intel_ddi.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  33. };
  34. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  35. * them for both DP and FDI transports, allowing those ports to
  36. * automatically adapt to HDMI connections as well
  37. */
  38. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  39. { 0x00FFFFFF, 0x0006000E, 0x0 },
  40. { 0x00D75FFF, 0x0005000A, 0x0 },
  41. { 0x00C30FFF, 0x00040006, 0x0 },
  42. { 0x80AAAFFF, 0x000B0000, 0x0 },
  43. { 0x00FFFFFF, 0x0005000A, 0x0 },
  44. { 0x00D75FFF, 0x000C0004, 0x0 },
  45. { 0x80C30FFF, 0x000B0000, 0x0 },
  46. { 0x00FFFFFF, 0x00040006, 0x0 },
  47. { 0x80D75FFF, 0x000B0000, 0x0 },
  48. };
  49. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  50. { 0x00FFFFFF, 0x0007000E, 0x0 },
  51. { 0x00D75FFF, 0x000F000A, 0x0 },
  52. { 0x00C30FFF, 0x00060006, 0x0 },
  53. { 0x00AAAFFF, 0x001E0000, 0x0 },
  54. { 0x00FFFFFF, 0x000F000A, 0x0 },
  55. { 0x00D75FFF, 0x00160004, 0x0 },
  56. { 0x00C30FFF, 0x001E0000, 0x0 },
  57. { 0x00FFFFFF, 0x00060006, 0x0 },
  58. { 0x00D75FFF, 0x001E0000, 0x0 },
  59. };
  60. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  61. /* Idx NT mV d T mV d db */
  62. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  63. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  64. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  65. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  66. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  67. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  68. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  69. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  70. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  71. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  72. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  73. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  74. };
  75. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  76. { 0x00FFFFFF, 0x00000012, 0x0 },
  77. { 0x00EBAFFF, 0x00020011, 0x0 },
  78. { 0x00C71FFF, 0x0006000F, 0x0 },
  79. { 0x00AAAFFF, 0x000E000A, 0x0 },
  80. { 0x00FFFFFF, 0x00020011, 0x0 },
  81. { 0x00DB6FFF, 0x0005000F, 0x0 },
  82. { 0x00BEEFFF, 0x000A000C, 0x0 },
  83. { 0x00FFFFFF, 0x0005000F, 0x0 },
  84. { 0x00DB6FFF, 0x000A000C, 0x0 },
  85. };
  86. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  87. { 0x00FFFFFF, 0x0007000E, 0x0 },
  88. { 0x00D75FFF, 0x000E000A, 0x0 },
  89. { 0x00BEFFFF, 0x00140006, 0x0 },
  90. { 0x80B2CFFF, 0x001B0002, 0x0 },
  91. { 0x00FFFFFF, 0x000E000A, 0x0 },
  92. { 0x00DB6FFF, 0x00160005, 0x0 },
  93. { 0x80C71FFF, 0x001A0002, 0x0 },
  94. { 0x00F7DFFF, 0x00180004, 0x0 },
  95. { 0x80D75FFF, 0x001B0002, 0x0 },
  96. };
  97. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  98. { 0x00FFFFFF, 0x0001000E, 0x0 },
  99. { 0x00D75FFF, 0x0004000A, 0x0 },
  100. { 0x00C30FFF, 0x00070006, 0x0 },
  101. { 0x00AAAFFF, 0x000C0000, 0x0 },
  102. { 0x00FFFFFF, 0x0004000A, 0x0 },
  103. { 0x00D75FFF, 0x00090004, 0x0 },
  104. { 0x00C30FFF, 0x000C0000, 0x0 },
  105. { 0x00FFFFFF, 0x00070006, 0x0 },
  106. { 0x00D75FFF, 0x000C0000, 0x0 },
  107. };
  108. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  109. /* Idx NT mV d T mV df db */
  110. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  111. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  112. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  113. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  114. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  115. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  116. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  117. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  118. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  119. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  120. };
  121. /* Skylake H and S */
  122. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  123. { 0x00002016, 0x000000A0, 0x0 },
  124. { 0x00005012, 0x0000009B, 0x0 },
  125. { 0x00007011, 0x00000088, 0x0 },
  126. { 0x80009010, 0x000000C0, 0x1 },
  127. { 0x00002016, 0x0000009B, 0x0 },
  128. { 0x00005012, 0x00000088, 0x0 },
  129. { 0x80007011, 0x000000C0, 0x1 },
  130. { 0x00002016, 0x000000DF, 0x0 },
  131. { 0x80005012, 0x000000C0, 0x1 },
  132. };
  133. /* Skylake U */
  134. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  135. { 0x0000201B, 0x000000A2, 0x0 },
  136. { 0x00005012, 0x00000088, 0x0 },
  137. { 0x80007011, 0x000000CD, 0x1 },
  138. { 0x80009010, 0x000000C0, 0x1 },
  139. { 0x0000201B, 0x0000009D, 0x0 },
  140. { 0x80005012, 0x000000C0, 0x1 },
  141. { 0x80007011, 0x000000C0, 0x1 },
  142. { 0x00002016, 0x00000088, 0x0 },
  143. { 0x80005012, 0x000000C0, 0x1 },
  144. };
  145. /* Skylake Y */
  146. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  147. { 0x00000018, 0x000000A2, 0x0 },
  148. { 0x00005012, 0x00000088, 0x0 },
  149. { 0x80007011, 0x000000CD, 0x3 },
  150. { 0x80009010, 0x000000C0, 0x3 },
  151. { 0x00000018, 0x0000009D, 0x0 },
  152. { 0x80005012, 0x000000C0, 0x3 },
  153. { 0x80007011, 0x000000C0, 0x3 },
  154. { 0x00000018, 0x00000088, 0x0 },
  155. { 0x80005012, 0x000000C0, 0x3 },
  156. };
  157. /*
  158. * Skylake H and S
  159. * eDP 1.4 low vswing translation parameters
  160. */
  161. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  162. { 0x00000018, 0x000000A8, 0x0 },
  163. { 0x00004013, 0x000000A9, 0x0 },
  164. { 0x00007011, 0x000000A2, 0x0 },
  165. { 0x00009010, 0x0000009C, 0x0 },
  166. { 0x00000018, 0x000000A9, 0x0 },
  167. { 0x00006013, 0x000000A2, 0x0 },
  168. { 0x00007011, 0x000000A6, 0x0 },
  169. { 0x00000018, 0x000000AB, 0x0 },
  170. { 0x00007013, 0x0000009F, 0x0 },
  171. { 0x00000018, 0x000000DF, 0x0 },
  172. };
  173. /*
  174. * Skylake U
  175. * eDP 1.4 low vswing translation parameters
  176. */
  177. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  178. { 0x00000018, 0x000000A8, 0x0 },
  179. { 0x00004013, 0x000000A9, 0x0 },
  180. { 0x00007011, 0x000000A2, 0x0 },
  181. { 0x00009010, 0x0000009C, 0x0 },
  182. { 0x00000018, 0x000000A9, 0x0 },
  183. { 0x00006013, 0x000000A2, 0x0 },
  184. { 0x00007011, 0x000000A6, 0x0 },
  185. { 0x00002016, 0x000000AB, 0x0 },
  186. { 0x00005013, 0x0000009F, 0x0 },
  187. { 0x00000018, 0x000000DF, 0x0 },
  188. };
  189. /*
  190. * Skylake Y
  191. * eDP 1.4 low vswing translation parameters
  192. */
  193. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  194. { 0x00000018, 0x000000A8, 0x0 },
  195. { 0x00004013, 0x000000AB, 0x0 },
  196. { 0x00007011, 0x000000A4, 0x0 },
  197. { 0x00009010, 0x000000DF, 0x0 },
  198. { 0x00000018, 0x000000AA, 0x0 },
  199. { 0x00006013, 0x000000A4, 0x0 },
  200. { 0x00007011, 0x0000009D, 0x0 },
  201. { 0x00000018, 0x000000A0, 0x0 },
  202. { 0x00006012, 0x000000DF, 0x0 },
  203. { 0x00000018, 0x0000008A, 0x0 },
  204. };
  205. /* Skylake U, H and S */
  206. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  207. { 0x00000018, 0x000000AC, 0x0 },
  208. { 0x00005012, 0x0000009D, 0x0 },
  209. { 0x00007011, 0x00000088, 0x0 },
  210. { 0x00000018, 0x000000A1, 0x0 },
  211. { 0x00000018, 0x00000098, 0x0 },
  212. { 0x00004013, 0x00000088, 0x0 },
  213. { 0x80006012, 0x000000CD, 0x1 },
  214. { 0x00000018, 0x000000DF, 0x0 },
  215. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  216. { 0x80003015, 0x000000C0, 0x1 },
  217. { 0x80000018, 0x000000C0, 0x1 },
  218. };
  219. /* Skylake Y */
  220. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  221. { 0x00000018, 0x000000A1, 0x0 },
  222. { 0x00005012, 0x000000DF, 0x0 },
  223. { 0x80007011, 0x000000CB, 0x3 },
  224. { 0x00000018, 0x000000A4, 0x0 },
  225. { 0x00000018, 0x0000009D, 0x0 },
  226. { 0x00004013, 0x00000080, 0x0 },
  227. { 0x80006013, 0x000000C0, 0x3 },
  228. { 0x00000018, 0x0000008A, 0x0 },
  229. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  230. { 0x80003015, 0x000000C0, 0x3 },
  231. { 0x80000018, 0x000000C0, 0x3 },
  232. };
  233. struct bxt_ddi_buf_trans {
  234. u32 margin; /* swing value */
  235. u32 scale; /* scale value */
  236. u32 enable; /* scale enable */
  237. u32 deemphasis;
  238. bool default_index; /* true if the entry represents default value */
  239. };
  240. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  241. /* Idx NT mV diff db */
  242. { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
  243. { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  244. { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
  245. { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  246. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  247. { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  248. { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
  249. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  250. { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  251. { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
  252. };
  253. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  254. /* Idx NT mV diff db */
  255. { 26, 0, 0, 128, false }, /* 0: 200 0 */
  256. { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
  257. { 48, 0, 0, 96, false }, /* 2: 200 4 */
  258. { 54, 0, 0, 69, false }, /* 3: 200 6 */
  259. { 32, 0, 0, 128, false }, /* 4: 250 0 */
  260. { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
  261. { 54, 0, 0, 85, false }, /* 6: 250 4 */
  262. { 43, 0, 0, 128, false }, /* 7: 300 0 */
  263. { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
  264. { 48, 0, 0, 128, false }, /* 9: 300 0 */
  265. };
  266. /* BSpec has 2 recommended values - entries 0 and 8.
