i915_irq.c 130 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  45. [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  46. };
  47. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  48. [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  49. };
  50. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  51. [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  52. };
  53. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  54. [HPD_CRT] = SDE_CRT_HOTPLUG,
  55. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  56. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  57. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  58. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  59. };
  60. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  61. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  62. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  63. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  64. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  65. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  66. };
  67. static const u32 hpd_spt[HPD_NUM_PINS] = {
  68. [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  69. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  70. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  71. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  72. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  73. };
  74. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  81. };
  82. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  83. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  84. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  85. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  86. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  87. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  88. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  89. };
  90. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  91. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  92. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  93. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  94. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  95. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  96. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  97. };
  98. /* BXT hpd list */
  99. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  100. [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  101. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  102. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  103. };
  104. /* IIR can theoretically queue up two events. Be paranoid. */
  105. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  106. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  107. POSTING_READ(GEN8_##type##_IMR(which)); \
  108. I915_WRITE(GEN8_##type##_IER(which), 0); \
  109. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  110. POSTING_READ(GEN8_##type##_IIR(which)); \
  111. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  112. POSTING_READ(GEN8_##type##_IIR(which)); \
  113. } while (0)
  114. #define GEN5_IRQ_RESET(type) do { \
  115. I915_WRITE(type##IMR, 0xffffffff); \
  116. POSTING_READ(type##IMR); \
  117. I915_WRITE(type##IER, 0); \
  118. I915_WRITE(type##IIR, 0xffffffff); \
  119. POSTING_READ(type##IIR); \
  120. I915_WRITE(type##IIR, 0xffffffff); \
  121. POSTING_READ(type##IIR); \
  122. } while (0)
  123. /*
  124. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  125. */
  126. static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  127. i915_reg_t reg)
  128. {
  129. u32 val = I915_READ(reg);
  130. if (val == 0)
  131. return;
  132. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  133. i915_mmio_reg_offset(reg), val);
  134. I915_WRITE(reg, 0xffffffff);
  135. POSTING_READ(reg);
  136. I915_WRITE(reg, 0xffffffff);
  137. POSTING_READ(reg);
  138. }
  139. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  140. gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  141. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  142. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  143. POSTING_READ(GEN8_##type##_IMR(which)); \
  144. } while (0)
  145. #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
  146. gen5_assert_iir_is_zero(dev_priv, type##IIR); \
  147. I915_WRITE(type##IER, (ier_val)); \
  148. I915_WRITE(type##IMR, (imr_val)); \
  149. POSTING_READ(type##IMR); \
  150. } while (0)
  151. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  152. /* For display hotplug interrupt */
  153. static inline void
  154. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  155. uint32_t mask,
  156. uint32_t bits)
  157. {
  158. uint32_t val;
  159. assert_spin_locked(&dev_priv->irq_lock);
  160. WARN_ON(bits & ~mask);
  161. val = I915_READ(PORT_HOTPLUG_EN);
  162. val &= ~mask;
  163. val |= bits;
  164. I915_WRITE(PORT_HOTPLUG_EN, val);
  165. }
  166. /**
  167. * i915_hotplug_interrupt_update - update hotplug interrupt enable
  168. * @dev_priv: driver private
  169. * @mask: bits to update
  170. * @bits: bits to enable
  171. * NOTE: the HPD enable bits are modified both inside and outside
  172. * of an interrupt context. To avoid that read-modify-write cycles
  173. * interfer, these bits are protected by a spinlock. Since this
  174. * function is usually not called from a context where the lock is
  175. * held already, this function acquires the lock itself. A non-locking
  176. * version is also available.
  177. */
  178. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  179. uint32_t mask,
  180. uint32_t bits)
  181. {
  182. spin_lock_irq(&dev_priv->irq_lock);
  183. i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  184. spin_unlock_irq(&dev_priv->irq_lock);
  185. }
  186. /**
  187. * ilk_update_display_irq - update DEIMR
  188. * @dev_priv: driver private
  189. * @interrupt_mask: mask of interrupt bits to update
  190. * @enabled_irq_mask: mask of interrupt bits to enable
  191. */
  192. void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  193. uint32_t interrupt_mask,
  194. uint32_t enabled_irq_mask)
  195. {
  196. uint32_t new_val;
  197. assert_spin_locked(&dev_priv->irq_lock);
  198. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  199. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  200. return;
  201. new_val = dev_priv->irq_mask;
  202. new_val &= ~interrupt_mask;
  203. new_val |= (~enabled_irq_mask & interrupt_mask);
  204. if (new_val != dev_priv->irq_mask) {
  205. dev_priv->irq_mask = new_val;
  206. I915_WRITE(DEIMR, dev_priv->irq_mask);
  207. POSTING_READ(DEIMR);
  208. }
  209. }
  210. /**
  211. * ilk_update_gt_irq - update GTIMR
  212. * @dev_priv: driver private
  213. * @interrupt_mask: mask of interrupt bits to update
  214. * @enabled_irq_mask: mask of interrupt bits to enable
  215. */
  216. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  217. uint32_t interrupt_mask,
  218. uint32_t enabled_irq_mask)
  219. {
  220. assert_spin_locked(&dev_priv->irq_lock);
  221. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  222. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  223. return;
  224. dev_priv->gt_irq_mask &= ~interrupt_mask;
  225. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  226. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  227. }
  228. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  229. {
  230. ilk_update_gt_irq(dev_priv, mask, mask);
  231. POSTING_READ_FW(GTIMR);
  232. }
  233. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  234. {
  235. ilk_update_gt_irq(dev_priv, mask, 0);
  236. }
  237. static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
  238. {
  239. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  240. }
  241. static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
  242. {
  243. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  244. }
  245. static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
  246. {
  247. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  248. }
  249. /**
  250. * snb_update_pm_irq - update GEN6_PMIMR
  251. * @dev_priv: driver private
  252. * @interrupt_mask: mask of interrupt bits to update
  253. * @enabled_irq_mask: mask of interrupt bits to enable
  254. */
  255. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  256. uint32_t interrupt_mask,
  257. uint32_t enabled_irq_mask)
  258. {
  259. uint32_t new_val;
  260. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  261. assert_spin_locked(&dev_priv->irq_lock);
  262. new_val = dev_priv->pm_irq_mask;
  263. new_val &= ~interrupt_mask;
  264. new_val |= (~enabled_irq_mask & interrupt_mask);
  265. if (new_val != dev_priv->pm_irq_mask) {
  266. dev_priv->pm_irq_mask = new_val;
  267. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
  268. POSTING_READ(gen6_pm_imr(dev_priv));
  269. }
  270. }
  271. void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  272. {
  273. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  274. return;
  275. snb_update_pm_irq(dev_priv, mask, mask);
  276. }
  277. static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
  278. uint32_t mask)
  279. {
  280. snb_update_pm_irq(dev_priv, mask, 0);
  281. }
  282. void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  283. {
  284. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  285. return;
  286. __gen6_disable_pm_irq(dev_priv, mask);
  287. }
  288. void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
  289. {
  290. i915_reg_t reg = gen6_pm_iir(dev_priv);
  291. spin_lock_irq(&dev_priv->irq_lock);
  292. I915_WRITE(reg, dev_priv->pm_rps_events);
  293. I915_WRITE(reg, dev_priv->pm_rps_events);
  294. POSTING_READ(reg);
  295. dev_priv->rps.pm_iir = 0;
  296. spin_unlock_irq(&dev_priv->irq_lock);
  297. }
  298. void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
  299. {
  300. if (READ_ONCE(dev_priv->rps.interrupts_enabled))
  301. return;
  302. spin_lock_irq(&dev_priv->irq_lock);
  303. WARN_ON_ONCE(dev_priv->rps.pm_iir);
  304. WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  305. dev_priv->rps.interrupts_enabled = true;
  306. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
  307. dev_priv->pm_rps_events);
  308. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  309. spin_unlock_irq(&dev_priv->irq_lock);
  310. }
  311. u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
  312. {
  313. return (mask & ~dev_priv->rps.pm_intr_keep);
  314. }
  315. void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
  316. {
  317. if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
  318. return;
  319. spin_lock_irq(&dev_priv->irq_lock);
  320. dev_priv->rps.interrupts_enabled = false;
  321. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
  322. __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  323. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
  324. ~dev_priv->pm_rps_events);
  325. spin_unlock_irq(&dev_priv->irq_lock);
  326. synchronize_irq(dev_priv->drm.irq);
  327. /* Now that we will not be generating any more work, flush any
  328. * outsanding tasks. As we are called on the RPS idle path,
  329. * we will reset the GPU to minimum frequencies, so the current
  330. * state of the worker can be discarded.
  331. */
  332. cancel_work_sync(&dev_priv->rps.work);
  333. gen6_reset_rps_interrupts(dev_priv);
  334. }
  335. /**
  336. * bdw_update_port_irq - update DE port interrupt
  337. * @dev_priv: driver private
  338. * @interrupt_mask: mask of interrupt bits to update
  339. * @enabled_irq_mask: mask of interrupt bits to enable
  340. */
  341. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  342. uint32_t interrupt_mask,
  343. uint32_t enabled_irq_mask)
  344. {
  345. uint32_t new_val;
  346. uint32_t old_val;
  347. assert_spin_locked(&dev_priv->irq_lock);
  348. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  349. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  350. return;
  351. old_val = I915_READ(GEN8_DE_PORT_IMR);
  352. new_val = old_val;
  353. new_val &= ~interrupt_mask;
  354. new_val |= (~enabled_irq_mask & interrupt_mask);
  355. if (new_val != old_val) {
  356. I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  357. POSTING_READ(GEN8_DE_PORT_IMR);
  358. }
  359. }
  360. /**
  361. * bdw_update_pipe_irq - update DE pipe interrupt
  362. * @dev_priv: driver private
  363. * @pipe: pipe whose interrupt to update
  364. * @interrupt_mask: mask of interrupt bits to update
  365. * @enabled_irq_mask: mask of interrupt bits to enable
  366. */
  367. void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
  368. enum pipe pipe,
  369. uint32_t interrupt_mask,
  370. uint32_t enabled_irq_mask)
  371. {
  372. uint32_t new_val;
  373. assert_spin_locked(&dev_priv->irq_lock);
  374. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  375. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  376. return;
  377. new_val = dev_priv->de_irq_mask[pipe];
  378. new_val &= ~interrupt_mask;
  379. new_val |= (~enabled_irq_mask & interrupt_mask);
  380. if (new_val != dev_priv->de_irq_mask[pipe]) {
  381. dev_priv->de_irq_mask[pipe] = new_val;
  382. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  383. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  384. }
  385. }
  386. /**
  387. * ibx_display_interrupt_update - update SDEIMR
  388. * @dev_priv: driver private
  389. * @interrupt_mask: mask of interrupt bits to update
  390. * @enabled_irq_mask: mask of interrupt bits to enable
  391. */
  392. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  393. uint32_t interrupt_mask,
  394. uint32_t enabled_irq_mask)
  395. {
  396. uint32_t sdeimr = I915_READ(SDEIMR);
  397. sdeimr &= ~interrupt_mask;
  398. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  399. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  400. assert_spin_locked(&dev_priv->irq_lock);
  401. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  402. return;
  403. I915_WRITE(SDEIMR, sdeimr);
  404. POSTING_READ(SDEIMR);
  405. }
  406. static void
  407. __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  408. u32 enable_mask, u32 status_mask)
  409. {
  410. i915_reg_t reg = PIPESTAT(pipe);
  411. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  412. assert_spin_locked(&dev_priv->irq_lock);
  413. WARN_ON(!intel_irqs_enabled(dev_priv));
  414. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  415. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  416. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  417. pipe_name(pipe), enable_mask, status_mask))
  418. return;
  419. if ((pipestat & enable_mask) == enable_mask)
  420. return;
  421. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  422. /* Enable the interrupt, clear any pending status */
  423. pipestat |= enable_mask | status_mask;
  424. I915_WRITE(reg, pipestat);
  425. POSTING_READ(reg);
  426. }
  427. static void
  428. __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  429. u32 enable_mask, u32 status_mask)
  430. {
  431. i915_reg_t reg = PIPESTAT(pipe);
  432. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  433. assert_spin_locked(&dev_priv->irq_lock);
  434. WARN_ON(!intel_irqs_enabled(dev_priv));
  435. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  436. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  437. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  438. pipe_name(pipe), enable_mask, status_mask))
  439. return;
  440. if ((pipestat & enable_mask) == 0)
  441. return;
  442. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  443. pipestat &= ~enable_mask;
  444. I915_WRITE(reg, pipestat);
  445. POSTING_READ(reg);
  446. }
  447. static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
  448. {
  449. u32 enable_mask = status_mask << 16;
  450. /*
  451. * On pipe A we don't support the PSR interrupt yet,
  452. * on pipe B and C the same bit MBZ.
  453. */
  454. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  455. return 0;
  456. /*
  457. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  458. * A the same bit is for perf counters which we don't use either.
  459. */
  460. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  461. return 0;
  462. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  463. SPRITE0_FLIP_DONE_INT_EN_VLV |
  464. SPRITE1_FLIP_DONE_INT_EN_VLV);
  465. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  466. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  467. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  468. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  469. return enable_mask;
  470. }
  471. void
  472. i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  473. u32 status_mask)
  474. {
  475. u32 enable_mask;
  476. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  477. enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
  478. status_mask);
  479. else
  480. enable_mask = status_mask << 16;
  481. __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  482. }
  483. void
  484. i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  485. u32 status_mask)
  486. {
  487. u32 enable_mask;
  488. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  489. enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
  490. status_mask);
  491. else
  492. enable_mask = status_mask << 16;
  493. __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  494. }
  495. /**
  496. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  497. * @dev_priv: i915 device private
  498. */
  499. static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
  500. {
  501. if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
  502. return;
  503. spin_lock_irq(&dev_priv->irq_lock);
  504. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  505. if (INTEL_GEN(dev_priv) >= 4)
  506. i915_enable_pipestat(dev_priv, PIPE_A,
  507. PIPE_LEGACY_BLC_EVENT_STATUS);
  508. spin_unlock_irq(&dev_priv->irq_lock);
  509. }
  510. /*
  511. * This timing diagram depicts the video signal in and
  512. * around the vertical blanking period.
