->type == INTEL_OUTPUT_EDP) {
  650. pll = hsw_ddi_dp_get_dpll(encoder, clock);
  651. } else if (encoder->type == INTEL_OUTPUT_ANALOG) {
  652. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  653. return NULL;
  654. crtc_state->dpll_hw_state.spll =
  655. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  656. pll = intel_find_shared_dpll(crtc, crtc_state,
  657. DPLL_ID_SPLL, DPLL_ID_SPLL);
  658. } else {
  659. return NULL;
  660. }
  661. if (!pll)
  662. return NULL;
  663. intel_reference_shared_dpll(pll, crtc_state);
  664. return pll;
  665. }
  666. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  667. .enable = hsw_ddi_wrpll_enable,
  668. .disable = hsw_ddi_wrpll_disable,
  669. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  670. };
  671. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  672. .enable = hsw_ddi_spll_enable,
  673. .disable = hsw_ddi_spll_disable,
  674. .get_hw_state = hsw_ddi_spll_get_hw_state,
  675. };
  676. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  677. struct intel_shared_dpll *pll)
  678. {
  679. }
  680. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  681. struct intel_shared_dpll *pll)
  682. {
  683. }
  684. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  685. struct intel_shared_dpll *pll,
  686. struct intel_dpll_hw_state *hw_state)
  687. {
  688. return true;
  689. }
  690. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  691. .enable = hsw_ddi_lcpll_enable,
  692. .disable = hsw_ddi_lcpll_disable,
  693. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  694. };
  695. struct skl_dpll_regs {
  696. i915_reg_t ctl, cfgcr1, cfgcr2;
  697. };
  698. /* this array is indexed by the *shared* pll id */
  699. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  700. {
  701. /* DPLL 0 */
  702. .ctl = LCPLL1_CTL,
  703. /* DPLL 0 doesn't support HDMI mode */
  704. },
  705. {
  706. /* DPLL 1 */
  707. .ctl = LCPLL2_CTL,
  708. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  709. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  710. },
  711. {
  712. /* DPLL 2 */
  713. .ctl = WRPLL_CTL(0),
  714. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  715. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  716. },
  717. {
  718. /* DPLL 3 */
  719. .ctl = WRPLL_CTL(1),
  720. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  721. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  722. },
  723. };
  724. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  725. struct intel_shared_dpll *pll)
  726. {
  727. uint32_t val;
  728. val = I915_READ(DPLL_CTRL1);
  729. val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
  730. DPLL_CTRL1_LINK_RATE_MASK(pll->id));
  731. val |= pll->config.hw_state.ctrl1 << (pll->id * 6);
  732. I915_WRITE(DPLL_CTRL1, val);
  733. POSTING_READ(DPLL_CTRL1);
  734. }
  735. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  736. struct intel_shared_dpll *pll)
  737. {
  738. const struct skl_dpll_regs *regs = skl_dpll_regs;
  739. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  740. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  741. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  742. POSTING_READ(regs[pll->id].cfgcr1);
  743. POSTING_READ(regs[pll->id].cfgcr2);
  744. /* the enable bit is always bit 31 */
  745. I915_WRITE(regs[pll->id].ctl,
  746. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  747. if (intel_wait_for_register(dev_priv,
  748. DPLL_STATUS,
  749. DPLL_LOCK(pll->id),
  750. DPLL_LOCK(pll->id),
  751. 5))
  752. DRM_ERROR("DPLL %d not locked\n", pll->id);
  753. }
  754. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  755. struct intel_shared_dpll *pll)
  756. {
  757. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  758. }
  759. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  760. struct intel_shared_dpll *pll)