  267. * Using the entry with higher vswing.
  268. */
  269. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  270. /* Idx NT mV diff db */
  271. { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
  272. { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  273. { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
  274. { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  275. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  276. { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  277. { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
  278. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  279. { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  280. { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
  281. };
  282. enum port intel_ddi_get_encoder_port(struct intel_encoder *encoder)
  283. {
  284. switch (encoder->type) {
  285. case INTEL_OUTPUT_DP_MST:
  286. return enc_to_mst(&encoder->base)->primary->port;
  287. case INTEL_OUTPUT_DP:
  288. case INTEL_OUTPUT_EDP:
  289. case INTEL_OUTPUT_HDMI:
  290. case INTEL_OUTPUT_UNKNOWN:
  291. return enc_to_dig_port(&encoder->base)->port;
  292. case INTEL_OUTPUT_ANALOG:
  293. return PORT_E;
  294. default:
  295. MISSING_CASE(encoder->type);
  296. return PORT_A;
  297. }
  298. }
  299. static const struct ddi_buf_trans *
  300. bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  301. {
  302. if (dev_priv->vbt.edp.low_vswing) {
  303. *n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  304. return bdw_ddi_translations_edp;
  305. } else {
  306. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  307. return bdw_ddi_translations_dp;
  308. }
  309. }
  310. static const struct ddi_buf_trans *
  311. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  312. {
  313. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  314. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  315. return skl_y_ddi_translations_dp;
  316. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  317. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  318. return skl_u_ddi_translations_dp;
  319. } else {
  320. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  321. return skl_ddi_translations_dp;
  322. }
  323. }
  324. static const struct ddi_buf_trans *
  325. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  326. {
  327. if (dev_priv->vbt.edp.low_vswing) {
  328. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  329. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  330. return skl_y_ddi_translations_edp;
  331. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  332. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  333. return skl_u_ddi_translations_edp;
  334. } else {
  335. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  336. return skl_ddi_translations_edp;
  337. }
  338. }
  339. return skl_get_buf_trans_dp(dev_priv, n_entries);
  340. }
  341. static const struct ddi_buf_trans *
  342. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  343. {
  344. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  345. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  346. return skl_y_ddi_translations_hdmi;
  347. } else {
  348. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  349. return skl_ddi_translations_hdmi;
  350. }
  351. }
  352. static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
  353. {
  354. int n_hdmi_entries;
  355. int hdmi_level;
  356. int hdmi_default_entry;
  357. hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  358. if (IS_BROXTON(dev_priv))
  359. return hdmi_level;
  360. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  361. skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
  362. hdmi_default_entry = 8;
  363. } else if (IS_BROADWELL(dev_priv)) {
  364. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  365. hdmi_default_entry = 7;
  366. } else if (IS_HASWELL(dev_priv)) {
  367. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  368. hdmi_default_entry = 6;
  369. } else {
  370. WARN(1, "ddi translation table missing\n");
  371. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  372. hdmi_default_entry = 7;
  373. }
  374. /* Choose a good default if VBT is badly populated */
  375. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  376. hdmi_level >= n_hdmi_entries)
  377. hdmi_level = hdmi_default_entry;
  378. return hdmi_level;
  379. }
  380. /*
  381. * Starting with Haswell, DDI port buffers must be programmed with correct
  382. * values in advance. This function programs the correct values for
  383. * DP/eDP/FDI use cases.
  384. */
  385. void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder)
  386. {
  387. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  388. u32 iboost_bit = 0;
  389. int i, n_dp_entries, n_edp_entries, size;
  390. enum port port = intel_ddi_get_encoder_port(encoder);
  391. const struct ddi_buf_trans *ddi_translations_fdi;
  392. const struct ddi_buf_trans *ddi_translations_dp;
  393. const struct ddi_buf_trans *ddi_translations_edp;
  394. const struct ddi_buf_trans *ddi_translations;
  395. if (IS_BROXTON(dev_priv))
  396. return;
  397. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  398. ddi_translations_fdi = NULL;
  399. ddi_translations_dp =
  400. skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
  401. ddi_translations_edp =
  402. skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
  403. /* If we're boosting the current, set bit 31 of trans1 */
  404. if (dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  405. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  406. if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
  407. port != PORT_A && port != PORT_E &&
  408. n_edp_entries > 9))
  409. n_edp_entries = 9;
  410. } else if (IS_BROADWELL(dev_priv)) {
  411. ddi_translations_fdi = bdw_ddi_translations_fdi;
  412. ddi_translations_dp = bdw_ddi_translations_dp;
  413. ddi_translations_edp = bdw_get_buf_trans_edp(dev_priv, &n_edp_entries);
  414. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  415. } else if (IS_HASWELL(dev_priv)) {
  416. ddi_translations_fdi = hsw_ddi_translations_fdi;
  417. ddi_translations_dp = hsw_ddi_translations_dp;
  418. ddi_translations_edp = hsw_ddi_translations_dp;
  419. n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  420. } else {
  421. WARN(1, "ddi translation table missing\n");
  422. ddi_translations_edp = bdw_ddi_translations_dp;
  423. ddi_translations_fdi = bdw_ddi_translations_fdi;
  424. ddi_translations_dp = bdw_ddi_translations_dp;
  425. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  426. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  427. }
  428. switch (encoder->type) {
  429. case INTEL_OUTPUT_EDP:
  430. ddi_translations = ddi_translations_edp;
  431. size = n_edp_entries;
  432. break;
  433. case INTEL_OUTPUT_DP:
  434. ddi_translations = ddi_translations_dp;
  435. size = n_dp_entries;
  436. break;
  437. case INTEL_OUTPUT_ANALOG:
  438. ddi_translations = ddi_translations_fdi;
  439. size = n_dp_entries;
  440. break;
  441. default:
  442. BUG();
  443. }
  444. for (i = 0; i < size; i++) {
  445. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  446. ddi_translations[i].trans1 | iboost_bit);
  447. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  448. ddi_translations[i].trans2);
  449. }
  450. }
  451. /*
  452. * Starting with Haswell, DDI port buffers must be programmed with correct
  453. * values in advance. This function programs the correct values for
  454. * HDMI/DVI use cases.