  513. *
  514. * Assumptions about the fictitious mode used in this example:
  515. * vblank_start >= 3
  516. * vsync_start = vblank_start + 1
  517. * vsync_end = vblank_start + 2
  518. * vtotal = vblank_start + 3
  519. *
  520. * start of vblank:
  521. * latch double buffered registers
  522. * increment frame counter (ctg+)
  523. * generate start of vblank interrupt (gen4+)
  524. * |
  525. * | frame start:
  526. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  527. * | may be shifted forward 1-3 extra lines via PIPECONF
  528. * | |
  529. * | | start of vsync:
  530. * | | generate vsync interrupt
  531. * | | |
  532. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  533. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  534. * ----va---> <-----------------vb--------------------> <--------va-------------
  535. * | | <----vs-----> |
  536. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  537. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  538. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  539. * | | |
  540. * last visible pixel first visible pixel
  541. * | increment frame counter (gen3/4)
  542. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  543. *
  544. * x = horizontal active
  545. * _ = horizontal blanking
  546. * hs = horizontal sync
  547. * va = vertical active
  548. * vb = vertical blanking
  549. * vs = vertical sync
  550. * vbs = vblank_start (number)
  551. *
  552. * Summary:
  553. * - most events happen at the start of horizontal sync
  554. * - frame start happens at the start of horizontal blank, 1-4 lines
  555. * (depending on PIPECONF settings) after the start of vblank
  556. * - gen3/4 pixel and frame counter are synchronized with the start
  557. * of horizontal active on the first line of vertical active
  558. */
  559. /* Called from drm generic code, passed a 'crtc', which
  560. * we use as a pipe index
  561. */
  562. static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  563. {
  564. struct drm_i915_private *dev_priv = to_i915(dev);
  565. i915_reg_t high_frame, low_frame;
  566. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  567. struct intel_crtc *intel_crtc =
  568. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  569. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  570. htotal = mode->crtc_htotal;
  571. hsync_start = mode->crtc_hsync_start;
  572. vbl_start = mode->crtc_vblank_start;
  573. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  574. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  575. /* Convert to pixel count */
  576. vbl_start *= htotal;
  577. /* Start of vblank event occurs at start of hsync */
  578. vbl_start -= htotal - hsync_start;
  579. high_frame = PIPEFRAME(pipe);
  580. low_frame = PIPEFRAMEPIXEL(pipe);
  581. /*
  582. * High & low register fields aren't synchronized, so make sure
  583. * we get a low value that's stable across two reads of the high
  584. * register.
  585. */
  586. do {
  587. high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  588. low = I915_READ(low_frame);
  589. high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  590. } while (high1 != high2);
  591. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  592. pixel = low & PIPE_PIXEL_MASK;
  593. low >>= PIPE_FRAME_LOW_SHIFT;
  594. /*
  595. * The frame counter increments at beginning of active.
  596. * Cook up a vblank counter by also checking the pixel
  597. * counter against vblank start.
  598. */
  599. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  600. }
  601. static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  602. {
  603. struct drm_i915_private *dev_priv = to_i915(dev);
  604. return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
  605. }
  606. /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
  607. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  608. {
  609. struct drm_device *dev = crtc->base.dev;
  610. struct drm_i915_private *dev_priv = to_i915(dev);
  611. const struct drm_display_mode *mode = &crtc->base.hwmode;
  612. enum pipe pipe = crtc->pipe;
  613. int position, vtotal;
  614. vtotal = mode->crtc_vtotal;
  615. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  616. vtotal /= 2;
  617. if (IS_GEN2(dev_priv))
  618. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  619. else
  620. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  621. /*
  622. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  623. * read it just before the start of vblank. So try it again
  624. * so we don't accidentally end up spanning a vblank frame
  625. * increment, causing the pipe_update_end() code to squak at us.
  626. *
  627. * The nature of this problem means we can't simply check the ISR
  628. * bit and return the vblank start value; nor can we use the scanline
  629. * debug register in the transcoder as it appears to have the same
  630. * problem. We may need to extend this to include other platforms,
  631. * but so far testing only shows the problem on HSW.
  632. */
  633. if (HAS_DDI(dev_priv) && !position) {
  634. int i, temp;
  635. for (i = 0; i < 100; i++) {
  636. udelay(1);
  637. temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
  638. DSL_LINEMASK_GEN3;
  639. if (temp != position) {
  640. position = temp;
  641. break;
  642. }
  643. }
  644. }
  645. /*
  646. * See update_scanline_offset() for the details on the
  647. * scanline_offset adjustment.
  648. */
  649. return (position + crtc->scanline_offset) % vtotal;
  650. }
  651. static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
  652. unsigned int flags, int *vpos, int *hpos,
  653. ktime_t *stime, ktime_t *etime,
  654. const struct drm_display_mode *mode)
  655. {
  656. struct drm_i915_private *dev_priv = to_i915(dev);
  657. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  659. int position;
  660. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  661. bool in_vbl = true;
  662. int ret = 0;
  663. unsigned long irqflags;
  664. if (WARN_ON(!mode->crtc_clock)) {
  665. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  666. "pipe %c\n", pipe_name(pipe));
  667. return 0;
  668. }
  669. htotal = mode->crtc_htotal;
  670. hsync_start = mode->crtc_hsync_start;
  671. vtotal = mode->crtc_vtotal;
  672. vbl_start = mode->crtc_vblank_start;
  673. vbl_end = mode->crtc_vblank_end;
  674. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  675. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  676. vbl_end /= 2;
  677. vtotal /= 2;
  678. }
  679. ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
  680. /*
  681. * Lock uncore.lock, as we will do multiple timing critical raw
  682. * register reads, potentially with preemption disabled, so the
  683. * following code must not block on uncore.lock.
  684. */
  685. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  686. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  687. /* Get optional system timestamp before query. */
  688. if (stime)
  689. *stime = ktime_get();
  690. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  691. /* No obvious pixelcount register. Only query vertical
  692. * scanout position from Display scan line register.
  693. */
  694. position = __intel_get_crtc_scanline(intel_crtc);
  695. } else {
  696. /* Have access to pixelcount since start of frame.
  697. * We can split this into vertical and horizontal
  698. * scanout position.
  699. */
  700. position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  701. /* convert to pixel counts */
  702. vbl_start *= htotal;
  703. vbl_end *= htotal;
  704. vtotal *= htotal;
  705. /*
  706. * In interlaced modes, the pixel counter counts all pixels,
  707. * so one field will have htotal more pixels. In order to avoid
  708. * the reported position from jumping backwards when the pixel
  709. * counter is beyond the length of the shorter field, just
  710. * clamp the position the length of the shorter field. This
  711. * matches how the scanline counter based position works since
  712. * the scanline counter doesn't count the two half lines.
  713. */
  714. if (position >= vtotal)
  715. position = vtotal - 1;
  716. /*
  717. * Start of vblank interrupt is triggered at start of hsync,
  718. * just prior to the first active line of vblank. However we
  719. * consider lines to start at the leading edge of horizontal
  720. * active. So, should we get here before we've crossed into
  721. * the horizontal active of the first line in vblank, we would
  722. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  723. * always add htotal-hsync_start to the current pixel position.
  724. */
  725. position = (position + htotal - hsync_start) % vtotal;
  726. }
  727. /* Get optional system timestamp after query. */
  728. if (etime)
  729. *etime = ktime_get();
  730. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  731. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  732. in_vbl = position >= vbl_start && position < vbl_end;
  733. /*
  734. * While in vblank, position will be negative
  735. * counting up towards 0 at vbl_end. And outside
  736. * vblank, position will be positive counting
  737. * up since vbl_end.
  738. */
  739. if (position >= vbl_start)
  740. position -= vbl_end;
  741. else
  742. position += vtotal - vbl_end;
  743. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  744. *vpos = position;
  745. *hpos = 0;
  746. } else {
  747. *vpos = position / htotal;
  748. *hpos = position - (*vpos * htotal);
  749. }
  750. /* In vblank? */
  751. if (in_vbl)
  752. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  753. return ret;
  754. }
  755. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  756. {
  757. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  758. unsigned long irqflags;
  759. int position;
  760. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  761. position = __intel_get_crtc_scanline(crtc);
  762. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  763. return position;
  764. }
  765. static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
  766. int *max_error,
  767. struct timeval *vblank_time,
  768. unsigned flags)
  769. {
  770. struct drm_crtc *crtc;
  771. if (pipe >= INTEL_INFO(dev)->num_pipes) {
  772. DRM_ERROR("Invalid crtc %u\n", pipe);
  773. return -EINVAL;
  774. }
  775. /* Get drm_crtc to timestamp: */
  776. crtc = intel_get_crtc_for_pipe(dev, pipe);
  777. if (crtc == NULL) {
  778. DRM_ERROR("Invalid crtc %u\n", pipe);
  779. return -EINVAL;
  780. }
  781. if (!crtc->hwmode.crtc_clock) {
  782. DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
  783. return -EBUSY;
  784. }
  785. /* Helper routine in DRM core does all the work: */
  786. return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
  787. vblank_time, flags,
  788. &crtc->hwmode);
  789. }
  790. static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
  791. {
  792. u32 busy_up, busy_down, max_avg, min_avg;
  793. u8 new_delay;
  794. spin_lock(&mchdev_lock);
  795. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  796. new_delay = dev_priv->ips.cur_delay;
  797. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  798. busy_up = I915_READ(RCPREVBSYTUPAVG);
  799. busy_down = I915_READ(RCPREVBSYTDNAVG);
  800. max_avg = I915_READ(RCBMAXAVG);
  801. min_avg = I915_READ(RCBMINAVG);
  802. /* Handle RCS change request from hw */
  803. if (busy_up > max_avg) {
  804. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  805. new_delay = dev_priv->ips.cur_delay - 1;
  806. if (new_delay < dev_priv->ips.max_delay)
  807. new_delay = dev_priv->ips.max_delay;
  808. } else if (busy_down < min_avg) {
  809. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  810. new_delay = dev_priv->ips.cur_delay + 1;
  811. if (new_delay > dev_priv->ips.min_delay)
  812. new_delay = dev_priv->ips.min_delay;
  813. }
  814. if (ironlake_set_drps(dev_priv, new_delay))
  815. dev_priv->ips.cur_delay = new_delay;
  816. spin_unlock(&mchdev_lock);
  817. return;
  818. }
  819. static void notify_ring(struct intel_engine_cs *engine)
  820. {
  821. smp_store_mb(engine->breadcrumbs.irq_posted, true);
  822. if (intel_engine_wakeup(engine))
  823. trace_i915_gem_request_notify(engine);
  824. }
  825. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  826. struct intel_rps_ei *ei)
  827. {
  828. ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
  829. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  830. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  831. }
  832. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  833. {
  834. memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
  835. }
  836. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  837. {
  838. const struct intel_rps_ei *prev = &dev_priv->rps.ei;
  839. struct intel_rps_ei now;
  840. u32 events = 0;
  841. if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
  842. return 0;
  843. vlv_c0_read(dev_priv, &now);
  844. if (now.cz_clock == 0)
  845. return 0;
  846. if (prev->cz_clock) {
  847. u64 time, c0;
  848. unsigned int mul;
  849. mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
  850. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  851. mul <<= 8;
  852. time = now.cz_clock - prev->cz_clock;
  853. time *= dev_priv->czclk_freq;
  854. /* Workload can be split between render + media,
  855. * e.g. SwapBuffers being blitted in X after being rendered in
  856. * mesa. To account for this we need to combine both engines
  857. * into our activity counter.
  858. */
  859. c0 = now.render_c0 - prev->render_c0;
  860. c0 += now.media_c0 - prev->media_c0;
  861. c0 *= mul;
  862. if (c0 > time * dev_priv->rps.up_threshold)
  863. events = GEN6_PM_RP_UP_THRESHOLD;
  864. else if (c0 < time * dev_priv->rps.down_threshold)
  865. events = GEN6_PM_RP_DOWN_THRESHOLD;
  866. }
  867. dev_priv->rps.ei = now;
  868. return events;
  869. }
  870. static bool any_waiters(struct drm_i915_private *dev_priv)
  871. {
  872. struct intel_engine_cs *engine;
  873. for_each_engine(engine, dev_priv)
  874. if (intel_engine_has_waiter(engine))
  875. return true;
  876. return false;
  877. }
  878. static void gen6_pm_rps_work(struct work_struct *work)
  879. {
  880. struct drm_i915_private *dev_priv =
  881. container_of(work, struct drm_i915_private, rps.work);
  882. bool client_boost;
  883. int new_delay, adj, min, max;
  884. u32 pm_iir;
  885. spin_lock_irq(&dev_priv->irq_lock);
  886. /* Speed up work cancelation during disabling rps interrupts. */
  887. if (!dev_priv->rps.interrupts_enabled) {
  888. spin_unlock_irq(&dev_priv->irq_lock);
  889. return;
  890. }
  891. pm_iir = dev_priv->rps.pm_iir;
  892. dev_priv->rps.pm_iir = 0;
  893. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  894. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  895. client_boost = dev_priv->rps.client_boost;
  896. dev_priv->rps.client_boost = false;
  897. spin_unlock_irq(&dev_priv->irq_lock);
  898. /* Make sure we didn't queue anything we're not going to process. */
  899. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  900. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  901. return;
  902. mutex_lock(&dev_priv->rps.hw_lock);
  903. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  904. adj = dev_priv->rps.last_adj;
  905. new_delay = dev_priv->rps.cur_freq;
  906. min = dev_priv->rps.min_freq_softlimit;
  907. max = dev_priv->rps.max_freq_softlimit;
  908. if (client_boost || any_waiters(dev_priv))
  909. max = dev_priv->rps.max_freq;
  910. if (client_boost && new_delay < dev_priv->rps.boost_freq) {
  911. new_delay = dev_priv->rps.boost_freq;
  912. adj = 0;
  913. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  914. if (adj > 0)
  915. adj *= 2;
  916. else /* CHV needs even encode values */
  917. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  918. /*
  919. * For better performance, jump directly
  920. * to RPe if we're below it.
  921. */
  922. if (new_delay < dev_priv->rps.efficient_freq - adj) {
  923. new_delay = dev_priv->rps.efficient_freq;
  924. adj = 0;
  925. }
  926. } else if (client_boost || any_waiters(dev_priv)) {
  927. adj = 0;
  928. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  929. if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
  930. new_delay = dev_priv->rps.efficient_freq;
  931. else
  932. new_delay = dev_priv->rps.min_freq_softlimit;
  933. adj = 0;
  934. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  935. if (adj < 0)
  936. adj *= 2;
  937. else /* CHV needs even encode values */
  938. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  939. } else { /* unknown event */
  940. adj = 0;
  941. }
  942. dev_priv->rps.last_adj = adj;
  943. /* sysfs frequency interfaces may have snuck in while servicing the
  944. * interrupt
  945. */
  946. new_delay += adj;
  947. new_delay = clamp_t(int, new_delay, min, max);
  948. intel_set_rps(dev_priv, new_delay);
  949. mutex_unlock(&dev_priv->rps.hw_lock);
  950. }
  951. /**
  952. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  953. * occurred.
  954. * @work: workqueue struct
  955. *
  956. * Doesn't actually do anything except notify userspace. As a consequence of
  957. * this event, userspace should try to remap the bad rows since statistically
  958. * it is likely the same row is more likely to go bad again.