  761. {
  762. const struct skl_dpll_regs *regs = skl_dpll_regs;
  763. /* the enable bit is always bit 31 */
  764. I915_WRITE(regs[pll->id].ctl,
  765. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  766. POSTING_READ(regs[pll->id].ctl);
  767. }
  768. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  769. struct intel_shared_dpll *pll)
  770. {
  771. }
  772. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  773. struct intel_shared_dpll *pll,
  774. struct intel_dpll_hw_state *hw_state)
  775. {
  776. uint32_t val;
  777. const struct skl_dpll_regs *regs = skl_dpll_regs;
  778. bool ret;
  779. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  780. return false;
  781. ret = false;
  782. val = I915_READ(regs[pll->id].ctl);
  783. if (!(val & LCPLL_PLL_ENABLE))
  784. goto out;
  785. val = I915_READ(DPLL_CTRL1);
  786. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  787. /* avoid reading back stale values if HDMI mode is not enabled */
  788. if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
  789. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  790. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  791. }
  792. ret = true;
  793. out:
  794. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  795. return ret;
  796. }
  797. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  798. struct intel_shared_dpll *pll,
  799. struct intel_dpll_hw_state *hw_state)
  800. {
  801. uint32_t val;
  802. const struct skl_dpll_regs *regs = skl_dpll_regs;
  803. bool ret;
  804. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  805. return false;
  806. ret = false;
  807. /* DPLL0 is always enabled since it drives CDCLK */
  808. val = I915_READ(regs[pll->id].ctl);
  809. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  810. goto out;
  811. val = I915_READ(DPLL_CTRL1);
  812. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  813. ret = true;
  814. out:
  815. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  816. return ret;
  817. }
  818. struct skl_wrpll_context {
  819. uint64_t min_deviation; /* current minimal deviation */
  820. uint64_t central_freq; /* chosen central freq */
  821. uint64_t dco_freq; /* chosen dco freq */
  822. unsigned int p; /* chosen divider */
  823. };
  824. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  825. {
  826. memset(ctx, 0, sizeof(*ctx));
  827. ctx->min_deviation = U64_MAX;
  828. }
  829. /* DCO freq must be within +1%/-6% of the DCO central freq */
  830. #define SKL_DCO_MAX_PDEVIATION 100
  831. #define SKL_DCO_MAX_NDEVIATION 600
  832. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  833. uint64_t central_freq,
  834. uint64_t dco_freq,
  835. unsigned int divider)
  836. {
  837. uint64_t deviation;
  838. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  839. central_freq);
  840. /* positive deviation */
  841. if (dco_freq >= central_freq) {
  842. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  843. deviation < ctx->min_deviation) {
  844. ctx->min_deviation = deviation;
  845. ctx->central_freq = central_freq;
  846. ctx->dco_freq = dco_freq;
  847. ctx->p = divider;
  848. }
  849. /* negative deviation */
  850. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  851. deviation < ctx->min_deviation) {
  852. ctx->min_deviation = deviation;
  853. ctx->central_freq = central_freq;
  854. ctx->dco_freq = dco_freq;
  855. ctx->p = divider;
  856. }
  857. }
  858. static void skl_wrpll_get_multipliers(unsigned int p,
  859. unsigned int *p0 /* out */,
  860. unsigned int *p1 /* out */,
  861. unsigned int *p2 /* out */)
  862. {
  863. /* even dividers */
  864. if (p % 2 == 0) {
  865. unsigned int half = p / 2;
  866. if (half == 1 || half == 2 || half == 3 || half == 5) {
  867. *p0 = 2;
  868. *p1 = 1;