  455. */
  456. static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder)
  457. {
  458. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  459. u32 iboost_bit = 0;
  460. int n_hdmi_entries, hdmi_level;
  461. enum port port = intel_ddi_get_encoder_port(encoder);
  462. const struct ddi_buf_trans *ddi_translations_hdmi;
  463. if (IS_BROXTON(dev_priv))
  464. return;
  465. hdmi_level = intel_ddi_hdmi_level(dev_priv, port);
  466. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  467. ddi_translations_hdmi = skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
  468. /* If we're boosting the current, set bit 31 of trans1 */
  469. if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
  470. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  471. } else if (IS_BROADWELL(dev_priv)) {
  472. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  473. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  474. } else if (IS_HASWELL(dev_priv)) {
  475. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  476. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  477. } else {
  478. WARN(1, "ddi translation table missing\n");
  479. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  480. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  481. }
  482. /* Entry 9 is for HDMI: */
  483. I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
  484. ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
  485. I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
  486. ddi_translations_hdmi[hdmi_level].trans2);
  487. }
  488. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  489. enum port port)
  490. {
  491. i915_reg_t reg = DDI_BUF_CTL(port);
  492. int i;
  493. for (i = 0; i < 16; i++) {
  494. udelay(1);
  495. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  496. return;
  497. }
  498. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  499. }
  500. static uint32_t hsw_pll_to_ddi_pll_sel(struct intel_shared_dpll *pll)
  501. {
  502. switch (pll->id) {
  503. case DPLL_ID_WRPLL1:
  504. return PORT_CLK_SEL_WRPLL1;
  505. case DPLL_ID_WRPLL2:
  506. return PORT_CLK_SEL_WRPLL2;
  507. case DPLL_ID_SPLL:
  508. return PORT_CLK_SEL_SPLL;
  509. case DPLL_ID_LCPLL_810:
  510. return PORT_CLK_SEL_LCPLL_810;
  511. case DPLL_ID_LCPLL_1350:
  512. return PORT_CLK_SEL_LCPLL_1350;
  513. case DPLL_ID_LCPLL_2700:
  514. return PORT_CLK_SEL_LCPLL_2700;
  515. default:
  516. MISSING_CASE(pll->id);
  517. return PORT_CLK_SEL_NONE;
  518. }
  519. }
  520. /* Starting with Haswell, different DDI ports can work in FDI mode for
  521. * connection to the PCH-located connectors. For this, it is necessary to train
  522. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  523. *
  524. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  525. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  526. * DDI A (which is used for eDP)
  527. */
  528. void hsw_fdi_link_train(struct drm_crtc *crtc)
  529. {
  530. struct drm_device *dev = crtc->dev;
  531. struct drm_i915_private *dev_priv = to_i915(dev);
  532. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  533. struct intel_encoder *encoder;
  534. u32 temp, i, rx_ctl_val, ddi_pll_sel;
  535. for_each_encoder_on_crtc(dev, crtc, encoder) {
  536. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  537. intel_prepare_dp_ddi_buffers(encoder);
  538. }
  539. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  540. * mode set "sequence for CRT port" document:
  541. * - TP1 to TP2 time with the default value
  542. * - FDI delay to 90h
  543. *
  544. * WaFDIAutoLinkSetTimingOverrride:hsw
  545. */
  546. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  547. FDI_RX_PWRDN_LANE0_VAL(2) |
  548. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  549. /* Enable the PCH Receiver FDI PLL */
  550. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  551. FDI_RX_PLL_ENABLE |
  552. FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  553. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  554. POSTING_READ(FDI_RX_CTL(PIPE_A));
  555. udelay(220);
  556. /* Switch from Rawclk to PCDclk */
  557. rx_ctl_val |= FDI_PCDCLK;
  558. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  559. /* Configure Port Clock Select */
  560. ddi_pll_sel = hsw_pll_to_ddi_pll_sel(intel_crtc->config->shared_dpll);
  561. I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel);
  562. WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL);
  563. /* Start the training iterating through available voltages and emphasis,
  564. * testing each value twice. */
  565. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  566. /* Configure DP_TP_CTL with auto-training */
  567. I915_WRITE(DP_TP_CTL(PORT_E),
  568. DP_TP_CTL_FDI_AUTOTRAIN |
  569. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  570. DP_TP_CTL_LINK_TRAIN_PAT1 |
  571. DP_TP_CTL_ENABLE);
  572. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  573. * DDI E does not support port reversal, the functionality is
  574. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  575. * port reversal bit */
  576. I915_WRITE(DDI_BUF_CTL(PORT_E),
  577. DDI_BUF_CTL_ENABLE |
  578. ((intel_crtc->config->fdi_lanes - 1) << 1) |
  579. DDI_BUF_TRANS_SELECT(i / 2));
  580. POSTING_READ(DDI_BUF_CTL(PORT_E));
  581. udelay(600);
  582. /* Program PCH FDI Receiver TU */
  583. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  584. /* Enable PCH FDI Receiver with auto-training */
  585. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  586. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  587. POSTING_READ(FDI_RX_CTL(PIPE_A));
  588. /* Wait for FDI receiver lane calibration */
  589. udelay(30);
  590. /* Unset FDI_RX_MISC pwrdn lanes */
  591. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  592. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  593. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  594. POSTING_READ(FDI_RX_MISC(PIPE_A));
  595. /* Wait for FDI auto training time */
  596. udelay(5);
  597. temp = I915_READ(DP_TP_STATUS(PORT_E));
  598. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  599. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  600. break;
  601. }
  602. /*
  603. * Leave things enabled even if we failed to train FDI.
  604. * Results in less fireworks from the state checker.
  605. */
  606. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  607. DRM_ERROR("FDI link training failed!\n");
  608. break;
  609. }
  610. rx_ctl_val &= ~FDI_RX_ENABLE;
  611. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  612. POSTING_READ(FDI_RX_CTL(PIPE_A));
  613. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  614. temp &= ~DDI_BUF_CTL_ENABLE;
  615. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  616. POSTING_READ(DDI_BUF_CTL(PORT_E));
  617. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  618. temp = I915_READ(DP_TP_CTL(PORT_E));
  619. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  620. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  621. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  622. POSTING_READ(DP_TP_CTL(PORT_E));
  623. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  624. /* Reset FDI_RX_MISC pwrdn lanes */
  625. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  626. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  627. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  628. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  629. POSTING_READ(FDI_RX_MISC(PIPE_A));
  630. }
  631. /* Enable normal pixel sending for FDI */
  632. I915_WRITE(DP_TP_CTL(PORT_E),
  633. DP_TP_CTL_FDI_AUTOTRAIN |
  634. DP_TP_CTL_LINK_TRAIN_NORMAL |
  635. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  636. DP_TP_CTL_ENABLE);
  637. }
  638. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  639. {
  640. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  641. struct intel_digital_port *intel_dig_port =
  642. enc_to_dig_port(&encoder->base);
  643. intel_dp->DP = intel_dig_port->saved_port_bits |
  644. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  645. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  646. }
  647. static struct intel_encoder *
  648. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  649. {
  650. struct drm_device *dev = crtc->dev;
  651. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  652. struct intel_encoder *intel_encoder, *ret = NULL;
  653. int num_encoders = 0;
  654. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  655. ret = intel_encoder;
  656. num_encoders++;
  657. }
  658. if (num_encoders != 1)
  659. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  660. pipe_name(intel_crtc->pipe));
  661. BUG_ON(ret == NULL);
  662. return ret;
  663. }
  664. struct intel_encoder *
  665. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  666. {
  667. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  668. struct intel_encoder *ret = NULL;
  669. struct drm_atomic_state *state;
  670. struct drm_connector *connector;
  671. struct drm_connector_state *connector_state;
  672. int num_encoders = 0;
  673. int i;
  674. state = crtc_state->base.state;
  675. for_each_connector_in_state(state, connector, connector_state, i) {
  676. if (connector_state->crtc != crtc_state->base.crtc)
  677. continue;
  678. ret = to_intel_encoder(connector_state->best_encoder);
  679. num_encoders++;
  680. }
  681. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  682. pipe_name(crtc->pipe));
  683. BUG_ON(ret == NULL);
  684. return ret;
  685. }
  686. #define LC_FREQ 2700
  687. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  688. i915_reg_t reg)
  689. {
  690. int refclk = LC_FREQ;
  691. int n, p, r;
  692. u32 wrpll;
  693. wrpll = I915_READ(reg);
  694. switch (wrpll & WRPLL_PLL_REF_MASK) {
  695. case WRPLL_PLL_SSC:
  696. case WRPLL_PLL_NON_SSC:
  697. /*
  698. * We could calculate spread here, but our checking
  699. * code only cares about 5% accuracy, and spread is a max of
  700. * 0.5% downspread.
  701. */
  702. refclk = 135;
  703. break;
  704. case WRPLL_PLL_LCPLL:
  705. refclk = LC_FREQ;
  706. break;
  707. default:
  708. WARN(1, "bad wrpll refclk\n");
  709. return 0;
  710. }
  711. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  712. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  713. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  714. /* Convert to KHz, p & r have a fixed point portion */
  715. return (refclk * n * 100) / (p * r);
  716. }
  717. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  718. uint32_t dpll)
  719. {
  720. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  721. uint32_t cfgcr1_val, cfgcr2_val;