  959. */
  960. static void ivybridge_parity_work(struct work_struct *work)
  961. {
  962. struct drm_i915_private *dev_priv =
  963. container_of(work, struct drm_i915_private, l3_parity.error_work);
  964. u32 error_status, row, bank, subbank;
  965. char *parity_event[6];
  966. uint32_t misccpctl;
  967. uint8_t slice = 0;
  968. /* We must turn off DOP level clock gating to access the L3 registers.
  969. * In order to prevent a get/put style interface, acquire struct mutex
  970. * any time we access those registers.
  971. */
  972. mutex_lock(&dev_priv->drm.struct_mutex);
  973. /* If we've screwed up tracking, just let the interrupt fire again */
  974. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  975. goto out;
  976. misccpctl = I915_READ(GEN7_MISCCPCTL);
  977. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  978. POSTING_READ(GEN7_MISCCPCTL);
  979. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  980. i915_reg_t reg;
  981. slice--;
  982. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
  983. break;
  984. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  985. reg = GEN7_L3CDERRST1(slice);
  986. error_status = I915_READ(reg);
  987. row = GEN7_PARITY_ERROR_ROW(error_status);
  988. bank = GEN7_PARITY_ERROR_BANK(error_status);
  989. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  990. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  991. POSTING_READ(reg);
  992. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  993. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  994. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  995. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  996. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  997. parity_event[5] = NULL;
  998. kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
  999. KOBJ_CHANGE, parity_event);
  1000. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1001. slice, row, bank, subbank);
  1002. kfree(parity_event[4]);
  1003. kfree(parity_event[3]);
  1004. kfree(parity_event[2]);
  1005. kfree(parity_event[1]);
  1006. }
  1007. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1008. out:
  1009. WARN_ON(dev_priv->l3_parity.which_slice);
  1010. spin_lock_irq(&dev_priv->irq_lock);
  1011. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1012. spin_unlock_irq(&dev_priv->irq_lock);
  1013. mutex_unlock(&dev_priv->drm.struct_mutex);
  1014. }
  1015. static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
  1016. u32 iir)
  1017. {
  1018. if (!HAS_L3_DPF(dev_priv))
  1019. return;
  1020. spin_lock(&dev_priv->irq_lock);
  1021. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1022. spin_unlock(&dev_priv->irq_lock);
  1023. iir &= GT_PARITY_ERROR(dev_priv);
  1024. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1025. dev_priv->l3_parity.which_slice |= 1 << 1;
  1026. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1027. dev_priv->l3_parity.which_slice |= 1 << 0;
  1028. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1029. }
  1030. static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
  1031. u32 gt_iir)
  1032. {
  1033. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1034. notify_ring(&dev_priv->engine[RCS]);
  1035. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1036. notify_ring(&dev_priv->engine[VCS]);
  1037. }
  1038. static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
  1039. u32 gt_iir)
  1040. {
  1041. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1042. notify_ring(&dev_priv->engine[RCS]);
  1043. if (gt_iir & GT_BSD_USER_INTERRUPT)
  1044. notify_ring(&dev_priv->engine[VCS]);
  1045. if (gt_iir & GT_BLT_USER_INTERRUPT)
  1046. notify_ring(&dev_priv->engine[BCS]);
  1047. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1048. GT_BSD_CS_ERROR_INTERRUPT |
  1049. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1050. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1051. if (gt_iir & GT_PARITY_ERROR(dev_priv))
  1052. ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
  1053. }
  1054. static __always_inline void
  1055. gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
  1056. {
  1057. if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
  1058. notify_ring(engine);
  1059. if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
  1060. tasklet_schedule(&engine->irq_tasklet);
  1061. }
  1062. static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
  1063. u32 master_ctl,
  1064. u32 gt_iir[4])
  1065. {
  1066. irqreturn_t ret = IRQ_NONE;
  1067. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1068. gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
  1069. if (gt_iir[0]) {
  1070. I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
  1071. ret = IRQ_HANDLED;
  1072. } else
  1073. DRM_ERROR("The master control interrupt lied (GT0)!\n");
  1074. }
  1075. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1076. gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
  1077. if (gt_iir[1]) {
  1078. I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
  1079. ret = IRQ_HANDLED;
  1080. } else
  1081. DRM_ERROR("The master control interrupt lied (GT1)!\n");
  1082. }
  1083. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1084. gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
  1085. if (gt_iir[3]) {
  1086. I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
  1087. ret = IRQ_HANDLED;
  1088. } else
  1089. DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1090. }
  1091. if (master_ctl & GEN8_GT_PM_IRQ) {
  1092. gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
  1093. if (gt_iir[2] & dev_priv->pm_rps_events) {
  1094. I915_WRITE_FW(GEN8_GT_IIR(2),
  1095. gt_iir[2] & dev_priv->pm_rps_events);
  1096. ret = IRQ_HANDLED;
  1097. } else
  1098. DRM_ERROR("The master control interrupt lied (PM)!\n");
  1099. }
  1100. return ret;
  1101. }
  1102. static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  1103. u32 gt_iir[4])
  1104. {
  1105. if (gt_iir[0]) {
  1106. gen8_cs_irq_handler(&dev_priv->engine[RCS],
  1107. gt_iir[0], GEN8_RCS_IRQ_SHIFT);
  1108. gen8_cs_irq_handler(&dev_priv->engine[BCS],
  1109. gt_iir[0], GEN8_BCS_IRQ_SHIFT);
  1110. }
  1111. if (gt_iir[1]) {
  1112. gen8_cs_irq_handler(&dev_priv->engine[VCS],
  1113. gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
  1114. gen8_cs_irq_handler(&dev_priv->engine[VCS2],
  1115. gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
  1116. }
  1117. if (gt_iir[3])
  1118. gen8_cs_irq_handler(&dev_priv->engine[VECS],
  1119. gt_iir[3], GEN8_VECS_IRQ_SHIFT);
  1120. if (gt_iir[2] & dev_priv->pm_rps_events)
  1121. gen6_rps_irq_handler(dev_priv, gt_iir[2]);
  1122. }
  1123. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1124. {
  1125. switch (port) {
  1126. case PORT_A:
  1127. return val & PORTA_HOTPLUG_LONG_DETECT;
  1128. case PORT_B:
  1129. return val & PORTB_HOTPLUG_LONG_DETECT;
  1130. case PORT_C:
  1131. return val & PORTC_HOTPLUG_LONG_DETECT;
  1132. default:
  1133. return false;
  1134. }
  1135. }
  1136. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1137. {
  1138. switch (port) {
  1139. case PORT_E:
  1140. return val & PORTE_HOTPLUG_LONG_DETECT;
  1141. default:
  1142. return false;
  1143. }
  1144. }
  1145. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1146. {
  1147. switch (port) {
  1148. case PORT_A:
  1149. return val & PORTA_HOTPLUG_LONG_DETECT;
  1150. case PORT_B:
  1151. return val & PORTB_HOTPLUG_LONG_DETECT;
  1152. case PORT_C:
  1153. return val & PORTC_HOTPLUG_LONG_DETECT;
  1154. case PORT_D:
  1155. return val & PORTD_HOTPLUG_LONG_DETECT;
  1156. default:
  1157. return false;
  1158. }
  1159. }
  1160. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1161. {
  1162. switch (port) {
  1163. case PORT_A:
  1164. return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1165. default:
  1166. return false;
  1167. }
  1168. }
  1169. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1170. {
  1171. switch (port) {
  1172. case PORT_B:
  1173. return val & PORTB_HOTPLUG_LONG_DETECT;
  1174. case PORT_C:
  1175. return val & PORTC_HOTPLUG_LONG_DETECT;
  1176. case PORT_D:
  1177. return val & PORTD_HOTPLUG_LONG_DETECT;
  1178. default:
  1179. return false;
  1180. }
  1181. }
  1182. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1183. {
  1184. switch (port) {
  1185. case PORT_B:
  1186. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1187. case PORT_C:
  1188. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1189. case PORT_D:
  1190. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1191. default:
  1192. return false;
  1193. }
  1194. }
  1195. /*
  1196. * Get a bit mask of pins that have triggered, and which ones may be long.
  1197. * This can be called multiple times with the same masks to accumulate
  1198. * hotplug detection results from several registers.
  1199. *
  1200. * Note that the caller is expected to zero out the masks initially.
  1201. */
  1202. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1203. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1204. const u32 hpd[HPD_NUM_PINS],
  1205. bool long_pulse_detect(enum port port, u32 val))
  1206. {
  1207. enum port port;
  1208. int i;
  1209. for_each_hpd_pin(i) {
  1210. if ((hpd[i] & hotplug_trigger) == 0)
  1211. continue;
  1212. *pin_mask |= BIT(i);
  1213. if (!intel_hpd_pin_to_port(i, &port))
  1214. continue;
  1215. if (long_pulse_detect(port, dig_hotplug_reg))
  1216. *long_mask |= BIT(i);
  1217. }
  1218. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1219. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1220. }
  1221. static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
  1222. {
  1223. wake_up_all(&dev_priv->gmbus_wait_queue);
  1224. }
  1225. static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
  1226. {
  1227. wake_up_all(&dev_priv->gmbus_wait_queue);
  1228. }
  1229. #if defined(CONFIG_DEBUG_FS)
  1230. static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1231. enum pipe pipe,
  1232. uint32_t crc0, uint32_t crc1,
  1233. uint32_t crc2, uint32_t crc3,
  1234. uint32_t crc4)
  1235. {
  1236. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1237. struct intel_pipe_crc_entry *entry;
  1238. int head, tail;
  1239. spin_lock(&pipe_crc->lock);
  1240. if (!pipe_crc->entries) {
  1241. spin_unlock(&pipe_crc->lock);
  1242. DRM_DEBUG_KMS("spurious interrupt\n");
  1243. return;
  1244. }
  1245. head = pipe_crc->head;
  1246. tail = pipe_crc->tail;
  1247. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1248. spin_unlock(&pipe_crc->lock);
  1249. DRM_ERROR("CRC buffer overflowing\n");
  1250. return;
  1251. }
  1252. entry = &pipe_crc->entries[head];
  1253. entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
  1254. pipe);
  1255. entry->crc[0] = crc0;
  1256. entry->crc[1] = crc1;
  1257. entry->crc[2] = crc2;
  1258. entry->crc[3] = crc3;
  1259. entry->crc[4] = crc4;
  1260. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1261. pipe_crc->head = head;
  1262. spin_unlock(&pipe_crc->lock);
  1263. wake_up_interruptible(&pipe_crc->wq);
  1264. }
  1265. #else
  1266. static inline void
  1267. display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1268. enum pipe pipe,
  1269. uint32_t crc0, uint32_t crc1,
  1270. uint32_t crc2, uint32_t crc3,
  1271. uint32_t crc4) {}
  1272. #endif
  1273. static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1274. enum pipe pipe)
  1275. {
  1276. display_pipe_crc_irq_handler(dev_priv, pipe,
  1277. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1278. 0, 0, 0, 0);
  1279. }
  1280. static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1281. enum pipe pipe)
  1282. {
  1283. display_pipe_crc_irq_handler(dev_priv, pipe,
  1284. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1285. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1286. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1287. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1288. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1289. }
  1290. static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1291. enum pipe pipe)
  1292. {
  1293. uint32_t res1, res2;
  1294. if (INTEL_GEN(dev_priv) >= 3)
  1295. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1296. else
  1297. res1 = 0;
  1298. if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
  1299. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1300. else
  1301. res2 = 0;
  1302. display_pipe_crc_irq_handler(dev_priv, pipe,
  1303. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1304. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1305. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1306. res1, res2);
  1307. }
  1308. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1309. * IMR bits until the work is done. Other interrupts can be processed without
  1310. * the work queue. */
  1311. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1312. {
  1313. if (pm_iir & dev_priv->pm_rps_events) {
  1314. spin_lock(&dev_priv->irq_lock);
  1315. gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1316. if (dev_priv->rps.interrupts_enabled) {
  1317. dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1318. schedule_work(&dev_priv->rps.work);
  1319. }
  1320. spin_unlock(&dev_priv->irq_lock);
  1321. }
  1322. if (INTEL_INFO(dev_priv)->gen >= 8)
  1323. return;
  1324. if (HAS_VEBOX(dev_priv)) {
  1325. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1326. notify_ring(&dev_priv->engine[VECS]);
  1327. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1328. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1329. }
  1330. }
  1331. static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
  1332. enum pipe pipe)
  1333. {
  1334. bool ret;
  1335. ret = drm_handle_vblank(&dev_priv->drm, pipe);
  1336. if (ret)
  1337. intel_finish_page_flip_mmio(dev_priv, pipe);
  1338. return ret;
  1339. }
  1340. static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
  1341. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1342. {
  1343. int pipe;
  1344. spin_lock(&dev_priv->irq_lock);
  1345. if (!dev_priv->display_irqs_enabled) {
  1346. spin_unlock(&dev_priv->irq_lock);
  1347. return;
  1348. }
  1349. for_each_pipe(dev_priv, pipe) {
  1350. i915_reg_t reg;
  1351. u32 mask, iir_bit = 0;
  1352. /*
  1353. * PIPESTAT bits get signalled even when the interrupt is
  1354. * disabled with the mask bits, and some of the status bits do
  1355. * not generate interrupts at all (like the underrun bit). Hence
  1356. * we need to be careful that we only handle what we want to
  1357. * handle.