  869. *p2 = half;
  870. } else if (half % 2 == 0) {
  871. *p0 = 2;
  872. *p1 = half / 2;
  873. *p2 = 2;
  874. } else if (half % 3 == 0) {
  875. *p0 = 3;
  876. *p1 = half / 3;
  877. *p2 = 2;
  878. } else if (half % 7 == 0) {
  879. *p0 = 7;
  880. *p1 = half / 7;
  881. *p2 = 2;
  882. }
  883. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  884. *p0 = 3;
  885. *p1 = 1;
  886. *p2 = p / 3;
  887. } else if (p == 5 || p == 7) {
  888. *p0 = p;
  889. *p1 = 1;
  890. *p2 = 1;
  891. } else if (p == 15) {
  892. *p0 = 3;
  893. *p1 = 1;
  894. *p2 = 5;
  895. } else if (p == 21) {
  896. *p0 = 7;
  897. *p1 = 1;
  898. *p2 = 3;
  899. } else if (p == 35) {
  900. *p0 = 7;
  901. *p1 = 1;
  902. *p2 = 5;
  903. }
  904. }
  905. struct skl_wrpll_params {
  906. uint32_t dco_fraction;
  907. uint32_t dco_integer;
  908. uint32_t qdiv_ratio;
  909. uint32_t qdiv_mode;
  910. uint32_t kdiv;
  911. uint32_t pdiv;
  912. uint32_t central_freq;
  913. };
  914. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  915. uint64_t afe_clock,
  916. uint64_t central_freq,
  917. uint32_t p0, uint32_t p1, uint32_t p2)
  918. {
  919. uint64_t dco_freq;
  920. switch (central_freq) {
  921. case 9600000000ULL:
  922. params->central_freq = 0;
  923. break;
  924. case 9000000000ULL:
  925. params->central_freq = 1;
  926. break;
  927. case 8400000000ULL:
  928. params->central_freq = 3;
  929. }
  930. switch (p0) {
  931. case 1:
  932. params->pdiv = 0;
  933. break;
  934. case 2:
  935. params->pdiv = 1;
  936. break;
  937. case 3:
  938. params->pdiv = 2;
  939. break;
  940. case 7:
  941. params->pdiv = 4;
  942. break;
  943. default:
  944. WARN(1, "Incorrect PDiv\n");
  945. }
  946. switch (p2) {
  947. case 5:
  948. params->kdiv = 0;
  949. break;
  950. case 2:
  951. params->kdiv = 1;
  952. break;
  953. case 3:
  954. params->kdiv = 2;
  955. break;
  956. case 1:
  957. params->kdiv = 3;
  958. break;
  959. default:
  960. WARN(1, "Incorrect KDiv\n");
  961. }
  962. params->qdiv_ratio = p1;
  963. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  964. dco_freq = p0 * p1 * p2 * afe_clock;
  965. /*
  966. * Intermediate values are in Hz.
  967. * Divide by MHz to match bsepc
  968. */
  969. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  970. params->dco_fraction =
  971. div_u64((div_u64(dco_freq, 24) -
  972. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  973. }
  974. static bool
  975. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  976. struct skl_wrpll_params *wrpll_params)
  977. {
  978. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  979. uint64_t dco_central_freq[3] = {8400000000ULL,
  980. 9000000000ULL,
  981. 9600000000ULL};
  982. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  983. 24, 28, 30, 32, 36, 40, 42, 44,
  984. 48, 52, 54, 56, 60, 64, 66, 68,
  985. 70, 72, 76, 78, 80, 84, 88, 90,
  986. 92, 96, 98 };
  987. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  988. static const struct {
  989. const int *list;
  990. int n_dividers;
  991. } dividers[] = {
  992. { even_dividers, ARRAY_SIZE(even_dividers) },
  993. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  994. };
  995. struct skl_wrpll_context ctx;
  996. unsigned int dco, d, i;
  997. unsigned int p0, p1, p2;
  998. skl_wrpll_context_init(&ctx);
  999. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1000. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1001. for (i = 0; i < dividers[d].n_dividers; i++) {
  1002. unsigned int p = dividers[d].list[i];
  1003. uint64_t dco_freq = p * afe_clock;
  1004. skl_wrpll_try_divider(&ctx,
  1005. dco_central_freq[dco],
  1006. dco_freq,
  1007. p);
  1008. /*
  1009. * Skip the remaining dividers if we're sure to
  1010. * have found the definitive divider, we can't
  1011. * improve a 0 deviation.