  722. uint32_t p0, p1, p2, dco_freq;
  723. cfgcr1_reg = DPLL_CFGCR1(dpll);
  724. cfgcr2_reg = DPLL_CFGCR2(dpll);
  725. cfgcr1_val = I915_READ(cfgcr1_reg);
  726. cfgcr2_val = I915_READ(cfgcr2_reg);
  727. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  728. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  729. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  730. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  731. else
  732. p1 = 1;
  733. switch (p0) {
  734. case DPLL_CFGCR2_PDIV_1:
  735. p0 = 1;
  736. break;
  737. case DPLL_CFGCR2_PDIV_2:
  738. p0 = 2;
  739. break;
  740. case DPLL_CFGCR2_PDIV_3:
  741. p0 = 3;
  742. break;
  743. case DPLL_CFGCR2_PDIV_7:
  744. p0 = 7;
  745. break;
  746. }
  747. switch (p2) {
  748. case DPLL_CFGCR2_KDIV_5:
  749. p2 = 5;
  750. break;
  751. case DPLL_CFGCR2_KDIV_2:
  752. p2 = 2;
  753. break;
  754. case DPLL_CFGCR2_KDIV_3:
  755. p2 = 3;
  756. break;
  757. case DPLL_CFGCR2_KDIV_1:
  758. p2 = 1;
  759. break;
  760. }
  761. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  762. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  763. 1000) / 0x8000;
  764. return dco_freq / (p0 * p1 * p2 * 5);
  765. }
  766. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  767. {
  768. int dotclock;
  769. if (pipe_config->has_pch_encoder)
  770. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  771. &pipe_config->fdi_m_n);
  772. else if (intel_crtc_has_dp_encoder(pipe_config))
  773. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  774. &pipe_config->dp_m_n);
  775. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  776. dotclock = pipe_config->port_clock * 2 / 3;
  777. else
  778. dotclock = pipe_config->port_clock;
  779. if (pipe_config->pixel_multiplier)
  780. dotclock /= pipe_config->pixel_multiplier;
  781. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  782. }
  783. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  784. struct intel_crtc_state *pipe_config)
  785. {
  786. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  787. int link_clock = 0;
  788. uint32_t dpll_ctl1, dpll;
  789. dpll = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  790. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  791. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  792. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  793. } else {
  794. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
  795. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
  796. switch (link_clock) {
  797. case DPLL_CTRL1_LINK_RATE_810:
  798. link_clock = 81000;
  799. break;
  800. case DPLL_CTRL1_LINK_RATE_1080:
  801. link_clock = 108000;
  802. break;
  803. case DPLL_CTRL1_LINK_RATE_1350:
  804. link_clock = 135000;
  805. break;
  806. case DPLL_CTRL1_LINK_RATE_1620:
  807. link_clock = 162000;
  808. break;
  809. case DPLL_CTRL1_LINK_RATE_2160:
  810. link_clock = 216000;
  811. break;
  812. case DPLL_CTRL1_LINK_RATE_2700:
  813. link_clock = 270000;
  814. break;
  815. default:
  816. WARN(1, "Unsupported link rate\n");
  817. break;
  818. }
  819. link_clock *= 2;
  820. }
  821. pipe_config->port_clock = link_clock;
  822. ddi_dotclock_get(pipe_config);
  823. }
  824. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  825. struct intel_crtc_state *pipe_config)
  826. {
  827. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  828. int link_clock = 0;
  829. u32 val, pll;
  830. val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll);
  831. switch (val & PORT_CLK_SEL_MASK) {
  832. case PORT_CLK_SEL_LCPLL_810:
  833. link_clock = 81000;
  834. break;
  835. case PORT_CLK_SEL_LCPLL_1350:
  836. link_clock = 135000;
  837. break;
  838. case PORT_CLK_SEL_LCPLL_2700:
  839. link_clock = 270000;
  840. break;
  841. case PORT_CLK_SEL_WRPLL1:
  842. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  843. break;
  844. case PORT_CLK_SEL_WRPLL2:
  845. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  846. break;
  847. case PORT_CLK_SEL_SPLL:
  848. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  849. if (pll == SPLL_PLL_FREQ_810MHz)
  850. link_clock = 81000;
  851. else if (pll == SPLL_PLL_FREQ_1350MHz)
  852. link_clock = 135000;
  853. else if (pll == SPLL_PLL_FREQ_2700MHz)
  854. link_clock = 270000;
  855. else {
  856. WARN(1, "bad spll freq\n");
  857. return;
  858. }
  859. break;
  860. default:
  861. WARN(1, "bad port clock sel\n");
  862. return;
  863. }
  864. pipe_config->port_clock = link_clock * 2;
  865. ddi_dotclock_get(pipe_config);
  866. }
  867. static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
  868. enum intel_dpll_id dpll)
  869. {
  870. struct intel_shared_dpll *pll;
  871. struct intel_dpll_hw_state *state;
  872. struct dpll clock;
  873. /* For DDI ports we always use a shared PLL. */
  874. if (WARN_ON(dpll == DPLL_ID_PRIVATE))
  875. return 0;
  876. pll = &dev_priv->shared_dplls[dpll];
  877. state = &pll->config.hw_state;
  878. clock.m1 = 2;
  879. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  880. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  881. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  882. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  883. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  884. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  885. return chv_calc_dpll_params(100000, &clock);
  886. }
  887. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  888. struct intel_crtc_state *pipe_config)
  889. {
  890. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  891. enum port port = intel_ddi_get_encoder_port(encoder);
  892. uint32_t dpll = port;
  893. pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
  894. ddi_dotclock_get(pipe_config);
  895. }
  896. void intel_ddi_clock_get(struct intel_encoder *encoder,
  897. struct intel_crtc_state *pipe_config)
  898. {
  899. struct drm_device *dev = encoder->base.dev;
  900. if (INTEL_INFO(dev)->gen <= 8)
  901. hsw_ddi_clock_get(encoder, pipe_config);
  902. else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  903. skl_ddi_clock_get(encoder, pipe_config);
  904. else if (IS_BROXTON(dev))
  905. bxt_ddi_clock_get(encoder, pipe_config);
  906. }
  907. static bool
  908. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  909. struct intel_crtc_state *crtc_state,
  910. struct intel_encoder *intel_encoder)
  911. {
  912. struct intel_shared_dpll *pll;
  913. pll = intel_get_shared_dpll(intel_crtc, crtc_state,
  914. intel_encoder);
  915. if (!pll)
  916. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  917. pipe_name(intel_crtc->pipe));
  918. return pll;
  919. }
  920. static bool
  921. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  922. struct intel_crtc_state *crtc_state,
  923. struct intel_encoder *intel_encoder)
  924. {
  925. struct intel_shared_dpll *pll;
  926. pll = intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
  927. if (pll == NULL) {
  928. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  929. pipe_name(intel_crtc->pipe));
  930. return false;
  931. }
  932. return true;
  933. }
  934. static bool
  935. bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
  936. struct intel_crtc_state *crtc_state,
  937. struct intel_encoder *intel_encoder)
  938. {
  939. return !!intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
  940. }
  941. /*
  942. * Tries to find a *shared* PLL for the CRTC and store it in
  943. * intel_crtc->ddi_pll_sel.
  944. *
  945. * For private DPLLs, compute_config() should do the selection for us. This
  946. * function should be folded into compute_config() eventually.
  947. */
  948. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
  949. struct intel_crtc_state *crtc_state)
  950. {
  951. struct drm_device *dev = intel_crtc->base.dev;
  952. struct intel_encoder *intel_encoder =
  953. intel_ddi_get_crtc_new_encoder(crtc_state);
  954. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  955. return skl_ddi_pll_select(intel_crtc, crtc_state,
  956. intel_encoder);
  957. else if (IS_BROXTON(dev))
  958. return bxt_ddi_pll_select(intel_crtc, crtc_state,
  959. intel_encoder);
  960. else
  961. return hsw_ddi_pll_select(intel_crtc, crtc_state,
  962. intel_encoder);
  963. }
  964. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  965. {
  966. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  968. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  969. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  970. int type = intel_encoder->type;
  971. uint32_t temp;
  972. if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  973. WARN_ON(transcoder_is_dsi(cpu_transcoder));
  974. temp = TRANS_MSA_SYNC_CLK;
  975. switch (intel_crtc->config->pipe_bpp) {
  976. case 18:
  977. temp |= TRANS_MSA_6_BPC;
  978. break;
  979. case 24:
  980. temp |= TRANS_MSA_8_BPC;
  981. break;
  982. case 30:
  983. temp |= TRANS_MSA_10_BPC;
  984. break;
  985. case 36:
  986. temp |= TRANS_MSA_12_BPC;
  987. break;
  988. default:
  989. BUG();
  990. }
  991. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  992. }
  993. }
  994. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  995. {
  996. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  997. struct drm_device *dev = crtc->dev;
  998. struct drm_i915_private *dev_priv = to_i915(dev);
  999. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1000. uint32_t temp;
  1001. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1002. if (state == true)
  1003. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1004. else
  1005. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1006. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1007. }
  1008. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  1009. {
  1010. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1011. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1012. struct drm_device *dev = crtc->dev;
  1013. struct drm_i915_private *dev_priv = to_i915(dev);
  1014. enum pipe pipe = intel_crtc->pipe;
  1015. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1016. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1017. int type = intel_encoder->type;
  1018. uint32_t temp;
  1019. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1020. temp = TRANS_DDI_FUNC_ENABLE;
  1021. temp |= TRANS_DDI_SELECT_PORT(port);
  1022. switch (intel_crtc->config->pipe_bpp) {
  1023. case 18:
  1024. temp |= TRANS_DDI_BPC_6;
  1025. break;
  1026. case 24:
  1027. temp |= TRANS_DDI_BPC_8;
  1028. break;
  1029. case 30:
  1030. temp |= TRANS_DDI_BPC_10;
  1031. break;
  1032. case 36:
  1033. temp |= TRANS_DDI_BPC_12;