  1358. */
  1359. /* fifo underruns are filterered in the underrun handler. */
  1360. mask = PIPE_FIFO_UNDERRUN_STATUS;
  1361. switch (pipe) {
  1362. case PIPE_A:
  1363. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1364. break;
  1365. case PIPE_B:
  1366. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1367. break;
  1368. case PIPE_C:
  1369. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1370. break;
  1371. }
  1372. if (iir & iir_bit)
  1373. mask |= dev_priv->pipestat_irq_mask[pipe];
  1374. if (!mask)
  1375. continue;
  1376. reg = PIPESTAT(pipe);
  1377. mask |= PIPESTAT_INT_ENABLE_MASK;
  1378. pipe_stats[pipe] = I915_READ(reg) & mask;
  1379. /*
  1380. * Clear the PIPE*STAT regs before the IIR
  1381. */
  1382. if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
  1383. PIPESTAT_INT_STATUS_MASK))
  1384. I915_WRITE(reg, pipe_stats[pipe]);
  1385. }
  1386. spin_unlock(&dev_priv->irq_lock);
  1387. }
  1388. static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1389. u32 pipe_stats[I915_MAX_PIPES])
  1390. {
  1391. enum pipe pipe;
  1392. for_each_pipe(dev_priv, pipe) {
  1393. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  1394. intel_pipe_handle_vblank(dev_priv, pipe))
  1395. intel_check_page_flip(dev_priv, pipe);
  1396. if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
  1397. intel_finish_page_flip_cs(dev_priv, pipe);
  1398. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1399. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1400. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1401. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1402. }
  1403. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1404. gmbus_irq_handler(dev_priv);
  1405. }
  1406. static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
  1407. {
  1408. u32 hotplug_status = 0, hotplug_status_mask;
  1409. int i;
  1410. if (IS_G4X(dev_priv) ||
  1411. IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1412. hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
  1413. DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
  1414. else
  1415. hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
  1416. /*
  1417. * We absolutely have to clear all the pending interrupt
  1418. * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
  1419. * interrupt bit won't have an edge, and the i965/g4x
  1420. * edge triggered IIR will not notice that an interrupt
  1421. * is still pending. We can't use PORT_HOTPLUG_EN to
  1422. * guarantee the edge as the act of toggling the enable
  1423. * bits can itself generate a new hotplug interrupt :(
  1424. */
  1425. for (i = 0; i < 10; i++) {
  1426. u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
  1427. if (tmp == 0)
  1428. return hotplug_status;
  1429. hotplug_status |= tmp;
  1430. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1431. }
  1432. WARN_ONCE(1,
  1433. "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
  1434. I915_READ(PORT_HOTPLUG_STAT));
  1435. return hotplug_status;
  1436. }
  1437. static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1438. u32 hotplug_status)
  1439. {
  1440. u32 pin_mask = 0, long_mask = 0;
  1441. if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
  1442. IS_CHERRYVIEW(dev_priv)) {
  1443. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1444. if (hotplug_trigger) {
  1445. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1446. hotplug_trigger, hpd_status_g4x,
  1447. i9xx_port_hotplug_long_detect);
  1448. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1449. }
  1450. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1451. dp_aux_irq_handler(dev_priv);
  1452. } else {
  1453. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1454. if (hotplug_trigger) {
  1455. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1456. hotplug_trigger, hpd_status_i915,
  1457. i9xx_port_hotplug_long_detect);
  1458. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1459. }
  1460. }
  1461. }
  1462. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1463. {
  1464. struct drm_device *dev = arg;
  1465. struct drm_i915_private *dev_priv = to_i915(dev);
  1466. irqreturn_t ret = IRQ_NONE;
  1467. if (!intel_irqs_enabled(dev_priv))
  1468. return IRQ_NONE;
  1469. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1470. disable_rpm_wakeref_asserts(dev_priv);
  1471. do {
  1472. u32 iir, gt_iir, pm_iir;
  1473. u32 pipe_stats[I915_MAX_PIPES] = {};
  1474. u32 hotplug_status = 0;
  1475. u32 ier = 0;
  1476. gt_iir = I915_READ(GTIIR);
  1477. pm_iir = I915_READ(GEN6_PMIIR);
  1478. iir = I915_READ(VLV_IIR);
  1479. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1480. break;
  1481. ret = IRQ_HANDLED;
  1482. /*
  1483. * Theory on interrupt generation, based on empirical evidence:
  1484. *
  1485. * x = ((VLV_IIR & VLV_IER) ||
  1486. * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
  1487. * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
  1488. *
  1489. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1490. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
  1491. * guarantee the CPU interrupt will be raised again even if we
  1492. * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
  1493. * bits this time around.
  1494. */
  1495. I915_WRITE(VLV_MASTER_IER, 0);
  1496. ier = I915_READ(VLV_IER);
  1497. I915_WRITE(VLV_IER, 0);
  1498. if (gt_iir)
  1499. I915_WRITE(GTIIR, gt_iir);
  1500. if (pm_iir)
  1501. I915_WRITE(GEN6_PMIIR, pm_iir);
  1502. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1503. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1504. /* Call regardless, as some status bits might not be
  1505. * signalled in iir */
  1506. valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1507. /*
  1508. * VLV_IIR is single buffered, and reflects the level
  1509. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1510. */
  1511. if (iir)
  1512. I915_WRITE(VLV_IIR, iir);
  1513. I915_WRITE(VLV_IER, ier);
  1514. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  1515. POSTING_READ(VLV_MASTER_IER);
  1516. if (gt_iir)
  1517. snb_gt_irq_handler(dev_priv, gt_iir);
  1518. if (pm_iir)
  1519. gen6_rps_irq_handler(dev_priv, pm_iir);
  1520. if (hotplug_status)
  1521. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1522. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1523. } while (0);
  1524. enable_rpm_wakeref_asserts(dev_priv);
  1525. return ret;
  1526. }
  1527. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1528. {
  1529. struct drm_device *dev = arg;
  1530. struct drm_i915_private *dev_priv = to_i915(dev);
  1531. irqreturn_t ret = IRQ_NONE;
  1532. if (!intel_irqs_enabled(dev_priv))
  1533. return IRQ_NONE;
  1534. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1535. disable_rpm_wakeref_asserts(dev_priv);
  1536. do {
  1537. u32 master_ctl, iir;
  1538. u32 gt_iir[4] = {};
  1539. u32 pipe_stats[I915_MAX_PIPES] = {};
  1540. u32 hotplug_status = 0;
  1541. u32 ier = 0;
  1542. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1543. iir = I915_READ(VLV_IIR);
  1544. if (master_ctl == 0 && iir == 0)
  1545. break;
  1546. ret = IRQ_HANDLED;
  1547. /*
  1548. * Theory on interrupt generation, based on empirical evidence:
  1549. *
  1550. * x = ((VLV_IIR & VLV_IER) ||
  1551. * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
  1552. * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
  1553. *
  1554. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1555. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
  1556. * guarantee the CPU interrupt will be raised again even if we
  1557. * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
  1558. * bits this time around.
  1559. */
  1560. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1561. ier = I915_READ(VLV_IER);
  1562. I915_WRITE(VLV_IER, 0);
  1563. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  1564. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1565. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1566. /* Call regardless, as some status bits might not be
  1567. * signalled in iir */
  1568. valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1569. /*
  1570. * VLV_IIR is single buffered, and reflects the level
  1571. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1572. */
  1573. if (iir)
  1574. I915_WRITE(VLV_IIR, iir);
  1575. I915_WRITE(VLV_IER, ier);
  1576. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1577. POSTING_READ(GEN8_MASTER_IRQ);
  1578. gen8_gt_irq_handler(dev_priv, gt_iir);
  1579. if (hotplug_status)
  1580. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1581. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1582. } while (0);
  1583. enable_rpm_wakeref_asserts(dev_priv);
  1584. return ret;
  1585. }
  1586. static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1587. u32 hotplug_trigger,
  1588. const u32 hpd[HPD_NUM_PINS])
  1589. {
  1590. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1591. /*
  1592. * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
  1593. * unless we touch the hotplug register, even if hotplug_trigger is
  1594. * zero. Not acking leads to "The master control interrupt lied (SDE)!"
  1595. * errors.
  1596. */
  1597. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1598. if (!hotplug_trigger) {
  1599. u32 mask = PORTA_HOTPLUG_STATUS_MASK |
  1600. PORTD_HOTPLUG_STATUS_MASK |
  1601. PORTC_HOTPLUG_STATUS_MASK |
  1602. PORTB_HOTPLUG_STATUS_MASK;
  1603. dig_hotplug_reg &= ~mask;
  1604. }
  1605. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1606. if (!hotplug_trigger)
  1607. return;
  1608. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1609. dig_hotplug_reg, hpd,
  1610. pch_port_hotplug_long_detect);
  1611. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1612. }
  1613. static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1614. {
  1615. int pipe;
  1616. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1617. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
  1618. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1619. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1620. SDE_AUDIO_POWER_SHIFT);
  1621. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1622. port_name(port));
  1623. }
  1624. if (pch_iir & SDE_AUX_MASK)
  1625. dp_aux_irq_handler(dev_priv);
  1626. if (pch_iir & SDE_GMBUS)
  1627. gmbus_irq_handler(dev_priv);
  1628. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1629. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1630. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1631. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1632. if (pch_iir & SDE_POISON)
  1633. DRM_ERROR("PCH poison interrupt\n");
  1634. if (pch_iir & SDE_FDI_MASK)
  1635. for_each_pipe(dev_priv, pipe)
  1636. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1637. pipe_name(pipe),
  1638. I915_READ(FDI_RX_IIR(pipe)));
  1639. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1640. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1641. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1642. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1643. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1644. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1645. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1646. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1647. }
  1648. static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
  1649. {
  1650. u32 err_int = I915_READ(GEN7_ERR_INT);
  1651. enum pipe pipe;
  1652. if (err_int & ERR_INT_POISON)
  1653. DRM_ERROR("Poison interrupt\n");
  1654. for_each_pipe(dev_priv, pipe) {
  1655. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1656. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1657. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1658. if (IS_IVYBRIDGE(dev_priv))
  1659. ivb_pipe_crc_irq_handler(dev_priv, pipe);
  1660. else
  1661. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  1662. }
  1663. }
  1664. I915_WRITE(GEN7_ERR_INT, err_int);
  1665. }
  1666. static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
  1667. {
  1668. u32 serr_int = I915_READ(SERR_INT);
  1669. if (serr_int & SERR_INT_POISON)
  1670. DRM_ERROR("PCH poison interrupt\n");
  1671. if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
  1672. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1673. if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
  1674. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1675. if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
  1676. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
  1677. I915_WRITE(SERR_INT, serr_int);
  1678. }
  1679. static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1680. {
  1681. int pipe;
  1682. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1683. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
  1684. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1685. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1686. SDE_AUDIO_POWER_SHIFT_CPT);
  1687. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1688. port_name(port));
  1689. }
  1690. if (pch_iir & SDE_AUX_MASK_CPT)
  1691. dp_aux_irq_handler(dev_priv);
  1692. if (pch_iir & SDE_GMBUS_CPT)
  1693. gmbus_irq_handler(dev_priv);
  1694. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1695. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1696. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1697. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1698. if (pch_iir & SDE_FDI_MASK_CPT)
  1699. for_each_pipe(dev_priv, pipe)
  1700. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1701. pipe_name(pipe),
  1702. I915_READ(FDI_RX_IIR(pipe)));
  1703. if (pch_iir & SDE_ERROR_CPT)
  1704. cpt_serr_int_handler(dev_priv);
  1705. }
  1706. static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1707. {
  1708. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1709. ~SDE_PORTE_HOTPLUG_SPT;
  1710. u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1711. u32 pin_mask = 0, long_mask = 0;
  1712. if (hotplug_trigger) {
  1713. u32 dig_hotplug_reg;
  1714. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1715. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1716. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1717. dig_hotplug_reg, hpd_spt,
  1718. spt_port_hotplug_long_detect);
  1719. }
  1720. if (hotplug2_trigger) {
  1721. u32 dig_hotplug_reg;
  1722. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1723. I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1724. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
  1725. dig_hotplug_reg, hpd_spt,
  1726. spt_port_hotplug2_long_detect);
  1727. }
  1728. if (pin_mask)
  1729. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1730. if (pch_iir & SDE_GMBUS_CPT)
  1731. gmbus_irq_handler(dev_priv);
  1732. }
  1733. static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1734. u32 hotplug_trigger,
  1735. const u32 hpd[HPD_NUM_PINS])
  1736. {
  1737. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1738. dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  1739. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  1740. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1741. dig_hotplug_reg, hpd,
  1742. ilk_port_hotplug_long_detect);
  1743. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1744. }
  1745. static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
  1746. u32 de_iir)
  1747. {
  1748. enum pipe pipe;
  1749. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  1750. if (hotplug_trigger)
  1751. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
  1752. if (de_iir & DE_AUX_CHANNEL_A)
  1753. dp_aux_irq_handler(dev_priv);
  1754. if (de_iir & DE_GSE)
  1755. intel_opregion_asle_intr(dev_priv);
  1756. if (de_iir & DE_POISON)
  1757. DRM_ERROR("Poison interrupt\n");
  1758. for_each_pipe(dev_priv, pipe) {
  1759. if (de_iir & DE_PIPE_VBLANK(pipe) &&
  1760. intel_pipe_handle_vblank(dev_priv, pipe))
  1761. intel_check_page_flip(dev_priv, pipe);
  1762. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1763. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1764. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1765. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1766. /* plane/pipes map 1:1 on ilk+ */
  1767. if (de_iir & DE_PLANE_FLIP_DONE(pipe))
  1768. intel_finish_page_flip_cs(dev_priv, pipe);
  1769. }
  1770. /* check event from PCH */
  1771. if (de_iir & DE_PCH_EVENT) {
  1772. u32 pch_iir = I915_READ(SDEIIR);
  1773. if (HAS_PCH_CPT(dev_priv))
  1774. cpt_irq_handler(dev_priv, pch_iir);
  1775. else
  1776. ibx_irq_handler(dev_priv, pch_iir);
  1777. /* should clear PCH hotplug event before clear CPU irq */
  1778. I915_WRITE(SDEIIR, pch_iir);
  1779. }
  1780. if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
  1781. ironlake_rps_change_irq_handler(dev_priv);
  1782. }
  1783. static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
  1784. u32 de_iir)
  1785. {
  1786. enum pipe pipe;
  1787. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  1788. if (hotplug_trigger)
  1789. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
  1790. if (de_iir & DE_ERR_INT_IVB)
  1791. ivb_err_int_handler(dev_priv);
  1792. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1793. dp_aux_irq_handler(dev_priv);
  1794. if (de_iir & DE_GSE_IVB)
  1795. intel_opregion_asle_intr(dev_priv);
  1796. for_each_pipe(dev_priv, pipe) {
  1797. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
  1798. intel_pipe_handle_vblank(dev_priv, pipe))
  1799. intel_check_page_flip(dev_priv, pipe);
  1800. /* plane/pipes map 1:1 on ilk+ */
  1801. if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
  1802. intel_finish_page_flip_cs(dev_priv, pipe);
  1803. }
  1804. /* check event from PCH */
  1805. if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
  1806. u32 pch_iir = I915_READ(SDEIIR);
  1807. cpt_irq_handler(dev_priv, pch_iir);
  1808. /* clear PCH hotplug event before clear CPU irq */
  1809. I915_WRITE(SDEIIR, pch_iir);
  1810. }
  1811. }
  1812. /*
  1813. * To handle irqs with the minimum potential races with fresh interrupts, we:
  1814. * 1 - Disable Master Interrupt Control.
  1815. * 2 - Find the source(s) of the interrupt.
  1816. * 3 - Clear the Interrupt Identity bits (IIR).
  1817. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  1818. * 5 - Re-enable Master Interrupt Control.