  1012. */
  1013. if (ctx.min_deviation == 0)
  1014. goto skip_remaining_dividers;
  1015. }
  1016. }
  1017. skip_remaining_dividers:
  1018. /*
  1019. * If a solution is found with an even divider, prefer
  1020. * this one.
  1021. */
  1022. if (d == 0 && ctx.p)
  1023. break;
  1024. }
  1025. if (!ctx.p) {
  1026. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1027. return false;
  1028. }
  1029. /*
  1030. * gcc incorrectly analyses that these can be used without being
  1031. * initialized. To be fair, it's hard to guess.
  1032. */
  1033. p0 = p1 = p2 = 0;
  1034. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1035. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1036. p0, p1, p2);
  1037. return true;
  1038. }
  1039. static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1040. struct intel_crtc_state *crtc_state,
  1041. int clock)
  1042. {
  1043. uint32_t ctrl1, cfgcr1, cfgcr2;
  1044. struct skl_wrpll_params wrpll_params = { 0, };
  1045. /*
  1046. * See comment in intel_dpll_hw_state to understand why we always use 0
  1047. * as the DPLL id in this function.
  1048. */
  1049. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1050. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1051. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1052. return false;
  1053. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1054. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1055. wrpll_params.dco_integer;
  1056. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1057. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1058. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1059. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1060. wrpll_params.central_freq;
  1061. memset(&crtc_state->dpll_hw_state, 0,
  1062. sizeof(crtc_state->dpll_hw_state));
  1063. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1064. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1065. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1066. return true;
  1067. }
  1068. bool skl_ddi_dp_set_dpll_hw_state(int clock,
  1069. struct intel_dpll_hw_state *dpll_hw_state)
  1070. {
  1071. uint32_t ctrl1;
  1072. /*
  1073. * See comment in intel_dpll_hw_state to understand why we always use 0
  1074. * as the DPLL id in this function.
  1075. */
  1076. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1077. switch (clock / 2) {
  1078. case 81000:
  1079. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1080. break;
  1081. case 135000:
  1082. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1083. break;
  1084. case 270000:
  1085. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1086. break;
  1087. /* eDP 1.4 rates */
  1088. case 162000:
  1089. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1090. break;
  1091. case 108000:
  1092. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1093. break;
  1094. case 216000:
  1095. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1096. break;
  1097. }
  1098. dpll_hw_state->ctrl1 = ctrl1;
  1099. return true;
  1100. }
  1101. static struct intel_shared_dpll *
  1102. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1103. struct intel_encoder *encoder)
  1104. {
  1105. struct intel_shared_dpll *pll;
  1106. int clock = crtc_state->port_clock;
  1107. bool bret;
  1108. struct intel_dpll_hw_state dpll_hw_state;
  1109. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1110. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1111. bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1112. if (!bret) {
  1113. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1114. return NULL;
  1115. }
  1116. } else if (encoder->type == INTEL_OUTPUT_DP ||
  1117. encoder->type == INTEL_OUTPUT_DP_MST ||
  1118. encoder->type == INTEL_OUTPUT_EDP) {
  1119. bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1120. if (!bret) {
  1121. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1122. return NULL;
  1123. }
  1124. crtc_state->dpll_hw_state = dpll_hw_state;
  1125. } else {
  1126. return NULL;
  1127. }
  1128. if (encoder->type == INTEL_OUTPUT_EDP)
  1129. pll = intel_find_shared_dpll(crtc, crtc_state,
  1130. DPLL_ID_SKL_DPLL0,
  1131. DPLL_ID_SKL_DPLL0);
  1132. else
  1133. pll = intel_find_shared_dpll(crtc, crtc_state,