  1034. break;
  1035. default:
  1036. BUG();
  1037. }
  1038. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1039. temp |= TRANS_DDI_PVSYNC;
  1040. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1041. temp |= TRANS_DDI_PHSYNC;
  1042. if (cpu_transcoder == TRANSCODER_EDP) {
  1043. switch (pipe) {
  1044. case PIPE_A:
  1045. /* On Haswell, can only use the always-on power well for
  1046. * eDP when not using the panel fitter, and when not
  1047. * using motion blur mitigation (which we don't
  1048. * support). */
  1049. if (IS_HASWELL(dev) &&
  1050. (intel_crtc->config->pch_pfit.enabled ||
  1051. intel_crtc->config->pch_pfit.force_thru))
  1052. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1053. else
  1054. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1055. break;
  1056. case PIPE_B:
  1057. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1058. break;
  1059. case PIPE_C:
  1060. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1061. break;
  1062. default:
  1063. BUG();
  1064. break;
  1065. }
  1066. }
  1067. if (type == INTEL_OUTPUT_HDMI) {
  1068. if (intel_crtc->config->has_hdmi_sink)
  1069. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1070. else
  1071. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1072. } else if (type == INTEL_OUTPUT_ANALOG) {
  1073. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1074. temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
  1075. } else if (type == INTEL_OUTPUT_DP ||
  1076. type == INTEL_OUTPUT_EDP) {
  1077. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1078. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1079. } else if (type == INTEL_OUTPUT_DP_MST) {
  1080. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1081. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1082. } else {
  1083. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1084. intel_encoder->type, pipe_name(pipe));
  1085. }
  1086. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1087. }
  1088. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1089. enum transcoder cpu_transcoder)
  1090. {
  1091. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1092. uint32_t val = I915_READ(reg);
  1093. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1094. val |= TRANS_DDI_PORT_NONE;
  1095. I915_WRITE(reg, val);
  1096. }
  1097. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1098. {
  1099. struct drm_device *dev = intel_connector->base.dev;
  1100. struct drm_i915_private *dev_priv = to_i915(dev);
  1101. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1102. int type = intel_connector->base.connector_type;
  1103. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1104. enum pipe pipe = 0;
  1105. enum transcoder cpu_transcoder;
  1106. enum intel_display_power_domain power_domain;
  1107. uint32_t tmp;
  1108. bool ret;
  1109. power_domain = intel_display_port_power_domain(intel_encoder);
  1110. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1111. return false;
  1112. if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
  1113. ret = false;
  1114. goto out;
  1115. }
  1116. if (port == PORT_A)
  1117. cpu_transcoder = TRANSCODER_EDP;
  1118. else
  1119. cpu_transcoder = (enum transcoder) pipe;
  1120. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1121. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1122. case TRANS_DDI_MODE_SELECT_HDMI:
  1123. case TRANS_DDI_MODE_SELECT_DVI:
  1124. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1125. break;
  1126. case TRANS_DDI_MODE_SELECT_DP_SST:
  1127. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1128. type == DRM_MODE_CONNECTOR_DisplayPort;
  1129. break;
  1130. case TRANS_DDI_MODE_SELECT_DP_MST:
  1131. /* if the transcoder is in MST state then
  1132. * connector isn't connected */
  1133. ret = false;
  1134. break;
  1135. case TRANS_DDI_MODE_SELECT_FDI:
  1136. ret = type == DRM_MODE_CONNECTOR_VGA;
  1137. break;
  1138. default:
  1139. ret = false;
  1140. break;
  1141. }
  1142. out:
  1143. intel_display_power_put(dev_priv, power_domain);
  1144. return ret;
  1145. }
  1146. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1147. enum pipe *pipe)
  1148. {
  1149. struct drm_device *dev = encoder->base.dev;
  1150. struct drm_i915_private *dev_priv = to_i915(dev);
  1151. enum port port = intel_ddi_get_encoder_port(encoder);
  1152. enum intel_display_power_domain power_domain;
  1153. u32 tmp;
  1154. int i;
  1155. bool ret;
  1156. power_domain = intel_display_port_power_domain(encoder);
  1157. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1158. return false;
  1159. ret = false;
  1160. tmp = I915_READ(DDI_BUF_CTL(port));
  1161. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1162. goto out;
  1163. if (port == PORT_A) {
  1164. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1165. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1166. case TRANS_DDI_EDP_INPUT_A_ON:
  1167. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1168. *pipe = PIPE_A;
  1169. break;
  1170. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1171. *pipe = PIPE_B;
  1172. break;
  1173. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1174. *pipe = PIPE_C;
  1175. break;
  1176. }
  1177. ret = true;
  1178. goto out;
  1179. }
  1180. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1181. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1182. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1183. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1184. TRANS_DDI_MODE_SELECT_DP_MST)
  1185. goto out;
  1186. *pipe = i;
  1187. ret = true;
  1188. goto out;
  1189. }
  1190. }
  1191. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1192. out:
  1193. if (ret && IS_BROXTON(dev_priv)) {
  1194. tmp = I915_READ(BXT_PHY_CTL(port));
  1195. if ((tmp & (BXT_PHY_LANE_POWERDOWN_ACK |
  1196. BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
  1197. DRM_ERROR("Port %c enabled but PHY powered down? "
  1198. "(PHY_CTL %08x)\n", port_name(port), tmp);
  1199. }
  1200. intel_display_power_put(dev_priv, power_domain);
  1201. return ret;
  1202. }
  1203. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1204. {
  1205. struct drm_crtc *crtc = &intel_crtc->base;
  1206. struct drm_device *dev = crtc->dev;
  1207. struct drm_i915_private *dev_priv = to_i915(dev);
  1208. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1209. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1210. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1211. if (cpu_transcoder != TRANSCODER_EDP)
  1212. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1213. TRANS_CLK_SEL_PORT(port));
  1214. }
  1215. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1216. {
  1217. struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
  1218. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1219. if (cpu_transcoder != TRANSCODER_EDP)
  1220. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1221. TRANS_CLK_SEL_DISABLED);
  1222. }
  1223. static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1224. enum port port, uint8_t iboost)
  1225. {
  1226. u32 tmp;
  1227. tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1228. tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
  1229. if (iboost)
  1230. tmp |= iboost << BALANCE_LEG_SHIFT(port);
  1231. else
  1232. tmp |= BALANCE_LEG_DISABLE(port);
  1233. I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
  1234. }
  1235. static void skl_ddi_set_iboost(struct intel_encoder *encoder, u32 level)
  1236. {
  1237. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  1238. struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
  1239. enum port port = intel_dig_port->port;
  1240. int type = encoder->type;
  1241. const struct ddi_buf_trans *ddi_translations;
  1242. uint8_t iboost;
  1243. uint8_t dp_iboost, hdmi_iboost;
  1244. int n_entries;
  1245. /* VBT may override standard boost values */
  1246. dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1247. hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1248. if (type == INTEL_OUTPUT_DP) {
  1249. if (dp_iboost) {
  1250. iboost = dp_iboost;
  1251. } else {
  1252. ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
  1253. iboost = ddi_translations[level].i_boost;
  1254. }
  1255. } else if (type == INTEL_OUTPUT_EDP) {
  1256. if (dp_iboost) {
  1257. iboost = dp_iboost;
  1258. } else {
  1259. ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
  1260. if (WARN_ON(port != PORT_A &&
  1261. port != PORT_E && n_entries > 9))
  1262. n_entries = 9;
  1263. iboost = ddi_translations[level].i_boost;
  1264. }
  1265. } else if (type == INTEL_OUTPUT_HDMI) {
  1266. if (hdmi_iboost) {
  1267. iboost = hdmi_iboost;
  1268. } else {
  1269. ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1270. iboost = ddi_translations[level].i_boost;
  1271. }
  1272. } else {
  1273. return;
  1274. }
  1275. /* Make sure that the requested I_boost is valid */
  1276. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1277. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1278. return;
  1279. }
  1280. _skl_ddi_set_iboost(dev_priv, port, iboost);
  1281. if (port == PORT_A && intel_dig_port->max_lanes == 4)
  1282. _skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
  1283. }
  1284. static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
  1285. u32 level, enum port port, int type)
  1286. {
  1287. const struct bxt_ddi_buf_trans *ddi_translations;
  1288. u32 n_entries, i;
  1289. uint32_t val;
  1290. if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
  1291. n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  1292. ddi_translations = bxt_ddi_translations_edp;
  1293. } else if (type == INTEL_OUTPUT_DP
  1294. || type == INTEL_OUTPUT_EDP) {
  1295. n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  1296. ddi_translations = bxt_ddi_translations_dp;
  1297. } else if (type == INTEL_OUTPUT_HDMI) {
  1298. n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  1299. ddi_translations = bxt_ddi_translations_hdmi;
  1300. } else {
  1301. DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
  1302. type);
  1303. return;
  1304. }
  1305. /* Check if default value has to be used */
  1306. if (level >= n_entries ||
  1307. (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
  1308. for (i = 0; i < n_entries; i++) {
  1309. if (ddi_translations[i].default_index) {
  1310. level = i;
  1311. break;
  1312. }
  1313. }
  1314. }
  1315. /*
  1316. * While we write to the group register to program all lanes at once we
  1317. * can read only lane registers and we pick lanes 0/1 for that.