  1819. */
  1820. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  1821. {
  1822. struct drm_device *dev = arg;
  1823. struct drm_i915_private *dev_priv = to_i915(dev);
  1824. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  1825. irqreturn_t ret = IRQ_NONE;
  1826. if (!intel_irqs_enabled(dev_priv))
  1827. return IRQ_NONE;
  1828. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1829. disable_rpm_wakeref_asserts(dev_priv);
  1830. /* disable master interrupt before clearing iir */
  1831. de_ier = I915_READ(DEIER);
  1832. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  1833. POSTING_READ(DEIER);
  1834. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  1835. * interrupts will will be stored on its back queue, and then we'll be
  1836. * able to process them after we restore SDEIER (as soon as we restore
  1837. * it, we'll get an interrupt if SDEIIR still has something to process
  1838. * due to its back queue). */
  1839. if (!HAS_PCH_NOP(dev_priv)) {
  1840. sde_ier = I915_READ(SDEIER);
  1841. I915_WRITE(SDEIER, 0);
  1842. POSTING_READ(SDEIER);
  1843. }
  1844. /* Find, clear, then process each source of interrupt */
  1845. gt_iir = I915_READ(GTIIR);
  1846. if (gt_iir) {
  1847. I915_WRITE(GTIIR, gt_iir);
  1848. ret = IRQ_HANDLED;
  1849. if (INTEL_GEN(dev_priv) >= 6)
  1850. snb_gt_irq_handler(dev_priv, gt_iir);
  1851. else
  1852. ilk_gt_irq_handler(dev_priv, gt_iir);
  1853. }
  1854. de_iir = I915_READ(DEIIR);
  1855. if (de_iir) {
  1856. I915_WRITE(DEIIR, de_iir);
  1857. ret = IRQ_HANDLED;
  1858. if (INTEL_GEN(dev_priv) >= 7)
  1859. ivb_display_irq_handler(dev_priv, de_iir);
  1860. else
  1861. ilk_display_irq_handler(dev_priv, de_iir);
  1862. }
  1863. if (INTEL_GEN(dev_priv) >= 6) {
  1864. u32 pm_iir = I915_READ(GEN6_PMIIR);
  1865. if (pm_iir) {
  1866. I915_WRITE(GEN6_PMIIR, pm_iir);
  1867. ret = IRQ_HANDLED;
  1868. gen6_rps_irq_handler(dev_priv, pm_iir);
  1869. }
  1870. }
  1871. I915_WRITE(DEIER, de_ier);
  1872. POSTING_READ(DEIER);
  1873. if (!HAS_PCH_NOP(dev_priv)) {
  1874. I915_WRITE(SDEIER, sde_ier);
  1875. POSTING_READ(SDEIER);
  1876. }
  1877. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1878. enable_rpm_wakeref_asserts(dev_priv);
  1879. return ret;
  1880. }
  1881. static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1882. u32 hotplug_trigger,
  1883. const u32 hpd[HPD_NUM_PINS])
  1884. {
  1885. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1886. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1887. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1888. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1889. dig_hotplug_reg, hpd,
  1890. bxt_port_hotplug_long_detect);
  1891. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1892. }
  1893. static irqreturn_t
  1894. gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
  1895. {
  1896. irqreturn_t ret = IRQ_NONE;
  1897. u32 iir;
  1898. enum pipe pipe;
  1899. if (master_ctl & GEN8_DE_MISC_IRQ) {
  1900. iir = I915_READ(GEN8_DE_MISC_IIR);
  1901. if (iir) {
  1902. I915_WRITE(GEN8_DE_MISC_IIR, iir);
  1903. ret = IRQ_HANDLED;
  1904. if (iir & GEN8_DE_MISC_GSE)
  1905. intel_opregion_asle_intr(dev_priv);
  1906. else
  1907. DRM_ERROR("Unexpected DE Misc interrupt\n");
  1908. }
  1909. else
  1910. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  1911. }
  1912. if (master_ctl & GEN8_DE_PORT_IRQ) {
  1913. iir = I915_READ(GEN8_DE_PORT_IIR);
  1914. if (iir) {
  1915. u32 tmp_mask;
  1916. bool found = false;
  1917. I915_WRITE(GEN8_DE_PORT_IIR, iir);
  1918. ret = IRQ_HANDLED;
  1919. tmp_mask = GEN8_AUX_CHANNEL_A;
  1920. if (INTEL_INFO(dev_priv)->gen >= 9)
  1921. tmp_mask |= GEN9_AUX_CHANNEL_B |
  1922. GEN9_AUX_CHANNEL_C |
  1923. GEN9_AUX_CHANNEL_D;
  1924. if (iir & tmp_mask) {
  1925. dp_aux_irq_handler(dev_priv);
  1926. found = true;
  1927. }
  1928. if (IS_BROXTON(dev_priv)) {
  1929. tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
  1930. if (tmp_mask) {
  1931. bxt_hpd_irq_handler(dev_priv, tmp_mask,
  1932. hpd_bxt);
  1933. found = true;
  1934. }
  1935. } else if (IS_BROADWELL(dev_priv)) {
  1936. tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
  1937. if (tmp_mask) {
  1938. ilk_hpd_irq_handler(dev_priv,
  1939. tmp_mask, hpd_bdw);
  1940. found = true;
  1941. }
  1942. }
  1943. if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
  1944. gmbus_irq_handler(dev_priv);
  1945. found = true;
  1946. }
  1947. if (!found)
  1948. DRM_ERROR("Unexpected DE Port interrupt\n");
  1949. }
  1950. else
  1951. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  1952. }
  1953. for_each_pipe(dev_priv, pipe) {
  1954. u32 flip_done, fault_errors;
  1955. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  1956. continue;
  1957. iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  1958. if (!iir) {
  1959. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  1960. continue;
  1961. }
  1962. ret = IRQ_HANDLED;
  1963. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
  1964. if (iir & GEN8_PIPE_VBLANK &&
  1965. intel_pipe_handle_vblank(dev_priv, pipe))
  1966. intel_check_page_flip(dev_priv, pipe);
  1967. flip_done = iir;
  1968. if (INTEL_INFO(dev_priv)->gen >= 9)
  1969. flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
  1970. else
  1971. flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
  1972. if (flip_done)
  1973. intel_finish_page_flip_cs(dev_priv, pipe);
  1974. if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
  1975. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  1976. if (iir & GEN8_PIPE_FIFO_UNDERRUN)
  1977. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1978. fault_errors = iir;
  1979. if (INTEL_INFO(dev_priv)->gen >= 9)
  1980. fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  1981. else
  1982. fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  1983. if (fault_errors)
  1984. DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
  1985. pipe_name(pipe),
  1986. fault_errors);
  1987. }
  1988. if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
  1989. master_ctl & GEN8_DE_PCH_IRQ) {
  1990. /*
  1991. * FIXME(BDW): Assume for now that the new interrupt handling
  1992. * scheme also closed the SDE interrupt handling race we've seen
  1993. * on older pch-split platforms. But this needs testing.
  1994. */
  1995. iir = I915_READ(SDEIIR);
  1996. if (iir) {
  1997. I915_WRITE(SDEIIR, iir);
  1998. ret = IRQ_HANDLED;
  1999. if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
  2000. spt_irq_handler(dev_priv, iir);
  2001. else
  2002. cpt_irq_handler(dev_priv, iir);
  2003. } else {
  2004. /*
  2005. * Like on previous PCH there seems to be something
  2006. * fishy going on with forwarding PCH interrupts.
  2007. */
  2008. DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
  2009. }
  2010. }
  2011. return ret;
  2012. }
  2013. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  2014. {
  2015. struct drm_device *dev = arg;
  2016. struct drm_i915_private *dev_priv = to_i915(dev);
  2017. u32 master_ctl;
  2018. u32 gt_iir[4] = {};
  2019. irqreturn_t ret;
  2020. if (!intel_irqs_enabled(dev_priv))
  2021. return IRQ_NONE;
  2022. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  2023. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  2024. if (!master_ctl)
  2025. return IRQ_NONE;
  2026. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  2027. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2028. disable_rpm_wakeref_asserts(dev_priv);
  2029. /* Find, clear, then process each source of interrupt */
  2030. ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  2031. gen8_gt_irq_handler(dev_priv, gt_iir);
  2032. ret |= gen8_de_irq_handler(dev_priv, master_ctl);
  2033. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2034. POSTING_READ_FW(GEN8_MASTER_IRQ);
  2035. enable_rpm_wakeref_asserts(dev_priv);
  2036. return ret;
  2037. }
  2038. static void i915_error_wake_up(struct drm_i915_private *dev_priv)
  2039. {
  2040. /*
  2041. * Notify all waiters for GPU completion events that reset state has
  2042. * been changed, and that they need to restart their wait after
  2043. * checking for potential errors (and bail out to drop locks if there is
  2044. * a gpu reset pending so that i915_error_work_func can acquire them).
  2045. */
  2046. /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
  2047. wake_up_all(&dev_priv->gpu_error.wait_queue);
  2048. /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
  2049. wake_up_all(&dev_priv->pending_flip_queue);
  2050. }
  2051. /**
  2052. * i915_reset_and_wakeup - do process context error handling work
  2053. * @dev_priv: i915 device private
  2054. *
  2055. * Fire an error uevent so userspace can see that a hang or error
  2056. * was detected.
  2057. */
  2058. static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
  2059. {
  2060. struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
  2061. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  2062. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  2063. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  2064. kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
  2065. DRM_DEBUG_DRIVER("resetting chip\n");
  2066. kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
  2067. /*
  2068. * In most cases it's guaranteed that we get here with an RPM
  2069. * reference held, for example because there is a pending GPU
  2070. * request that won't finish until the reset is done. This
  2071. * isn't the case at least when we get here by doing a
  2072. * simulated reset via debugs, so get an RPM reference.
  2073. */
  2074. intel_runtime_pm_get(dev_priv);
  2075. intel_prepare_reset(dev_priv);
  2076. do {
  2077. /*
  2078. * All state reset _must_ be completed before we update the
  2079. * reset counter, for otherwise waiters might miss the reset
  2080. * pending state and not properly drop locks, resulting in
  2081. * deadlocks with the reset work.
  2082. */
  2083. if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
  2084. i915_reset(dev_priv);
  2085. mutex_unlock(&dev_priv->drm.struct_mutex);
  2086. }
  2087. /* We need to wait for anyone holding the lock to wakeup */
  2088. } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
  2089. I915_RESET_IN_PROGRESS,
  2090. TASK_UNINTERRUPTIBLE,
  2091. HZ));
  2092. intel_finish_reset(dev_priv);
  2093. intel_runtime_pm_put(dev_priv);
  2094. if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  2095. kobject_uevent_env(kobj,
  2096. KOBJ_CHANGE, reset_done_event);
  2097. /*
  2098. * Note: The wake_up also serves as a memory barrier so that
  2099. * waiters see the updated value of the dev_priv->gpu_error.
  2100. */
  2101. wake_up_all(&dev_priv->gpu_error.reset_queue);
  2102. }
  2103. static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
  2104. {
  2105. uint32_t instdone[I915_NUM_INSTDONE_REG];
  2106. u32 eir = I915_READ(EIR);
  2107. int pipe, i;
  2108. if (!eir)
  2109. return;
  2110. pr_err("render error detected, EIR: 0x%08x\n", eir);
  2111. i915_get_extra_instdone(dev_priv, instdone);
  2112. if (IS_G4X(dev_priv)) {
  2113. if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
  2114. u32 ipeir = I915_READ(IPEIR_I965);
  2115. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2116. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2117. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2118. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2119. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2120. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2121. I915_WRITE(IPEIR_I965, ipeir);
  2122. POSTING_READ(IPEIR_I965);
  2123. }
  2124. if (eir & GM45_ERROR_PAGE_TABLE) {
  2125. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2126. pr_err("page table error\n");
  2127. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2128. I915_WRITE(PGTBL_ER, pgtbl_err);
  2129. POSTING_READ(PGTBL_ER);
  2130. }
  2131. }
  2132. if (!IS_GEN2(dev_priv)) {
  2133. if (eir & I915_ERROR_PAGE_TABLE) {
  2134. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2135. pr_err("page table error\n");
  2136. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2137. I915_WRITE(PGTBL_ER, pgtbl_err);
  2138. POSTING_READ(PGTBL_ER);
  2139. }
  2140. }
  2141. if (eir & I915_ERROR_MEMORY_REFRESH) {
  2142. pr_err("memory refresh error:\n");
  2143. for_each_pipe(dev_priv, pipe)
  2144. pr_err("pipe %c stat: 0x%08x\n",
  2145. pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
  2146. /* pipestat has already been acked */
  2147. }
  2148. if (eir & I915_ERROR_INSTRUCTION) {
  2149. pr_err("instruction error\n");
  2150. pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
  2151. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2152. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2153. if (INTEL_GEN(dev_priv) < 4) {
  2154. u32 ipeir = I915_READ(IPEIR);
  2155. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
  2156. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
  2157. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
  2158. I915_WRITE(IPEIR, ipeir);
  2159. POSTING_READ(IPEIR);
  2160. } else {
  2161. u32 ipeir = I915_READ(IPEIR_I965);
  2162. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2163. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2164. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2165. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2166. I915_WRITE(IPEIR_I965, ipeir);
  2167. POSTING_READ(IPEIR_I965);
  2168. }
  2169. }
  2170. I915_WRITE(EIR, eir);
  2171. POSTING_READ(EIR);
  2172. eir = I915_READ(EIR);
  2173. if (eir) {
  2174. /*
  2175. * some errors might have become stuck,
  2176. * mask them.
  2177. */
  2178. DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
  2179. I915_WRITE(EMR, I915_READ(EMR) | eir);
  2180. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2181. }
  2182. }
  2183. /**
  2184. * i915_handle_error - handle a gpu error
  2185. * @dev_priv: i915 device private
  2186. * @engine_mask: mask representing engines that are hung
  2187. * Do some basic checking of register state at error time and
  2188. * dump it to the syslog. Also call i915_capture_error_state() to make
  2189. * sure we get a record and make it available in debugfs. Fire a uevent
  2190. * so userspace knows something bad happened (should trigger collection
  2191. * of a ring dump etc.).
  2192. * @fmt: Error message format string
  2193. */
  2194. void i915_handle_error(struct drm_i915_private *dev_priv,
  2195. u32 engine_mask,
  2196. const char *fmt, ...)
  2197. {
  2198. va_list args;
  2199. char error_msg[80];
  2200. va_start(args, fmt);
  2201. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2202. va_end(args);
  2203. i915_capture_error_state(dev_priv, engine_mask, error_msg);
  2204. i915_report_and_clear_eir(dev_priv);
  2205. if (!engine_mask)
  2206. return;
  2207. if (test_and_set_bit(I915_RESET_IN_PROGRESS,
  2208. &dev_priv->gpu_error.flags))
  2209. return;
  2210. /*
  2211. * Wakeup waiting processes so that the reset function
  2212. * i915_reset_and_wakeup doesn't deadlock trying to grab
  2213. * various locks. By bumping the reset counter first, the woken
  2214. * processes will see a reset in progress and back off,
  2215. * releasing their locks and then wait for the reset completion.
  2216. * We must do this for _all_ gpu waiters that might hold locks
  2217. * that the reset work needs to acquire.