  1134. DPLL_ID_SKL_DPLL1,
  1135. DPLL_ID_SKL_DPLL3);
  1136. if (!pll)
  1137. return NULL;
  1138. intel_reference_shared_dpll(pll, crtc_state);
  1139. return pll;
  1140. }
  1141. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1142. .enable = skl_ddi_pll_enable,
  1143. .disable = skl_ddi_pll_disable,
  1144. .get_hw_state = skl_ddi_pll_get_hw_state,
  1145. };
  1146. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1147. .enable = skl_ddi_dpll0_enable,
  1148. .disable = skl_ddi_dpll0_disable,
  1149. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1150. };
  1151. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1152. struct intel_shared_dpll *pll)
  1153. {
  1154. uint32_t temp;
  1155. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1156. /* Non-SSC reference */
  1157. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1158. temp |= PORT_PLL_REF_SEL;
  1159. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1160. /* Disable 10 bit clock */
  1161. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1162. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1163. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1164. /* Write P1 & P2 */
  1165. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1166. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1167. temp |= pll->config.hw_state.ebb0;
  1168. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  1169. /* Write M2 integer */
  1170. temp = I915_READ(BXT_PORT_PLL(port, 0));
  1171. temp &= ~PORT_PLL_M2_MASK;
  1172. temp |= pll->config.hw_state.pll0;
  1173. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  1174. /* Write N */
  1175. temp = I915_READ(BXT_PORT_PLL(port, 1));
  1176. temp &= ~PORT_PLL_N_MASK;
  1177. temp |= pll->config.hw_state.pll1;
  1178. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  1179. /* Write M2 fraction */
  1180. temp = I915_READ(BXT_PORT_PLL(port, 2));
  1181. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1182. temp |= pll->config.hw_state.pll2;
  1183. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  1184. /* Write M2 fraction enable */
  1185. temp = I915_READ(BXT_PORT_PLL(port, 3));
  1186. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1187. temp |= pll->config.hw_state.pll3;
  1188. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  1189. /* Write coeff */
  1190. temp = I915_READ(BXT_PORT_PLL(port, 6));
  1191. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1192. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1193. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1194. temp |= pll->config.hw_state.pll6;
  1195. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  1196. /* Write calibration val */
  1197. temp = I915_READ(BXT_PORT_PLL(port, 8));
  1198. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1199. temp |= pll->config.hw_state.pll8;
  1200. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  1201. temp = I915_READ(BXT_PORT_PLL(port, 9));
  1202. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1203. temp |= pll->config.hw_state.pll9;
  1204. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  1205. temp = I915_READ(BXT_PORT_PLL(port, 10));
  1206. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1207. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1208. temp |= pll->config.hw_state.pll10;
  1209. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  1210. /* Recalibrate with new settings */
  1211. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1212. temp |= PORT_PLL_RECALIBRATE;
  1213. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1214. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1215. temp |= pll->config.hw_state.ebb4;
  1216. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1217. /* Enable PLL */
  1218. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1219. temp |= PORT_PLL_ENABLE;
  1220. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1221. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1222. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1223. 200))
  1224. DRM_ERROR("PLL %d not locked\n", port);
  1225. /*
  1226. * While we write to the group register to program all lanes at once we
  1227. * can read only lane registers and we pick lanes 0/1 for that.