  1318. */
  1319. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1320. val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
  1321. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1322. val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
  1323. val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
  1324. val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
  1325. ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
  1326. I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
  1327. val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
  1328. val &= ~SCALE_DCOMP_METHOD;
  1329. if (ddi_translations[level].enable)
  1330. val |= SCALE_DCOMP_METHOD;
  1331. if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
  1332. DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
  1333. I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
  1334. val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
  1335. val &= ~DE_EMPHASIS;
  1336. val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
  1337. I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
  1338. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1339. val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
  1340. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1341. }
  1342. static uint32_t translate_signal_level(int signal_levels)
  1343. {
  1344. uint32_t level;
  1345. switch (signal_levels) {
  1346. default:
  1347. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1348. signal_levels);
  1349. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1350. level = 0;
  1351. break;
  1352. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1353. level = 1;
  1354. break;
  1355. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1356. level = 2;
  1357. break;
  1358. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
  1359. level = 3;
  1360. break;
  1361. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1362. level = 4;
  1363. break;
  1364. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1365. level = 5;
  1366. break;
  1367. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1368. level = 6;
  1369. break;
  1370. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1371. level = 7;
  1372. break;
  1373. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1374. level = 8;
  1375. break;
  1376. case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1377. level = 9;
  1378. break;
  1379. }
  1380. return level;
  1381. }
  1382. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1383. {
  1384. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1385. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1386. struct intel_encoder *encoder = &dport->base;
  1387. uint8_t train_set = intel_dp->train_set[0];
  1388. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1389. DP_TRAIN_PRE_EMPHASIS_MASK);
  1390. enum port port = dport->port;
  1391. uint32_t level;
  1392. level = translate_signal_level(signal_levels);
  1393. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1394. skl_ddi_set_iboost(encoder, level);
  1395. else if (IS_BROXTON(dev_priv))
  1396. bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
  1397. return DDI_BUF_TRANS_SELECT(level);
  1398. }
  1399. void intel_ddi_clk_select(struct intel_encoder *encoder,
  1400. struct intel_shared_dpll *pll)
  1401. {
  1402. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1403. enum port port = intel_ddi_get_encoder_port(encoder);
  1404. if (WARN_ON(!pll))
  1405. return;
  1406. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1407. uint32_t val;
  1408. /* DDI -> PLL mapping */
  1409. val = I915_READ(DPLL_CTRL2);
  1410. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1411. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1412. val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->id, port) |
  1413. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1414. I915_WRITE(DPLL_CTRL2, val);
  1415. } else if (INTEL_INFO(dev_priv)->gen < 9) {
  1416. I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
  1417. }
  1418. }
  1419. static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder,
  1420. int link_rate, uint32_t lane_count,
  1421. struct intel_shared_dpll *pll,
  1422. bool link_mst)
  1423. {
  1424. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1425. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1426. enum port port = intel_ddi_get_encoder_port(encoder);
  1427. intel_dp_set_link_params(intel_dp, link_rate, lane_count,
  1428. link_mst);
  1429. if (encoder->type == INTEL_OUTPUT_EDP)
  1430. intel_edp_panel_on(intel_dp);
  1431. intel_ddi_clk_select(encoder, pll);
  1432. intel_prepare_dp_ddi_buffers(encoder);
  1433. intel_ddi_init_dp_buf_reg(encoder);
  1434. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1435. intel_dp_start_link_train(intel_dp);
  1436. if (port != PORT_A || INTEL_GEN(dev_priv) >= 9)
  1437. intel_dp_stop_link_train(intel_dp);
  1438. }
  1439. static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder,
  1440. bool has_hdmi_sink,
  1441. struct drm_display_mode *adjusted_mode,
  1442. struct intel_shared_dpll *pll)
  1443. {
  1444. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1445. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1446. struct drm_encoder *drm_encoder = &encoder->base;
  1447. enum port port = intel_ddi_get_encoder_port(encoder);
  1448. int level = intel_ddi_hdmi_level(dev_priv, port);
  1449. intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
  1450. intel_ddi_clk_select(encoder, pll);
  1451. intel_prepare_hdmi_ddi_buffers(encoder);
  1452. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1453. skl_ddi_set_iboost(encoder, level);
  1454. else if (IS_BROXTON(dev_priv))
  1455. bxt_ddi_vswing_sequence(dev_priv, level, port,
  1456. INTEL_OUTPUT_HDMI);
  1457. intel_hdmi->set_infoframes(drm_encoder,
  1458. has_hdmi_sink,
  1459. adjusted_mode);
  1460. }
  1461. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder,
  1462. struct intel_crtc_state *pipe_config,
  1463. struct drm_connector_state *conn_state)
  1464. {
  1465. struct drm_encoder *encoder = &intel_encoder->base;
  1466. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  1467. int type = intel_encoder->type;
  1468. if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
  1469. intel_ddi_pre_enable_dp(intel_encoder,
  1470. crtc->config->port_clock,
  1471. crtc->config->lane_count,
  1472. crtc->config->shared_dpll,
  1473. intel_crtc_has_type(crtc->config,
  1474. INTEL_OUTPUT_DP_MST));
  1475. }
  1476. if (type == INTEL_OUTPUT_HDMI) {
  1477. intel_ddi_pre_enable_hdmi(intel_encoder,
  1478. crtc->config->has_hdmi_sink,
  1479. &crtc->config->base.adjusted_mode,
  1480. crtc->config->shared_dpll);
  1481. }
  1482. }
  1483. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder,
  1484. struct intel_crtc_state *old_crtc_state,
  1485. struct drm_connector_state *old_conn_state)
  1486. {
  1487. struct drm_encoder *encoder = &intel_encoder->base;
  1488. struct drm_device *dev = encoder->dev;
  1489. struct drm_i915_private *dev_priv = to_i915(dev);
  1490. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1491. int type = intel_encoder->type;
  1492. uint32_t val;
  1493. bool wait = false;
  1494. /* old_crtc_state and old_conn_state are NULL when called from DP_MST */
  1495. val = I915_READ(DDI_BUF_CTL(port));
  1496. if (val & DDI_BUF_CTL_ENABLE) {
  1497. val &= ~DDI_BUF_CTL_ENABLE;
  1498. I915_WRITE(DDI_BUF_CTL(port), val);
  1499. wait = true;
  1500. }
  1501. val = I915_READ(DP_TP_CTL(port));
  1502. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1503. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1504. I915_WRITE(DP_TP_CTL(port), val);
  1505. if (wait)
  1506. intel_wait_ddi_buf_idle(dev_priv, port);
  1507. if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
  1508. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1509. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1510. intel_edp_panel_vdd_on(intel_dp);
  1511. intel_edp_panel_off(intel_dp);
  1512. }
  1513. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1514. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  1515. DPLL_CTRL2_DDI_CLK_OFF(port)));
  1516. else if (INTEL_INFO(dev)->gen < 9)
  1517. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1518. if (type == INTEL_OUTPUT_HDMI) {
  1519. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  1520. intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
  1521. }
  1522. }
  1523. void intel_ddi_fdi_post_disable(struct intel_encoder *intel_encoder,
  1524. struct intel_crtc_state *old_crtc_state,
  1525. struct drm_connector_state *old_conn_state)
  1526. {
  1527. struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
  1528. uint32_t val;
  1529. /*
  1530. * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
  1531. * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
  1532. * step 13 is the correct place for it. Step 18 is where it was
  1533. * originally before the BUN.
  1534. */
  1535. val = I915_READ(FDI_RX_CTL(PIPE_A));
  1536. val &= ~FDI_RX_ENABLE;
  1537. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  1538. intel_ddi_post_disable(intel_encoder, old_crtc_state, old_conn_state);
  1539. val = I915_READ(FDI_RX_MISC(PIPE_A));
  1540. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1541. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1542. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  1543. val = I915_READ(FDI_RX_CTL(PIPE_A));
  1544. val &= ~FDI_PCDCLK;
  1545. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  1546. val = I915_READ(FDI_RX_CTL(PIPE_A));
  1547. val &= ~FDI_RX_PLL_ENABLE;
  1548. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  1549. }
  1550. static void intel_enable_ddi(struct intel_encoder *intel_encoder,
  1551. struct intel_crtc_state *pipe_config,
  1552. struct drm_connector_state *conn_state)
  1553. {
  1554. struct drm_encoder *encoder = &intel_encoder->base;
  1555. struct drm_crtc *crtc = encoder->crtc;
  1556. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1557. struct drm_device *dev = encoder->dev;
  1558. struct drm_i915_private *dev_priv = to_i915(dev);
  1559. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1560. int type = intel_encoder->type;
  1561. if (type == INTEL_OUTPUT_HDMI) {
  1562. struct intel_digital_port *intel_dig_port =
  1563. enc_to_dig_port(encoder);
  1564. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1565. * are ignored so nothing special needs to be done besides
  1566. * enabling the port.
  1567. */
  1568. I915_WRITE(DDI_BUF_CTL(port),
  1569. intel_dig_port->saved_port_bits |
  1570. DDI_BUF_CTL_ENABLE);
  1571. } else if (type == INTEL_OUTPUT_EDP) {
  1572. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1573. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  1574. intel_dp_stop_link_train(intel_dp);
  1575. intel_edp_backlight_on(intel_dp);
  1576. intel_psr_enable(intel_dp);
  1577. intel_edp_drrs_enable(intel_dp, pipe_config);
  1578. }
  1579. if (intel_crtc->config->has_audio) {
  1580. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  1581. intel_audio_codec_enable(intel_encoder);
  1582. }
  1583. }
  1584. static void intel_disable_ddi(struct intel_encoder *intel_encoder,
  1585. struct intel_crtc_state *old_crtc_state,
  1586. struct drm_connector_state *old_conn_state)
  1587. {
  1588. struct drm_encoder *encoder = &intel_encoder->base;
  1589. struct drm_crtc *crtc = encoder->crtc;
  1590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1591. int type = intel_encoder->type;
  1592. struct drm_device *dev = encoder->dev;
  1593. struct drm_i915_private *dev_priv = to_i915(dev);
  1594. if (intel_crtc->config->has_audio) {
  1595. intel_audio_codec_disable(intel_encoder);
  1596. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  1597. }
  1598. if (type == INTEL_OUTPUT_EDP) {
  1599. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1600. intel_edp_drrs_disable(intel_dp, old_crtc_state);
  1601. intel_psr_disable(intel_dp);
  1602. intel_edp_backlight_off(intel_dp);
  1603. }
  1604. }
  1605. bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
  1606. enum dpio_phy phy)
  1607. {
  1608. enum port port;
  1609. if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
  1610. return false;
  1611. if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
  1612. (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
  1613. DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
  1614. phy);
  1615. return false;
  1616. }
  1617. if (phy == DPIO_PHY1 &&
  1618. !(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE)) {
  1619. DRM_DEBUG_DRIVER("DDI PHY 1 powered, but GRC isn't done\n");
  1620. return false;
  1621. }
  1622. if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
  1623. DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
  1624. phy);
  1625. return false;
  1626. }
  1627. for_each_port_masked(port,
  1628. phy == DPIO_PHY0 ? BIT(PORT_B) | BIT(PORT_C) :
  1629. BIT(PORT_A)) {
  1630. u32 tmp = I915_READ(BXT_PHY_CTL(port));
  1631. if (tmp & BXT_PHY_CMNLANE_POWERDOWN_ACK) {
  1632. DRM_DEBUG_DRIVER("DDI PHY %d powered, but common lane "
  1633. "for port %c powered down "
  1634. "(PHY_CTL %08x)\n",
  1635. phy, port_name(port), tmp);
  1636. return false;
  1637. }
  1638. }
  1639. return true;
  1640. }
  1641. static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
  1642. {
  1643. u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
  1644. return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
  1645. }
  1646. static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
  1647. enum dpio_phy phy)
  1648. {
  1649. if (intel_wait_for_register(dev_priv,
  1650. BXT_PORT_REF_DW3(phy),
  1651. GRC_DONE, GRC_DONE,
  1652. 10))
  1653. DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
  1654. }
  1655. void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
  1656. {
  1657. u32 val;
  1658. if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
  1659. /* Still read out the GRC value for state verification */
  1660. if (phy == DPIO_PHY0)
  1661. dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
  1662. if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
  1663. DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
  1664. "won't reprogram it\n", phy);
  1665. return;
  1666. }
  1667. DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
  1668. "force reprogramming it\n", phy);
  1669. }
  1670. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  1671. val |= GT_DISPLAY_POWER_ON(phy);
  1672. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  1673. /*
  1674. * The PHY registers start out inaccessible and respond to reads with
  1675. * all 1s. Eventually they become accessible as they power up, then
  1676. * the reserved bit will give the default 0. Poll on the reserved bit
  1677. * becoming 0 to find when the PHY is accessible.