  2218. *
  2219. * Note: The wake_up also provides a memory barrier to ensure that the
  2220. * waiters see the updated value of the reset flags.
  2221. */
  2222. i915_error_wake_up(dev_priv);
  2223. i915_reset_and_wakeup(dev_priv);
  2224. }
  2225. /* Called from drm generic code, passed 'crtc' which
  2226. * we use as a pipe index
  2227. */
  2228. static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2229. {
  2230. struct drm_i915_private *dev_priv = to_i915(dev);
  2231. unsigned long irqflags;
  2232. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2233. if (INTEL_INFO(dev)->gen >= 4)
  2234. i915_enable_pipestat(dev_priv, pipe,
  2235. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2236. else
  2237. i915_enable_pipestat(dev_priv, pipe,
  2238. PIPE_VBLANK_INTERRUPT_STATUS);
  2239. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2240. return 0;
  2241. }
  2242. static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2243. {
  2244. struct drm_i915_private *dev_priv = to_i915(dev);
  2245. unsigned long irqflags;
  2246. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2247. DE_PIPE_VBLANK(pipe);
  2248. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2249. ilk_enable_display_irq(dev_priv, bit);
  2250. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2251. return 0;
  2252. }
  2253. static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2254. {
  2255. struct drm_i915_private *dev_priv = to_i915(dev);
  2256. unsigned long irqflags;
  2257. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2258. i915_enable_pipestat(dev_priv, pipe,
  2259. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2260. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2261. return 0;
  2262. }
  2263. static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2264. {
  2265. struct drm_i915_private *dev_priv = to_i915(dev);
  2266. unsigned long irqflags;
  2267. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2268. bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2269. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2270. return 0;
  2271. }
  2272. /* Called from drm generic code, passed 'crtc' which
  2273. * we use as a pipe index
  2274. */
  2275. static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2276. {
  2277. struct drm_i915_private *dev_priv = to_i915(dev);
  2278. unsigned long irqflags;
  2279. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2280. i915_disable_pipestat(dev_priv, pipe,
  2281. PIPE_VBLANK_INTERRUPT_STATUS |
  2282. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2283. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2284. }
  2285. static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2286. {
  2287. struct drm_i915_private *dev_priv = to_i915(dev);
  2288. unsigned long irqflags;
  2289. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2290. DE_PIPE_VBLANK(pipe);
  2291. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2292. ilk_disable_display_irq(dev_priv, bit);
  2293. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2294. }
  2295. static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2296. {
  2297. struct drm_i915_private *dev_priv = to_i915(dev);
  2298. unsigned long irqflags;
  2299. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2300. i915_disable_pipestat(dev_priv, pipe,
  2301. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2302. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2303. }
  2304. static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2305. {
  2306. struct drm_i915_private *dev_priv = to_i915(dev);
  2307. unsigned long irqflags;
  2308. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2309. bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2310. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2311. }
  2312. static bool
  2313. ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
  2314. {
  2315. if (INTEL_GEN(engine->i915) >= 8) {
  2316. return (ipehr >> 23) == 0x1c;
  2317. } else {
  2318. ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
  2319. return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
  2320. MI_SEMAPHORE_REGISTER);
  2321. }
  2322. }
  2323. static struct intel_engine_cs *
  2324. semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
  2325. u64 offset)
  2326. {
  2327. struct drm_i915_private *dev_priv = engine->i915;
  2328. struct intel_engine_cs *signaller;
  2329. if (INTEL_GEN(dev_priv) >= 8) {
  2330. for_each_engine(signaller, dev_priv) {
  2331. if (engine == signaller)
  2332. continue;
  2333. if (offset == signaller->semaphore.signal_ggtt[engine->hw_id])
  2334. return signaller;
  2335. }
  2336. } else {
  2337. u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
  2338. for_each_engine(signaller, dev_priv) {
  2339. if(engine == signaller)
  2340. continue;
  2341. if (sync_bits == signaller->semaphore.mbox.wait[engine->hw_id])
  2342. return signaller;
  2343. }
  2344. }
  2345. DRM_DEBUG_DRIVER("No signaller ring found for %s, ipehr 0x%08x, offset 0x%016llx\n",
  2346. engine->name, ipehr, offset);
  2347. return ERR_PTR(-ENODEV);
  2348. }
  2349. static struct intel_engine_cs *
  2350. semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
  2351. {
  2352. struct drm_i915_private *dev_priv = engine->i915;
  2353. void __iomem *vaddr;
  2354. u32 cmd, ipehr, head;
  2355. u64 offset = 0;
  2356. int i, backwards;
  2357. /*
  2358. * This function does not support execlist mode - any attempt to
  2359. * proceed further into this function will result in a kernel panic
  2360. * when dereferencing ring->buffer, which is not set up in execlist
  2361. * mode.
  2362. *
  2363. * The correct way of doing it would be to derive the currently
  2364. * executing ring buffer from the current context, which is derived
  2365. * from the currently running request. Unfortunately, to get the
  2366. * current request we would have to grab the struct_mutex before doing
  2367. * anything else, which would be ill-advised since some other thread
  2368. * might have grabbed it already and managed to hang itself, causing
  2369. * the hang checker to deadlock.
  2370. *
  2371. * Therefore, this function does not support execlist mode in its
  2372. * current form. Just return NULL and move on.
  2373. */
  2374. if (engine->buffer == NULL)
  2375. return NULL;
  2376. ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
  2377. if (!ipehr_is_semaphore_wait(engine, ipehr))
  2378. return NULL;
  2379. /*
  2380. * HEAD is likely pointing to the dword after the actual command,
  2381. * so scan backwards until we find the MBOX. But limit it to just 3
  2382. * or 4 dwords depending on the semaphore wait command size.
  2383. * Note that we don't care about ACTHD here since that might
  2384. * point at at batch, and semaphores are always emitted into the
  2385. * ringbuffer itself.
  2386. */
  2387. head = I915_READ_HEAD(engine) & HEAD_ADDR;
  2388. backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
  2389. vaddr = (void __iomem *)engine->buffer->vaddr;
  2390. for (i = backwards; i; --i) {
  2391. /*
  2392. * Be paranoid and presume the hw has gone off into the wild -
  2393. * our ring is smaller than what the hardware (and hence
  2394. * HEAD_ADDR) allows. Also handles wrap-around.
  2395. */
  2396. head &= engine->buffer->size - 1;
  2397. /* This here seems to blow up */
  2398. cmd = ioread32(vaddr + head);
  2399. if (cmd == ipehr)
  2400. break;
  2401. head -= 4;
  2402. }
  2403. if (!i)
  2404. return NULL;
  2405. *seqno = ioread32(vaddr + head + 4) + 1;
  2406. if (INTEL_GEN(dev_priv) >= 8) {
  2407. offset = ioread32(vaddr + head + 12);
  2408. offset <<= 32;
  2409. offset |= ioread32(vaddr + head + 8);
  2410. }
  2411. return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
  2412. }
  2413. static int semaphore_passed(struct intel_engine_cs *engine)
  2414. {
  2415. struct drm_i915_private *dev_priv = engine->i915;
  2416. struct intel_engine_cs *signaller;
  2417. u32 seqno;
  2418. engine->hangcheck.deadlock++;
  2419. signaller = semaphore_waits_for(engine, &seqno);
  2420. if (signaller == NULL)
  2421. return -1;
  2422. if (IS_ERR(signaller))
  2423. return 0;
  2424. /* Prevent pathological recursion due to driver bugs */
  2425. if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
  2426. return -1;
  2427. if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
  2428. return 1;
  2429. /* cursory check for an unkickable deadlock */
  2430. if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
  2431. semaphore_passed(signaller) < 0)
  2432. return -1;
  2433. return 0;
  2434. }
  2435. static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
  2436. {
  2437. struct intel_engine_cs *engine;
  2438. for_each_engine(engine, dev_priv)
  2439. engine->hangcheck.deadlock = 0;
  2440. }
  2441. static bool subunits_stuck(struct intel_engine_cs *engine)
  2442. {
  2443. u32 instdone[I915_NUM_INSTDONE_REG];
  2444. bool stuck;
  2445. int i;
  2446. if (engine->id != RCS)
  2447. return true;
  2448. i915_get_extra_instdone(engine->i915, instdone);
  2449. /* There might be unstable subunit states even when
  2450. * actual head is not moving. Filter out the unstable ones by
  2451. * accumulating the undone -> done transitions and only
  2452. * consider those as progress.
  2453. */
  2454. stuck = true;
  2455. for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
  2456. const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
  2457. if (tmp != engine->hangcheck.instdone[i])
  2458. stuck = false;
  2459. engine->hangcheck.instdone[i] |= tmp;
  2460. }
  2461. return stuck;
  2462. }
  2463. static enum intel_engine_hangcheck_action
  2464. head_stuck(struct intel_engine_cs *engine, u64 acthd)
  2465. {
  2466. if (acthd != engine->hangcheck.acthd) {
  2467. /* Clear subunit states on head movement */
  2468. memset(engine->hangcheck.instdone, 0,
  2469. sizeof(engine->hangcheck.instdone));
  2470. return HANGCHECK_ACTIVE;
  2471. }
  2472. if (!subunits_stuck(engine))
  2473. return HANGCHECK_ACTIVE;
  2474. return HANGCHECK_HUNG;
  2475. }
  2476. static enum intel_engine_hangcheck_action
  2477. engine_stuck(struct intel_engine_cs *engine, u64 acthd)
  2478. {
  2479. struct drm_i915_private *dev_priv = engine->i915;
  2480. enum intel_engine_hangcheck_action ha;
  2481. u32 tmp;
  2482. ha = head_stuck(engine, acthd);
  2483. if (ha != HANGCHECK_HUNG)
  2484. return ha;
  2485. if (IS_GEN2(dev_priv))
  2486. return HANGCHECK_HUNG;
  2487. /* Is the chip hanging on a WAIT_FOR_EVENT?
  2488. * If so we can simply poke the RB_WAIT bit
  2489. * and break the hang. This should work on
  2490. * all but the second generation chipsets.
  2491. */
  2492. tmp = I915_READ_CTL(engine);
  2493. if (tmp & RING_WAIT) {
  2494. i915_handle_error(dev_priv, 0,
  2495. "Kicking stuck wait on %s",
  2496. engine->name);
  2497. I915_WRITE_CTL(engine, tmp);
  2498. return HANGCHECK_KICK;
  2499. }
  2500. if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
  2501. switch (semaphore_passed(engine)) {
  2502. default:
  2503. return HANGCHECK_HUNG;
  2504. case 1:
  2505. i915_handle_error(dev_priv, 0,
  2506. "Kicking stuck semaphore on %s",
  2507. engine->name);
  2508. I915_WRITE_CTL(engine, tmp);
  2509. return HANGCHECK_KICK;
  2510. case 0:
  2511. return HANGCHECK_WAIT;
  2512. }
  2513. }
  2514. return HANGCHECK_HUNG;
  2515. }
  2516. /*
  2517. * This is called when the chip hasn't reported back with completed
  2518. * batchbuffers in a long time. We keep track per ring seqno progress and
  2519. * if there are no progress, hangcheck score for that ring is increased.
  2520. * Further, acthd is inspected to see if the ring is stuck. On stuck case
  2521. * we kick the ring. If we see no progress on three subsequent calls
  2522. * we assume chip is wedged and try to fix it by resetting the chip.
  2523. */
  2524. static void i915_hangcheck_elapsed(struct work_struct *work)
  2525. {
  2526. struct drm_i915_private *dev_priv =
  2527. container_of(work, typeof(*dev_priv),
  2528. gpu_error.hangcheck_work.work);
  2529. struct intel_engine_cs *engine;
  2530. unsigned int hung = 0, stuck = 0;
  2531. int busy_count = 0;
  2532. #define BUSY 1
  2533. #define KICK 5
  2534. #define HUNG 20
  2535. #define ACTIVE_DECAY 15
  2536. if (!i915.enable_hangcheck)
  2537. return;
  2538. if (!READ_ONCE(dev_priv->gt.awake))
  2539. return;
  2540. /* As enabling the GPU requires fairly extensive mmio access,
  2541. * periodically arm the mmio checker to see if we are triggering
  2542. * any invalid access.
  2543. */
  2544. intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
  2545. for_each_engine(engine, dev_priv) {
  2546. bool busy = intel_engine_has_waiter(engine);
  2547. u64 acthd;
  2548. u32 seqno;
  2549. u32 submit;
  2550. semaphore_clear_deadlocks(dev_priv);
  2551. /* We don't strictly need an irq-barrier here, as we are not
  2552. * serving an interrupt request, be paranoid in case the
  2553. * barrier has side-effects (such as preventing a broken
  2554. * cacheline snoop) and so be sure that we can see the seqno
  2555. * advance. If the seqno should stick, due to a stale
  2556. * cacheline, we would erroneously declare the GPU hung.
  2557. */
  2558. if (engine->irq_seqno_barrier)
  2559. engine->irq_seqno_barrier(engine);
  2560. acthd = intel_engine_get_active_head(engine);
  2561. seqno = intel_engine_get_seqno(engine);
  2562. submit = READ_ONCE(engine->last_submitted_seqno);
  2563. if (engine->hangcheck.seqno == seqno) {
  2564. if (i915_seqno_passed(seqno, submit)) {
  2565. engine->hangcheck.action = HANGCHECK_IDLE;
  2566. } else {
  2567. /* We always increment the hangcheck score
  2568. * if the engine is busy and still processing
  2569. * the same request, so that no single request
  2570. * can run indefinitely (such as a chain of
  2571. * batches). The only time we do not increment
  2572. * the hangcheck score on this ring, if this
  2573. * engine is in a legitimate wait for another
  2574. * engine. In that case the waiting engine is a
  2575. * victim and we want to be sure we catch the
  2576. * right culprit. Then every time we do kick
  2577. * the ring, add a small increment to the
  2578. * score so that we can catch a batch that is
  2579. * being repeatedly kicked and so responsible
  2580. * for stalling the machine.
  2581. */
  2582. engine->hangcheck.action =
  2583. engine_stuck(engine, acthd);
  2584. switch (engine->hangcheck.action) {
  2585. case HANGCHECK_IDLE:
  2586. case HANGCHECK_WAIT:
  2587. break;
  2588. case HANGCHECK_ACTIVE:
  2589. engine->hangcheck.score += BUSY;
  2590. break;
  2591. case HANGCHECK_KICK:
  2592. engine->hangcheck.score += KICK;
  2593. break;
  2594. case HANGCHECK_HUNG:
  2595. engine->hangcheck.score += HUNG;
  2596. break;
  2597. }
  2598. }
  2599. if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
  2600. hung |= intel_engine_flag(engine);
  2601. if (engine->hangcheck.action != HANGCHECK_HUNG)
  2602. stuck |= intel_engine_flag(engine);
  2603. }
  2604. } else {
  2605. engine->hangcheck.action = HANGCHECK_ACTIVE;
  2606. /* Gradually reduce the count so that we catch DoS
  2607. * attempts across multiple batches.