  1228. */
  1229. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1230. temp &= ~LANE_STAGGER_MASK;
  1231. temp &= ~LANESTAGGER_STRAP_OVRD;
  1232. temp |= pll->config.hw_state.pcsdw12;
  1233. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  1234. }
  1235. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1236. struct intel_shared_dpll *pll)
  1237. {
  1238. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1239. uint32_t temp;
  1240. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1241. temp &= ~PORT_PLL_ENABLE;
  1242. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1243. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1244. }
  1245. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1246. struct intel_shared_dpll *pll,
  1247. struct intel_dpll_hw_state *hw_state)
  1248. {
  1249. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1250. uint32_t val;
  1251. bool ret;
  1252. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1253. return false;
  1254. ret = false;
  1255. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1256. if (!(val & PORT_PLL_ENABLE))
  1257. goto out;
  1258. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1259. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1260. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1261. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1262. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  1263. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1264. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  1265. hw_state->pll1 &= PORT_PLL_N_MASK;
  1266. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  1267. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1268. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  1269. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1270. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  1271. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1272. PORT_PLL_INT_COEFF_MASK |
  1273. PORT_PLL_GAIN_CTL_MASK;
  1274. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  1275. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1276. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  1277. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1278. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  1279. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1280. PORT_PLL_DCO_AMP_MASK;
  1281. /*
  1282. * While we write to the group register to program all lanes at once we
  1283. * can read only lane registers. We configure all lanes the same way, so
  1284. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1285. */
  1286. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1287. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  1288. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1289. hw_state->pcsdw12,
  1290. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  1291. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1292. ret = true;
  1293. out:
  1294. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1295. return ret;
  1296. }
  1297. /* bxt clock parameters */
  1298. struct bxt_clk_div {
  1299. int clock;
  1300. uint32_t p1;
  1301. uint32_t p2;
  1302. uint32_t m2_int;
  1303. uint32_t m2_frac;
  1304. bool m2_frac_en;
  1305. uint32_t n;
  1306. int vco;
  1307. };
  1308. /* pre-calculated values for DP linkrates */
  1309. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1310. {162000, 4, 2, 32, 1677722, 1, 1},
  1311. {270000, 4, 1, 27, 0, 0, 1},
  1312. {540000, 2, 1, 27, 0, 0, 1},
  1313. {216000, 3, 2, 32, 1677722, 1, 1},
  1314. {243000, 4, 1, 24, 1258291, 1, 1},
  1315. {324000, 4, 1, 32, 1677722, 1, 1},
  1316. {432000, 3, 1, 32, 1677722, 1, 1}
  1317. };
  1318. static bool
  1319. bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
  1320. struct intel_crtc_state *crtc_state, int clock,
  1321. struct bxt_clk_div *clk_div)
  1322. {
  1323. struct dpll best_clock;
  1324. /* Calculate HDMI div */
  1325. /*
  1326. * FIXME: tie the following calculation into
  1327. * i9xx_crtc_compute_clock
  1328. */
  1329. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1330. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1331. clock, pipe_name(intel_crtc->pipe));
  1332. return false;
  1333. }
  1334. clk_div->p1 = best_clock.p1;
  1335. clk_div->p2 = best_clock.p2;
  1336. WARN_ON(best_clock.m1 != 2);
  1337. clk_div->n = best_clock.n;
  1338. clk_div->m2_int = best_clock.m2 >> 22;
  1339. clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1340. clk_div->m2_frac_en = clk_div->m2_frac != 0;
  1341. clk_div->vco = best_clock.vco;
  1342. return true;
  1343. }
  1344. static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
  1345. {
  1346. int i;
  1347. *clk_div = bxt_dp_clk_val[0];
  1348. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1349. if (bxt_dp_clk_val[i].clock == clock) {