  1678. * HW team confirmed that the time to reach phypowergood status is
  1679. * anywhere between 50 us and 100us.
  1680. */
  1681. if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
  1682. (PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
  1683. DRM_ERROR("timeout during PHY%d power on\n", phy);
  1684. }
  1685. /* Program PLL Rcomp code offset */
  1686. val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
  1687. val &= ~IREF0RC_OFFSET_MASK;
  1688. val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
  1689. I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
  1690. val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
  1691. val &= ~IREF1RC_OFFSET_MASK;
  1692. val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
  1693. I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
  1694. /* Program power gating */
  1695. val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
  1696. val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
  1697. SUS_CLK_CONFIG;
  1698. I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
  1699. if (phy == DPIO_PHY0) {
  1700. val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
  1701. val |= DW6_OLDO_DYN_PWR_DOWN_EN;
  1702. I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
  1703. }
  1704. val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
  1705. val &= ~OCL2_LDOFUSE_PWR_DIS;
  1706. /*
  1707. * On PHY1 disable power on the second channel, since no port is
  1708. * connected there. On PHY0 both channels have a port, so leave it
  1709. * enabled.
  1710. * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
  1711. * power down the second channel on PHY0 as well.
  1712. *
  1713. * FIXME: Clarify programming of the following, the register is
  1714. * read-only with bit 6 fixed at 0 at least in stepping A.
  1715. */
  1716. if (phy == DPIO_PHY1)
  1717. val |= OCL2_LDOFUSE_PWR_DIS;
  1718. I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
  1719. if (phy == DPIO_PHY0) {
  1720. uint32_t grc_code;
  1721. /*
  1722. * PHY0 isn't connected to an RCOMP resistor so copy over
  1723. * the corresponding calibrated value from PHY1, and disable
  1724. * the automatic calibration on PHY0.
  1725. */
  1726. val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, DPIO_PHY1);
  1727. grc_code = val << GRC_CODE_FAST_SHIFT |
  1728. val << GRC_CODE_SLOW_SHIFT |
  1729. val;
  1730. I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
  1731. val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
  1732. val |= GRC_DIS | GRC_RDY_OVRD;
  1733. I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
  1734. }
  1735. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  1736. val |= COMMON_RESET_DIS;
  1737. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  1738. if (phy == DPIO_PHY1)
  1739. bxt_phy_wait_grc_done(dev_priv, DPIO_PHY1);
  1740. }
  1741. void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
  1742. {
  1743. uint32_t val;
  1744. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  1745. val &= ~COMMON_RESET_DIS;
  1746. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  1747. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  1748. val &= ~GT_DISPLAY_POWER_ON(phy);
  1749. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  1750. }
  1751. static bool __printf(6, 7)
  1752. __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
  1753. i915_reg_t reg, u32 mask, u32 expected,
  1754. const char *reg_fmt, ...)
  1755. {
  1756. struct va_format vaf;
  1757. va_list args;
  1758. u32 val;
  1759. val = I915_READ(reg);
  1760. if ((val & mask) == expected)
  1761. return true;
  1762. va_start(args, reg_fmt);
  1763. vaf.fmt = reg_fmt;
  1764. vaf.va = &args;
  1765. DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
  1766. "current %08x, expected %08x (mask %08x)\n",
  1767. phy, &vaf, reg.reg, val, (val & ~mask) | expected,
  1768. mask);
  1769. va_end(args);
  1770. return false;
  1771. }
  1772. bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
  1773. enum dpio_phy phy)
  1774. {
  1775. uint32_t mask;
  1776. bool ok;
  1777. #define _CHK(reg, mask, exp, fmt, ...) \
  1778. __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
  1779. ## __VA_ARGS__)
  1780. if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
  1781. return false;
  1782. ok = true;
  1783. /* PLL Rcomp code offset */
  1784. ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
  1785. IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
  1786. "BXT_PORT_CL1CM_DW9(%d)", phy);
  1787. ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
  1788. IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
  1789. "BXT_PORT_CL1CM_DW10(%d)", phy);
  1790. /* Power gating */
  1791. mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
  1792. ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
  1793. "BXT_PORT_CL1CM_DW28(%d)", phy);
  1794. if (phy == DPIO_PHY0)
  1795. ok &= _CHK(BXT_PORT_CL2CM_DW6_BC,
  1796. DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
  1797. "BXT_PORT_CL2CM_DW6_BC");
  1798. /*
  1799. * TODO: Verify BXT_PORT_CL1CM_DW30 bit OCL2_LDOFUSE_PWR_DIS,
  1800. * at least on stepping A this bit is read-only and fixed at 0.
  1801. */
  1802. if (phy == DPIO_PHY0) {
  1803. u32 grc_code = dev_priv->bxt_phy_grc;
  1804. grc_code = grc_code << GRC_CODE_FAST_SHIFT |
  1805. grc_code << GRC_CODE_SLOW_SHIFT |
  1806. grc_code;
  1807. mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
  1808. GRC_CODE_NOM_MASK;
  1809. ok &= _CHK(BXT_PORT_REF_DW6(DPIO_PHY0), mask, grc_code,
  1810. "BXT_PORT_REF_DW6(%d)", DPIO_PHY0);
  1811. mask = GRC_DIS | GRC_RDY_OVRD;
  1812. ok &= _CHK(BXT_PORT_REF_DW8(DPIO_PHY0), mask, mask,
  1813. "BXT_PORT_REF_DW8(%d)", DPIO_PHY0);
  1814. }
  1815. return ok;
  1816. #undef _CHK
  1817. }
  1818. static uint8_t
  1819. bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
  1820. struct intel_crtc_state *pipe_config)
  1821. {
  1822. switch (pipe_config->lane_count) {
  1823. case 1:
  1824. return 0;
  1825. case 2:
  1826. return BIT(2) | BIT(0);
  1827. case 4:
  1828. return BIT(3) | BIT(2) | BIT(0);
  1829. default:
  1830. MISSING_CASE(pipe_config->lane_count);
  1831. return 0;
  1832. }
  1833. }
  1834. static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder,
  1835. struct intel_crtc_state *pipe_config,
  1836. struct drm_connector_state *conn_state)
  1837. {
  1838. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1839. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1840. enum port port = dport->port;
  1841. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1842. int lane;
  1843. for (lane = 0; lane < 4; lane++) {
  1844. u32 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
  1845. /*
  1846. * Note that on CHV this flag is called UPAR, but has
  1847. * the same function.