  2608. */
  2609. if (engine->hangcheck.score > 0)
  2610. engine->hangcheck.score -= ACTIVE_DECAY;
  2611. if (engine->hangcheck.score < 0)
  2612. engine->hangcheck.score = 0;
  2613. /* Clear head and subunit states on seqno movement */
  2614. acthd = 0;
  2615. memset(engine->hangcheck.instdone, 0,
  2616. sizeof(engine->hangcheck.instdone));
  2617. }
  2618. engine->hangcheck.seqno = seqno;
  2619. engine->hangcheck.acthd = acthd;
  2620. busy_count += busy;
  2621. }
  2622. if (hung) {
  2623. char msg[80];
  2624. unsigned int tmp;
  2625. int len;
  2626. /* If some rings hung but others were still busy, only
  2627. * blame the hanging rings in the synopsis.
  2628. */
  2629. if (stuck != hung)
  2630. hung &= ~stuck;
  2631. len = scnprintf(msg, sizeof(msg),
  2632. "%s on ", stuck == hung ? "No progress" : "Hang");
  2633. for_each_engine_masked(engine, dev_priv, hung, tmp)
  2634. len += scnprintf(msg + len, sizeof(msg) - len,
  2635. "%s, ", engine->name);
  2636. msg[len-2] = '\0';
  2637. return i915_handle_error(dev_priv, hung, msg);
  2638. }
  2639. /* Reset timer in case GPU hangs without another request being added */
  2640. if (busy_count)
  2641. i915_queue_hangcheck(dev_priv);
  2642. }
  2643. static void ibx_irq_reset(struct drm_device *dev)
  2644. {
  2645. struct drm_i915_private *dev_priv = to_i915(dev);
  2646. if (HAS_PCH_NOP(dev))
  2647. return;
  2648. GEN5_IRQ_RESET(SDE);
  2649. if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
  2650. I915_WRITE(SERR_INT, 0xffffffff);
  2651. }
  2652. /*
  2653. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2654. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2655. * instead we unconditionally enable all PCH interrupt sources here, but then
  2656. * only unmask them as needed with SDEIMR.
  2657. *
  2658. * This function needs to be called before interrupts are enabled.
  2659. */
  2660. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2661. {
  2662. struct drm_i915_private *dev_priv = to_i915(dev);
  2663. if (HAS_PCH_NOP(dev))
  2664. return;
  2665. WARN_ON(I915_READ(SDEIER) != 0);
  2666. I915_WRITE(SDEIER, 0xffffffff);
  2667. POSTING_READ(SDEIER);
  2668. }
  2669. static void gen5_gt_irq_reset(struct drm_device *dev)
  2670. {
  2671. struct drm_i915_private *dev_priv = to_i915(dev);
  2672. GEN5_IRQ_RESET(GT);
  2673. if (INTEL_INFO(dev)->gen >= 6)
  2674. GEN5_IRQ_RESET(GEN6_PM);
  2675. }
  2676. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2677. {
  2678. enum pipe pipe;
  2679. if (IS_CHERRYVIEW(dev_priv))
  2680. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2681. else
  2682. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2683. i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
  2684. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2685. for_each_pipe(dev_priv, pipe) {
  2686. I915_WRITE(PIPESTAT(pipe),
  2687. PIPE_FIFO_UNDERRUN_STATUS |
  2688. PIPESTAT_INT_STATUS_MASK);
  2689. dev_priv->pipestat_irq_mask[pipe] = 0;
  2690. }
  2691. GEN5_IRQ_RESET(VLV_);
  2692. dev_priv->irq_mask = ~0;
  2693. }
  2694. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2695. {
  2696. u32 pipestat_mask;
  2697. u32 enable_mask;
  2698. enum pipe pipe;
  2699. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2700. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2701. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2702. for_each_pipe(dev_priv, pipe)
  2703. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2704. enable_mask = I915_DISPLAY_PORT_INTERRUPT |
  2705. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2706. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2707. if (IS_CHERRYVIEW(dev_priv))
  2708. enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2709. WARN_ON(dev_priv->irq_mask != ~0);
  2710. dev_priv->irq_mask = ~enable_mask;
  2711. GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
  2712. }
  2713. /* drm_dma.h hooks
  2714. */
  2715. static void ironlake_irq_reset(struct drm_device *dev)
  2716. {
  2717. struct drm_i915_private *dev_priv = to_i915(dev);
  2718. I915_WRITE(HWSTAM, 0xffffffff);
  2719. GEN5_IRQ_RESET(DE);
  2720. if (IS_GEN7(dev))
  2721. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2722. gen5_gt_irq_reset(dev);
  2723. ibx_irq_reset(dev);
  2724. }
  2725. static void valleyview_irq_preinstall(struct drm_device *dev)
  2726. {
  2727. struct drm_i915_private *dev_priv = to_i915(dev);
  2728. I915_WRITE(VLV_MASTER_IER, 0);
  2729. POSTING_READ(VLV_MASTER_IER);
  2730. gen5_gt_irq_reset(dev);
  2731. spin_lock_irq(&dev_priv->irq_lock);
  2732. if (dev_priv->display_irqs_enabled)
  2733. vlv_display_irq_reset(dev_priv);
  2734. spin_unlock_irq(&dev_priv->irq_lock);
  2735. }
  2736. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2737. {
  2738. GEN8_IRQ_RESET_NDX(GT, 0);
  2739. GEN8_IRQ_RESET_NDX(GT, 1);
  2740. GEN8_IRQ_RESET_NDX(GT, 2);
  2741. GEN8_IRQ_RESET_NDX(GT, 3);
  2742. }
  2743. static void gen8_irq_reset(struct drm_device *dev)
  2744. {
  2745. struct drm_i915_private *dev_priv = to_i915(dev);
  2746. int pipe;
  2747. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2748. POSTING_READ(GEN8_MASTER_IRQ);
  2749. gen8_gt_irq_reset(dev_priv);
  2750. for_each_pipe(dev_priv, pipe)
  2751. if (intel_display_power_is_enabled(dev_priv,
  2752. POWER_DOMAIN_PIPE(pipe)))
  2753. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2754. GEN5_IRQ_RESET(GEN8_DE_PORT_);
  2755. GEN5_IRQ_RESET(GEN8_DE_MISC_);
  2756. GEN5_IRQ_RESET(GEN8_PCU_);
  2757. if (HAS_PCH_SPLIT(dev))
  2758. ibx_irq_reset(dev);
  2759. }
  2760. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2761. unsigned int pipe_mask)
  2762. {
  2763. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2764. enum pipe pipe;
  2765. spin_lock_irq(&dev_priv->irq_lock);
  2766. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2767. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2768. dev_priv->de_irq_mask[pipe],
  2769. ~dev_priv->de_irq_mask[pipe] | extra_ier);
  2770. spin_unlock_irq(&dev_priv->irq_lock);
  2771. }
  2772. void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
  2773. unsigned int pipe_mask)
  2774. {
  2775. enum pipe pipe;
  2776. spin_lock_irq(&dev_priv->irq_lock);
  2777. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2778. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2779. spin_unlock_irq(&dev_priv->irq_lock);
  2780. /* make sure we're done processing display irqs */
  2781. synchronize_irq(dev_priv->drm.irq);
  2782. }
  2783. static void cherryview_irq_preinstall(struct drm_device *dev)
  2784. {
  2785. struct drm_i915_private *dev_priv = to_i915(dev);
  2786. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2787. POSTING_READ(GEN8_MASTER_IRQ);
  2788. gen8_gt_irq_reset(dev_priv);
  2789. GEN5_IRQ_RESET(GEN8_PCU_);
  2790. spin_lock_irq(&dev_priv->irq_lock);
  2791. if (dev_priv->display_irqs_enabled)
  2792. vlv_display_irq_reset(dev_priv);
  2793. spin_unlock_irq(&dev_priv->irq_lock);
  2794. }
  2795. static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
  2796. const u32 hpd[HPD_NUM_PINS])
  2797. {
  2798. struct intel_encoder *encoder;
  2799. u32 enabled_irqs = 0;
  2800. for_each_intel_encoder(&dev_priv->drm, encoder)
  2801. if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  2802. enabled_irqs |= hpd[encoder->hpd_pin];
  2803. return enabled_irqs;
  2804. }
  2805. static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2806. {
  2807. u32 hotplug_irqs, hotplug, enabled_irqs;
  2808. if (HAS_PCH_IBX(dev_priv)) {
  2809. hotplug_irqs = SDE_HOTPLUG_MASK;
  2810. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
  2811. } else {
  2812. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2813. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
  2814. }
  2815. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2816. /*
  2817. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2818. * duration to 2ms (which is the minimum in the Display Port spec).
  2819. * The pulse duration bits are reserved on LPT+.
  2820. */
  2821. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2822. hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
  2823. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2824. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2825. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2826. /*
  2827. * When CPU and PCH are on the same package, port A
  2828. * HPD must be enabled in both north and south.
  2829. */
  2830. if (HAS_PCH_LPT_LP(dev_priv))
  2831. hotplug |= PORTA_HOTPLUG_ENABLE;
  2832. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2833. }
  2834. static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2835. {
  2836. u32 hotplug_irqs, hotplug, enabled_irqs;
  2837. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2838. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
  2839. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2840. /* Enable digital hotplug on the PCH */
  2841. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2842. hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
  2843. PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
  2844. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2845. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2846. hotplug |= PORTE_HOTPLUG_ENABLE;
  2847. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2848. }
  2849. static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2850. {
  2851. u32 hotplug_irqs, hotplug, enabled_irqs;
  2852. if (INTEL_GEN(dev_priv) >= 8) {
  2853. hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  2854. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
  2855. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2856. } else if (INTEL_GEN(dev_priv) >= 7) {
  2857. hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  2858. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
  2859. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2860. } else {
  2861. hotplug_irqs = DE_DP_A_HOTPLUG;
  2862. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
  2863. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2864. }
  2865. /*
  2866. * Enable digital hotplug on the CPU, and configure the DP short pulse
  2867. * duration to 2ms (which is the minimum in the Display Port spec)
  2868. * The pulse duration bits are reserved on HSW+.
  2869. */
  2870. hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2871. hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  2872. hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
  2873. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  2874. ibx_hpd_irq_setup(dev_priv);
  2875. }
  2876. static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2877. {
  2878. u32 hotplug_irqs, hotplug, enabled_irqs;
  2879. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
  2880. hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  2881. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2882. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2883. hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
  2884. PORTA_HOTPLUG_ENABLE;
  2885. DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
  2886. hotplug, enabled_irqs);
  2887. hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
  2888. /*
  2889. * For BXT invert bit has to be set based on AOB design
  2890. * for HPD detection logic, update it based on VBT fields.
  2891. */
  2892. if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
  2893. intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
  2894. hotplug |= BXT_DDIA_HPD_INVERT;
  2895. if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
  2896. intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
  2897. hotplug |= BXT_DDIB_HPD_INVERT;
  2898. if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
  2899. intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
  2900. hotplug |= BXT_DDIC_HPD_INVERT;
  2901. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2902. }
  2903. static void ibx_irq_postinstall(struct drm_device *dev)
  2904. {
  2905. struct drm_i915_private *dev_priv = to_i915(dev);
  2906. u32 mask;
  2907. if (HAS_PCH_NOP(dev))
  2908. return;
  2909. if (HAS_PCH_IBX(dev))
  2910. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2911. else
  2912. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2913. gen5_assert_iir_is_zero(dev_priv, SDEIIR);
  2914. I915_WRITE(SDEIMR, ~mask);
  2915. }
  2916. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2917. {
  2918. struct drm_i915_private *dev_priv = to_i915(dev);
  2919. u32 pm_irqs, gt_irqs;
  2920. pm_irqs = gt_irqs = 0;
  2921. dev_priv->gt_irq_mask = ~0;
  2922. if (HAS_L3_DPF(dev)) {
  2923. /* L3 parity interrupt is always unmasked. */
  2924. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
  2925. gt_irqs |= GT_PARITY_ERROR(dev);
  2926. }
  2927. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  2928. if (IS_GEN5(dev)) {
  2929. gt_irqs |= ILK_BSD_USER_INTERRUPT;
  2930. } else {
  2931. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  2932. }
  2933. GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  2934. if (INTEL_INFO(dev)->gen >= 6) {
  2935. /*
  2936. * RPS interrupts will get enabled/disabled on demand when RPS
  2937. * itself is enabled/disabled.
  2938. */
  2939. if (HAS_VEBOX(dev))
  2940. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  2941. dev_priv->pm_irq_mask = 0xffffffff;
  2942. GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
  2943. }
  2944. }
  2945. static int ironlake_irq_postinstall(struct drm_device *dev)
  2946. {
  2947. struct drm_i915_private *dev_priv = to_i915(dev);
  2948. u32 display_mask, extra_mask;
  2949. if (INTEL_INFO(dev)->gen >= 7) {
  2950. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  2951. DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
  2952. DE_PLANEB_FLIP_DONE_IVB |
  2953. DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
  2954. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  2955. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  2956. DE_DP_A_HOTPLUG_IVB);
  2957. } else {
  2958. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  2959. DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
  2960. DE_AUX_CHANNEL_A |
  2961. DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
  2962. DE_POISON);
  2963. extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  2964. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  2965. DE_DP_A_HOTPLUG);
  2966. }
  2967. dev_priv->irq_mask = ~display_mask;
  2968. I915_WRITE(HWSTAM, 0xeffe);
  2969. ibx_irq_pre_postinstall(dev);
  2970. GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  2971. gen5_gt_irq_postinstall(dev);
  2972. ibx_irq_postinstall(dev);
  2973. if (IS_IRONLAKE_M(dev)) {
  2974. /* Enable PCU event interrupts
  2975. *
  2976. * spinlocking not required here for correctness since interrupt
  2977. * setup is guaranteed to run in single-threaded context. But we
  2978. * need it to make the assert_spin_locked happy. */
  2979. spin_lock_irq(&dev_priv->irq_lock);
  2980. ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
  2981. spin_unlock_irq(&dev_priv->irq_lock);
  2982. }
  2983. return 0;
  2984. }
  2985. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  2986. {
  2987. assert_spin_locked(&dev_priv->irq_lock);
  2988. if (dev_priv->display_irqs_enabled)
  2989. return;
  2990. dev_priv->display_irqs_enabled = true;
  2991. if (intel_irqs_enabled(dev_priv)) {
  2992. vlv_display_irq_reset(dev_priv);
  2993. vlv_display_irq_postinstall(dev_priv);
  2994. }
  2995. }
  2996. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  2997. {
  2998. assert_spin_locked(&dev_priv->irq_lock);
  2999. if (!dev_priv->display_irqs_enabled)
  3000. return;
  3001. dev_priv->display_irqs_enabled = false;
  3002. if (intel_irqs_enabled(dev_priv))
  3003. vlv_display_irq_reset(dev_priv);
  3004. }
  3005. static int valleyview_irq_postinstall(struct drm_device *dev)
  3006. {
  3007. struct drm_i915_private *dev_priv = to_i915(dev);
  3008. gen5_gt_irq_postinstall(dev);
  3009. spin_lock_irq(&dev_priv->irq_lock);
  3010. if (dev_priv->display_irqs_enabled)
  3011. vlv_display_irq_postinstall(dev_priv);
  3012. spin_unlock_irq(&dev_priv->irq_lock);
  3013. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  3014. POSTING_READ(VLV_MASTER_IER);
  3015. return 0;
  3016. }
  3017. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3018. {
  3019. /* These are interrupts we'll toggle with the ring mask register */
  3020. uint32_t gt_interrupts[] = {
  3021. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3022. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3023. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  3024. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  3025. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3026. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3027. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  3028. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  3029. 0,
  3030. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  3031. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  3032. };
  3033. if (HAS_L3_DPF(dev_priv))
  3034. gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  3035. dev_priv->pm_irq_mask = 0xffffffff;
  3036. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  3037. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  3038. /*
  3039. * RPS interrupts will get enabled/disabled on demand when RPS itself
  3040. * is enabled/disabled.