  1350. *clk_div = bxt_dp_clk_val[i];
  1351. break;
  1352. }
  1353. }
  1354. clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
  1355. }
  1356. static bool bxt_ddi_set_dpll_hw_state(int clock,
  1357. struct bxt_clk_div *clk_div,
  1358. struct intel_dpll_hw_state *dpll_hw_state)
  1359. {
  1360. int vco = clk_div->vco;
  1361. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1362. uint32_t lanestagger;
  1363. if (vco >= 6200000 && vco <= 6700000) {
  1364. prop_coef = 4;
  1365. int_coef = 9;
  1366. gain_ctl = 3;
  1367. targ_cnt = 8;
  1368. } else if ((vco > 5400000 && vco < 6200000) ||
  1369. (vco >= 4800000 && vco < 5400000)) {
  1370. prop_coef = 5;
  1371. int_coef = 11;
  1372. gain_ctl = 3;
  1373. targ_cnt = 9;
  1374. } else if (vco == 5400000) {
  1375. prop_coef = 3;
  1376. int_coef = 8;
  1377. gain_ctl = 1;
  1378. targ_cnt = 9;
  1379. } else {
  1380. DRM_ERROR("Invalid VCO\n");
  1381. return false;
  1382. }
  1383. if (clock > 270000)
  1384. lanestagger = 0x18;
  1385. else if (clock > 135000)
  1386. lanestagger = 0x0d;
  1387. else if (clock > 67000)
  1388. lanestagger = 0x07;
  1389. else if (clock > 33000)
  1390. lanestagger = 0x04;
  1391. else
  1392. lanestagger = 0x02;
  1393. dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
  1394. dpll_hw_state->pll0 = clk_div->m2_int;
  1395. dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
  1396. dpll_hw_state->pll2 = clk_div->m2_frac;
  1397. if (clk_div->m2_frac_en)
  1398. dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
  1399. dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1400. dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
  1401. dpll_hw_state->pll8 = targ_cnt;
  1402. dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1403. dpll_hw_state->pll10 =
  1404. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1405. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1406. dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1407. dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
  1408. return true;
  1409. }
  1410. bool bxt_ddi_dp_set_dpll_hw_state(int clock,
  1411. struct intel_dpll_hw_state *dpll_hw_state)
  1412. {
  1413. struct bxt_clk_div clk_div = {0};
  1414. bxt_ddi_dp_pll_dividers(clock, &clk_div);
  1415. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1416. }
  1417. static bool
  1418. bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
  1419. struct intel_crtc_state *crtc_state, int clock,
  1420. struct intel_dpll_hw_state *dpll_hw_state)
  1421. {
  1422. struct bxt_clk_div clk_div = { };
  1423. bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
  1424. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1425. }
  1426. static struct intel_shared_dpll *
  1427. bxt_get_dpll(struct intel_crtc *crtc,
  1428. struct intel_crtc_state *crtc_state,
  1429. struct intel_encoder *encoder)
  1430. {
  1431. struct intel_dpll_hw_state dpll_hw_state = { };
  1432. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1433. struct intel_digital_port *intel_dig_port;
  1434. struct intel_shared_dpll *pll;
  1435. int i, clock = crtc_state->port_clock;
  1436. if (encoder->type == INTEL_OUTPUT_HDMI &&
  1437. !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
  1438. &dpll_hw_state))
  1439. return NULL;
  1440. if ((encoder->type == INTEL_OUTPUT_DP ||
  1441. encoder->type == INTEL_OUTPUT_EDP ||
  1442. encoder->type == INTEL_OUTPUT_DP_MST) &&
  1443. !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  1444. return NULL;
  1445. memset(&crtc_state->dpll_hw_state, 0,
  1446. sizeof(crtc_state->dpll_hw_state));
  1447. crtc_state->dpll_hw_state = dpll_hw_state;
  1448. if (encoder->type == INTEL_OUTPUT_DP_MST) {
  1449. struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);
  1450. intel_dig_port = intel_mst->primary;
  1451. } else
  1452. intel_dig_port = enc_to_dig_port(&encoder->base);
  1453. /* 1:1 mapping between ports and PLLs */
  1454. i = (enum intel_dpll_id) intel_dig_port->port;
  1455. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1456. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1457. crtc->base.base.id, crtc->base.name, pll->name);
  1458. intel_reference_shared_dpll(pll, crtc_state);
  1459. return pll;
  1460. }
  1461. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1462. .enable = bxt_ddi_pll_enable,
  1463. .disable = bxt_ddi_pll_disable,
  1464. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1465. };
  1466. static void intel_ddi_pll_init(struct drm_device *dev)
  1467. {
  1468. struct drm_i915_private *dev_priv = to_i915(dev);
  1469. if (INTEL_GEN(dev_priv) < 9) {
  1470. uint32_t val = I915_READ(LCPLL_CTL);
  1471. /*
  1472. * The LCPLL register should be turned on by the BIOS. For now
  1473. * let's just check its state and print errors in case
  1474. * something is wrong. Don't even try to turn it on.