  1848. */
  1849. val &= ~LATENCY_OPTIM;
  1850. if (intel_crtc->config->lane_lat_optim_mask & BIT(lane))
  1851. val |= LATENCY_OPTIM;
  1852. I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
  1853. }
  1854. }
  1855. static uint8_t
  1856. bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
  1857. {
  1858. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1859. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1860. enum port port = dport->port;
  1861. int lane;
  1862. uint8_t mask;
  1863. mask = 0;
  1864. for (lane = 0; lane < 4; lane++) {
  1865. u32 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
  1866. if (val & LATENCY_OPTIM)
  1867. mask |= BIT(lane);
  1868. }
  1869. return mask;
  1870. }
  1871. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  1872. {
  1873. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1874. struct drm_i915_private *dev_priv =
  1875. to_i915(intel_dig_port->base.base.dev);
  1876. enum port port = intel_dig_port->port;
  1877. uint32_t val;
  1878. bool wait = false;
  1879. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1880. val = I915_READ(DDI_BUF_CTL(port));
  1881. if (val & DDI_BUF_CTL_ENABLE) {
  1882. val &= ~DDI_BUF_CTL_ENABLE;
  1883. I915_WRITE(DDI_BUF_CTL(port), val);
  1884. wait = true;
  1885. }
  1886. val = I915_READ(DP_TP_CTL(port));
  1887. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1888. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1889. I915_WRITE(DP_TP_CTL(port), val);
  1890. POSTING_READ(DP_TP_CTL(port));
  1891. if (wait)
  1892. intel_wait_ddi_buf_idle(dev_priv, port);
  1893. }
  1894. val = DP_TP_CTL_ENABLE |
  1895. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1896. if (intel_dp->link_mst)
  1897. val |= DP_TP_CTL_MODE_MST;
  1898. else {
  1899. val |= DP_TP_CTL_MODE_SST;
  1900. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1901. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1902. }
  1903. I915_WRITE(DP_TP_CTL(port), val);
  1904. POSTING_READ(DP_TP_CTL(port));
  1905. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1906. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1907. POSTING_READ(DDI_BUF_CTL(port));
  1908. udelay(600);
  1909. }
  1910. void intel_ddi_get_config(struct intel_encoder *encoder,
  1911. struct intel_crtc_state *pipe_config)
  1912. {
  1913. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1914. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1915. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  1916. struct intel_hdmi *intel_hdmi;
  1917. u32 temp, flags = 0;
  1918. /* XXX: DSI transcoder paranoia */
  1919. if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
  1920. return;
  1921. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1922. if (temp & TRANS_DDI_PHSYNC)
  1923. flags |= DRM_MODE_FLAG_PHSYNC;
  1924. else
  1925. flags |= DRM_MODE_FLAG_NHSYNC;
  1926. if (temp & TRANS_DDI_PVSYNC)
  1927. flags |= DRM_MODE_FLAG_PVSYNC;
  1928. else
  1929. flags |= DRM_MODE_FLAG_NVSYNC;
  1930. pipe_config->base.adjusted_mode.flags |= flags;
  1931. switch (temp & TRANS_DDI_BPC_MASK) {
  1932. case TRANS_DDI_BPC_6:
  1933. pipe_config->pipe_bpp = 18;
  1934. break;
  1935. case TRANS_DDI_BPC_8:
  1936. pipe_config->pipe_bpp = 24;
  1937. break;
  1938. case TRANS_DDI_BPC_10:
  1939. pipe_config->pipe_bpp = 30;
  1940. break;
  1941. case TRANS_DDI_BPC_12:
  1942. pipe_config->pipe_bpp = 36;
  1943. break;
  1944. default:
  1945. break;
  1946. }
  1947. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1948. case TRANS_DDI_MODE_SELECT_HDMI:
  1949. pipe_config->has_hdmi_sink = true;
  1950. intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1951. if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
  1952. pipe_config->has_infoframe = true;
  1953. /* fall through */
  1954. case TRANS_DDI_MODE_SELECT_DVI:
  1955. pipe_config->lane_count = 4;
  1956. break;
  1957. case TRANS_DDI_MODE_SELECT_FDI:
  1958. break;
  1959. case TRANS_DDI_MODE_SELECT_DP_SST:
  1960. case TRANS_DDI_MODE_SELECT_DP_MST:
  1961. pipe_config->lane_count =
  1962. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  1963. intel_dp_get_m_n(intel_crtc, pipe_config);
  1964. break;
  1965. default:
  1966. break;
  1967. }
  1968. if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  1969. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1970. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  1971. pipe_config->has_audio = true;
  1972. }
  1973. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
  1974. pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
  1975. /*
  1976. * This is a big fat ugly hack.
  1977. *
  1978. * Some machines in UEFI boot mode provide us a VBT that has 18
  1979. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1980. * unknown we fail to light up. Yet the same BIOS boots up with
  1981. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1982. * max, not what it tells us to use.
  1983. *
  1984. * Note: This will still be broken if the eDP panel is not lit
  1985. * up by the BIOS, and thus we can't get the mode at module
  1986. * load.
  1987. */
  1988. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1989. pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
  1990. dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
  1991. }
  1992. intel_ddi_clock_get(encoder, pipe_config);
  1993. if (IS_BROXTON(dev_priv))
  1994. pipe_config->lane_lat_optim_mask =
  1995. bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
  1996. }
  1997. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1998. struct intel_crtc_state *pipe_config,
  1999. struct drm_connector_state *conn_state)
  2000. {
  2001. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2002. int type = encoder->type;
  2003. int port = intel_ddi_get_encoder_port(encoder);
  2004. int ret;
  2005. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  2006. if (port == PORT_A)
  2007. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2008. if (type == INTEL_OUTPUT_HDMI)
  2009. ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
  2010. else
  2011. ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
  2012. if (IS_BROXTON(dev_priv) && ret)
  2013. pipe_config->lane_lat_optim_mask =
  2014. bxt_ddi_phy_calc_lane_lat_optim_mask(encoder,
  2015. pipe_config);
  2016. return ret;
  2017. }
  2018. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2019. .reset = intel_dp_encoder_reset,
  2020. .destroy = intel_dp_encoder_destroy,
  2021. };
  2022. static struct intel_connector *
  2023. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2024. {
  2025. struct intel_connector *connector;
  2026. enum port port = intel_dig_port->port;
  2027. connector = intel_connector_alloc();
  2028. if (!connector)
  2029. return NULL;
  2030. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2031. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2032. kfree(connector);
  2033. return NULL;
  2034. }
  2035. return connector;
  2036. }
  2037. static struct intel_connector *
  2038. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2039. {
  2040. struct intel_connector *connector;
  2041. enum port port = intel_dig_port->port;
  2042. connector = intel_connector_alloc();
  2043. if (!connector)
  2044. return NULL;
  2045. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2046. intel_hdmi_init_connector(intel_dig_port, connector);
  2047. return connector;
  2048. }
  2049. struct intel_shared_dpll *
  2050. intel_ddi_get_link_dpll(struct intel_dp *intel_dp, int clock)
  2051. {
  2052. struct intel_connector *connector = intel_dp->attached_connector;
  2053. struct intel_encoder *encoder = connector->encoder;
  2054. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2055. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  2056. struct intel_shared_dpll *pll = NULL;
  2057. struct intel_shared_dpll_config tmp_pll_config;
  2058. enum intel_dpll_id dpll_id;
  2059. if (IS_BROXTON(dev_priv)) {
  2060. dpll_id = (enum intel_dpll_id)dig_port->port;
  2061. /*
  2062. * Select the required PLL. This works for platforms where
  2063. * there is no shared DPLL.
  2064. */
  2065. pll = &dev_priv->shared_dplls[dpll_id];
  2066. if (WARN_ON(pll->active_mask)) {
  2067. DRM_ERROR("Shared DPLL in use. active_mask:%x\n",
  2068. pll->active_mask);
  2069. return NULL;
  2070. }
  2071. tmp_pll_config = pll->config;
  2072. if (!bxt_ddi_dp_set_dpll_hw_state(clock,
  2073. &pll->config.hw_state)) {
  2074. DRM_ERROR("Could not setup DPLL\n");
  2075. pll->config = tmp_pll_config;
  2076. return NULL;
  2077. }
  2078. } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  2079. pll = skl_find_link_pll(dev_priv, clock);
  2080. } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2081. pll = hsw_ddi_dp_get_dpll(encoder, clock);
  2082. }
  2083. return pll;
  2084. }
  2085. void intel_ddi_init(struct drm_device *dev, enum port port)
  2086. {
  2087. struct drm_i915_private *dev_priv = to_i915(dev);
  2088. struct intel_digital_port *intel_dig_port;
  2089. struct intel_encoder *intel_encoder;
  2090. struct drm_encoder *encoder;
  2091. bool init_hdmi, init_dp;
  2092. int max_lanes;
  2093. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
  2094. switch (port) {
  2095. case PORT_A:
  2096. max_lanes = 4;
  2097. break;
  2098. case PORT_E:
  2099. max_lanes = 0;
  2100. break;
  2101. default:
  2102. max_lanes = 4;
  2103. break;
  2104. }
  2105. } else {
  2106. switch (port) {
  2107. case PORT_A:
  2108. max_lanes = 2;
  2109. break;
  2110. case PORT_E:
  2111. max_lanes = 2;
  2112. break;
  2113. default:
  2114. max_lanes = 4;
  2115. break;
  2116. }
  2117. }
  2118. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2119. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2120. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2121. if (!init_dp && !init_hdmi) {
  2122. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2123. port_name(port));
  2124. return;
  2125. }
  2126. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2127. if (!intel_dig_port)
  2128. return;
  2129. intel_encoder = &intel_dig_port->base;
  2130. encoder = &intel_encoder->base;
  2131. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  2132. DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
  2133. intel_encoder->compute_config = intel_ddi_compute_config;
  2134. intel_encoder->enable = intel_enable_ddi;
  2135. if (IS_BROXTON(dev_priv))
  2136. intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
  2137. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2138. intel_encoder->disable = intel_disable_ddi;
  2139. intel_encoder->post_disable = intel_ddi_post_disable;
  2140. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2141. intel_encoder->get_config = intel_ddi_get_config;
  2142. intel_encoder->suspend = intel_dp_encoder_suspend;
  2143. intel_dig_port->port = port;
  2144. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2145. (DDI_BUF_PORT_REVERSAL |
  2146. DDI_A_4_LANES);
  2147. /*
  2148. * Bspec says that DDI_A_4_LANES is the only supported configuration
  2149. * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
  2150. * wasn't lit up at boot. Force this bit on in our internal
  2151. * configuration so that we use the proper lane count for our
  2152. * calculations.
  2153. */
  2154. if (IS_BROXTON(dev) && port == PORT_A) {
  2155. if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
  2156. DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
  2157. intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
  2158. max_lanes = 4;
  2159. }
  2160. }
  2161. intel_dig_port->max_lanes = max_lanes;
  2162. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  2163. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2164. intel_encoder->cloneable = 0;
  2165. if (init_dp) {
  2166. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2167. goto err;
  2168. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2169. /*
  2170. * On BXT A0/A1, sw needs to activate DDIA HPD logic and
  2171. * interrupts to check the external panel connection.
  2172. */
  2173. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
  2174. dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
  2175. else
  2176. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2177. }
  2178. /* In theory we don't need the encoder->type check, but leave it just in
  2179. * case we have some really bad VBTs... */
  2180. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2181. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2182. goto err;
  2183. }
  2184. return;
  2185. err:
  2186. drm_encoder_cleanup(encoder);
  2187. kfree(intel_dig_port);
  2188. }