  1475. */
  1476. if (val & LCPLL_CD_SOURCE_FCLK)
  1477. DRM_ERROR("CDCLK source is not LCPLL\n");
  1478. if (val & LCPLL_PLL_DISABLE)
  1479. DRM_ERROR("LCPLL is disabled\n");
  1480. }
  1481. }
  1482. struct dpll_info {
  1483. const char *name;
  1484. const int id;
  1485. const struct intel_shared_dpll_funcs *funcs;
  1486. uint32_t flags;
  1487. };
  1488. struct intel_dpll_mgr {
  1489. const struct dpll_info *dpll_info;
  1490. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1491. struct intel_crtc_state *crtc_state,
  1492. struct intel_encoder *encoder);
  1493. };
  1494. static const struct dpll_info pch_plls[] = {
  1495. { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
  1496. { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
  1497. { NULL, -1, NULL, 0 },
  1498. };
  1499. static const struct intel_dpll_mgr pch_pll_mgr = {
  1500. .dpll_info = pch_plls,
  1501. .get_dpll = ibx_get_dpll,
  1502. };
  1503. static const struct dpll_info hsw_plls[] = {
  1504. { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
  1505. { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
  1506. { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
  1507. { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1508. { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1509. { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1510. { NULL, -1, NULL, },
  1511. };
  1512. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1513. .dpll_info = hsw_plls,
  1514. .get_dpll = hsw_get_dpll,
  1515. };
  1516. static const struct dpll_info skl_plls[] = {
  1517. { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
  1518. { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
  1519. { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
  1520. { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
  1521. { NULL, -1, NULL, },
  1522. };
  1523. static const struct intel_dpll_mgr skl_pll_mgr = {
  1524. .dpll_info = skl_plls,
  1525. .get_dpll = skl_get_dpll,
  1526. };
  1527. static const struct dpll_info bxt_plls[] = {
  1528. { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
  1529. { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
  1530. { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
  1531. { NULL, -1, NULL, },
  1532. };
  1533. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1534. .dpll_info = bxt_plls,
  1535. .get_dpll = bxt_get_dpll,
  1536. };
  1537. void intel_shared_dpll_init(struct drm_device *dev)
  1538. {
  1539. struct drm_i915_private *dev_priv = to_i915(dev);
  1540. const struct intel_dpll_mgr *dpll_mgr = NULL;
  1541. const struct dpll_info *dpll_info;
  1542. int i;
  1543. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1544. dpll_mgr = &skl_pll_mgr;
  1545. else if (IS_BROXTON(dev))
  1546. dpll_mgr = &bxt_pll_mgr;
  1547. else if (HAS_DDI(dev))
  1548. dpll_mgr = &hsw_pll_mgr;
  1549. else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  1550. dpll_mgr = &pch_pll_mgr;
  1551. if (!dpll_mgr) {
  1552. dev_priv->num_shared_dpll = 0;
  1553. return;
  1554. }
  1555. dpll_info = dpll_mgr->dpll_info;
  1556. for (i = 0; dpll_info[i].id >= 0; i++) {
  1557. WARN_ON(i != dpll_info[i].id);
  1558. dev_priv->shared_dplls[i].id = dpll_info[i].id;
  1559. dev_priv->shared_dplls[i].name = dpll_info[i].name;
  1560. dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
  1561. dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
  1562. }
  1563. dev_priv->dpll_mgr = dpll_mgr;
  1564. dev_priv->num_shared_dpll = i;
  1565. mutex_init(&dev_priv->dpll_lock);
  1566. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  1567. /* FIXME: Move this to a more suitable place */
  1568. if (HAS_DDI(dev))
  1569. intel_ddi_pll_init(dev);
  1570. }
  1571. struct intel_shared_dpll *
  1572. intel_get_shared_dpll(struct intel_crtc *crtc,
  1573. struct intel_crtc_state *crtc_state,
  1574. struct intel_encoder *encoder)
  1575. {
  1576. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1577. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  1578. if (WARN_ON(!dpll_mgr))
  1579. return NULL;
  1580. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  1581. }