  3041. */
  3042. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
  3043. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  3044. }
  3045. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  3046. {
  3047. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  3048. uint32_t de_pipe_enables;
  3049. u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  3050. u32 de_port_enables;
  3051. u32 de_misc_masked = GEN8_DE_MISC_GSE;
  3052. enum pipe pipe;
  3053. if (INTEL_INFO(dev_priv)->gen >= 9) {
  3054. de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
  3055. GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  3056. de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  3057. GEN9_AUX_CHANNEL_D;
  3058. if (IS_BROXTON(dev_priv))
  3059. de_port_masked |= BXT_DE_PORT_GMBUS;
  3060. } else {
  3061. de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
  3062. GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  3063. }
  3064. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  3065. GEN8_PIPE_FIFO_UNDERRUN;
  3066. de_port_enables = de_port_masked;
  3067. if (IS_BROXTON(dev_priv))
  3068. de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  3069. else if (IS_BROADWELL(dev_priv))
  3070. de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  3071. dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
  3072. dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
  3073. dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
  3074. for_each_pipe(dev_priv, pipe)
  3075. if (intel_display_power_is_enabled(dev_priv,
  3076. POWER_DOMAIN_PIPE(pipe)))
  3077. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  3078. dev_priv->de_irq_mask[pipe],
  3079. de_pipe_enables);
  3080. GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  3081. GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
  3082. }
  3083. static int gen8_irq_postinstall(struct drm_device *dev)
  3084. {
  3085. struct drm_i915_private *dev_priv = to_i915(dev);
  3086. if (HAS_PCH_SPLIT(dev))
  3087. ibx_irq_pre_postinstall(dev);
  3088. gen8_gt_irq_postinstall(dev_priv);
  3089. gen8_de_irq_postinstall(dev_priv);
  3090. if (HAS_PCH_SPLIT(dev))
  3091. ibx_irq_postinstall(dev);
  3092. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3093. POSTING_READ(GEN8_MASTER_IRQ);
  3094. return 0;
  3095. }
  3096. static int cherryview_irq_postinstall(struct drm_device *dev)
  3097. {
  3098. struct drm_i915_private *dev_priv = to_i915(dev);
  3099. gen8_gt_irq_postinstall(dev_priv);
  3100. spin_lock_irq(&dev_priv->irq_lock);
  3101. if (dev_priv->display_irqs_enabled)
  3102. vlv_display_irq_postinstall(dev_priv);
  3103. spin_unlock_irq(&dev_priv->irq_lock);
  3104. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3105. POSTING_READ(GEN8_MASTER_IRQ);
  3106. return 0;
  3107. }
  3108. static void gen8_irq_uninstall(struct drm_device *dev)
  3109. {
  3110. struct drm_i915_private *dev_priv = to_i915(dev);
  3111. if (!dev_priv)
  3112. return;
  3113. gen8_irq_reset(dev);
  3114. }
  3115. static void valleyview_irq_uninstall(struct drm_device *dev)
  3116. {
  3117. struct drm_i915_private *dev_priv = to_i915(dev);
  3118. if (!dev_priv)
  3119. return;
  3120. I915_WRITE(VLV_MASTER_IER, 0);
  3121. POSTING_READ(VLV_MASTER_IER);
  3122. gen5_gt_irq_reset(dev);
  3123. I915_WRITE(HWSTAM, 0xffffffff);
  3124. spin_lock_irq(&dev_priv->irq_lock);
  3125. if (dev_priv->display_irqs_enabled)
  3126. vlv_display_irq_reset(dev_priv);
  3127. spin_unlock_irq(&dev_priv->irq_lock);
  3128. }
  3129. static void cherryview_irq_uninstall(struct drm_device *dev)
  3130. {
  3131. struct drm_i915_private *dev_priv = to_i915(dev);
  3132. if (!dev_priv)
  3133. return;
  3134. I915_WRITE(GEN8_MASTER_IRQ, 0);
  3135. POSTING_READ(GEN8_MASTER_IRQ);
  3136. gen8_gt_irq_reset(dev_priv);
  3137. GEN5_IRQ_RESET(GEN8_PCU_);
  3138. spin_lock_irq(&dev_priv->irq_lock);
  3139. if (dev_priv->display_irqs_enabled)
  3140. vlv_display_irq_reset(dev_priv);
  3141. spin_unlock_irq(&dev_priv->irq_lock);
  3142. }
  3143. static void ironlake_irq_uninstall(struct drm_device *dev)
  3144. {
  3145. struct drm_i915_private *dev_priv = to_i915(dev);
  3146. if (!dev_priv)
  3147. return;
  3148. ironlake_irq_reset(dev);
  3149. }
  3150. static void i8xx_irq_preinstall(struct drm_device * dev)
  3151. {
  3152. struct drm_i915_private *dev_priv = to_i915(dev);
  3153. int pipe;
  3154. for_each_pipe(dev_priv, pipe)
  3155. I915_WRITE(PIPESTAT(pipe), 0);
  3156. I915_WRITE16(IMR, 0xffff);
  3157. I915_WRITE16(IER, 0x0);
  3158. POSTING_READ16(IER);
  3159. }
  3160. static int i8xx_irq_postinstall(struct drm_device *dev)
  3161. {
  3162. struct drm_i915_private *dev_priv = to_i915(dev);
  3163. I915_WRITE16(EMR,
  3164. ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3165. /* Unmask the interrupts that we always want on. */
  3166. dev_priv->irq_mask =
  3167. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3168. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3169. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3170. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3171. I915_WRITE16(IMR, dev_priv->irq_mask);
  3172. I915_WRITE16(IER,
  3173. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3174. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3175. I915_USER_INTERRUPT);
  3176. POSTING_READ16(IER);
  3177. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3178. * just to make the assert_spin_locked check happy. */
  3179. spin_lock_irq(&dev_priv->irq_lock);
  3180. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3181. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3182. spin_unlock_irq(&dev_priv->irq_lock);
  3183. return 0;
  3184. }
  3185. /*
  3186. * Returns true when a page flip has completed.
  3187. */
  3188. static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
  3189. int plane, int pipe, u32 iir)
  3190. {
  3191. u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3192. if (!intel_pipe_handle_vblank(dev_priv, pipe))
  3193. return false;
  3194. if ((iir & flip_pending) == 0)
  3195. goto check_page_flip;
  3196. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3197. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3198. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3199. * the flip is completed (no longer pending). Since this doesn't raise
  3200. * an interrupt per se, we watch for the change at vblank.
  3201. */
  3202. if (I915_READ16(ISR) & flip_pending)
  3203. goto check_page_flip;
  3204. intel_finish_page_flip_cs(dev_priv, pipe);
  3205. return true;
  3206. check_page_flip:
  3207. intel_check_page_flip(dev_priv, pipe);
  3208. return false;
  3209. }
  3210. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3211. {
  3212. struct drm_device *dev = arg;
  3213. struct drm_i915_private *dev_priv = to_i915(dev);
  3214. u16 iir, new_iir;
  3215. u32 pipe_stats[2];
  3216. int pipe;
  3217. u16 flip_mask =
  3218. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3219. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3220. irqreturn_t ret;
  3221. if (!intel_irqs_enabled(dev_priv))
  3222. return IRQ_NONE;
  3223. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3224. disable_rpm_wakeref_asserts(dev_priv);
  3225. ret = IRQ_NONE;
  3226. iir = I915_READ16(IIR);
  3227. if (iir == 0)
  3228. goto out;
  3229. while (iir & ~flip_mask) {
  3230. /* Can't rely on pipestat interrupt bit in iir as it might
  3231. * have been cleared after the pipestat interrupt was received.
  3232. * It doesn't set the bit in iir again, but it still produces
  3233. * interrupts (for non-MSI).
  3234. */
  3235. spin_lock(&dev_priv->irq_lock);
  3236. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3237. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3238. for_each_pipe(dev_priv, pipe) {
  3239. i915_reg_t reg = PIPESTAT(pipe);
  3240. pipe_stats[pipe] = I915_READ(reg);
  3241. /*
  3242. * Clear the PIPE*STAT regs before the IIR
  3243. */
  3244. if (pipe_stats[pipe] & 0x8000ffff)
  3245. I915_WRITE(reg, pipe_stats[pipe]);
  3246. }
  3247. spin_unlock(&dev_priv->irq_lock);
  3248. I915_WRITE16(IIR, iir & ~flip_mask);
  3249. new_iir = I915_READ16(IIR); /* Flush posted writes */
  3250. if (iir & I915_USER_INTERRUPT)
  3251. notify_ring(&dev_priv->engine[RCS]);
  3252. for_each_pipe(dev_priv, pipe) {
  3253. int plane = pipe;
  3254. if (HAS_FBC(dev_priv))
  3255. plane = !plane;
  3256. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3257. i8xx_handle_vblank(dev_priv, plane, pipe, iir))
  3258. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3259. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3260. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  3261. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3262. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3263. pipe);
  3264. }
  3265. iir = new_iir;
  3266. }
  3267. ret = IRQ_HANDLED;
  3268. out:
  3269. enable_rpm_wakeref_asserts(dev_priv);
  3270. return ret;
  3271. }
  3272. static void i8xx_irq_uninstall(struct drm_device * dev)
  3273. {
  3274. struct drm_i915_private *dev_priv = to_i915(dev);
  3275. int pipe;
  3276. for_each_pipe(dev_priv, pipe) {
  3277. /* Clear enable bits; then clear status bits */
  3278. I915_WRITE(PIPESTAT(pipe), 0);
  3279. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3280. }
  3281. I915_WRITE16(IMR, 0xffff);
  3282. I915_WRITE16(IER, 0x0);
  3283. I915_WRITE16(IIR, I915_READ16(IIR));
  3284. }
  3285. static void i915_irq_preinstall(struct drm_device * dev)
  3286. {
  3287. struct drm_i915_private *dev_priv = to_i915(dev);
  3288. int pipe;
  3289. if (I915_HAS_HOTPLUG(dev)) {
  3290. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3291. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3292. }
  3293. I915_WRITE16(HWSTAM, 0xeffe);
  3294. for_each_pipe(dev_priv, pipe)
  3295. I915_WRITE(PIPESTAT(pipe), 0);
  3296. I915_WRITE(IMR, 0xffffffff);
  3297. I915_WRITE(IER, 0x0);
  3298. POSTING_READ(IER);
  3299. }
  3300. static int i915_irq_postinstall(struct drm_device *dev)
  3301. {
  3302. struct drm_i915_private *dev_priv = to_i915(dev);
  3303. u32 enable_mask;
  3304. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3305. /* Unmask the interrupts that we always want on. */
  3306. dev_priv->irq_mask =
  3307. ~(I915_ASLE_INTERRUPT |
  3308. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3309. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3310. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3311. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3312. enable_mask =
  3313. I915_ASLE_INTERRUPT |
  3314. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3315. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3316. I915_USER_INTERRUPT;
  3317. if (I915_HAS_HOTPLUG(dev)) {
  3318. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3319. POSTING_READ(PORT_HOTPLUG_EN);
  3320. /* Enable in IER... */
  3321. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3322. /* and unmask in IMR */
  3323. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3324. }
  3325. I915_WRITE(IMR, dev_priv->irq_mask);
  3326. I915_WRITE(IER, enable_mask);
  3327. POSTING_READ(IER);
  3328. i915_enable_asle_pipestat(dev_priv);
  3329. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3330. * just to make the assert_spin_locked check happy. */
  3331. spin_lock_irq(&dev_priv->irq_lock);
  3332. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3333. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3334. spin_unlock_irq(&dev_priv->irq_lock);
  3335. return 0;
  3336. }
  3337. /*
  3338. * Returns true when a page flip has completed.
  3339. */
  3340. static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
  3341. int plane, int pipe, u32 iir)
  3342. {
  3343. u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3344. if (!intel_pipe_handle_vblank(dev_priv, pipe))
  3345. return false;
  3346. if ((iir & flip_pending) == 0)
  3347. goto check_page_flip;
  3348. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3349. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3350. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3351. * the flip is completed (no longer pending). Since this doesn't raise
  3352. * an interrupt per se, we watch for the change at vblank.
  3353. */
  3354. if (I915_READ(ISR) & flip_pending)
  3355. goto check_page_flip;
  3356. intel_finish_page_flip_cs(dev_priv, pipe);
  3357. return true;
  3358. check_page_flip:
  3359. intel_check_page_flip(dev_priv, pipe);
  3360. return false;
  3361. }
  3362. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3363. {
  3364. struct drm_device *dev = arg;
  3365. struct drm_i915_private *dev_priv = to_i915(dev);
  3366. u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
  3367. u32 flip_mask =
  3368. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3369. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3370. int pipe, ret = IRQ_NONE;
  3371. if (!intel_irqs_enabled(dev_priv))
  3372. return IRQ_NONE;
  3373. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3374. disable_rpm_wakeref_asserts(dev_priv);
  3375. iir = I915_READ(IIR);
  3376. do {
  3377. bool irq_received = (iir & ~flip_mask) != 0;
  3378. bool blc_event = false;
  3379. /* Can't rely on pipestat interrupt bit in iir as it might
  3380. * have been cleared after the pipestat interrupt was received.
  3381. * It doesn't set the bit in iir again, but it still produces
  3382. * interrupts (for non-MSI).
  3383. */
  3384. spin_lock(&dev_priv->irq_lock);
  3385. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3386. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3387. for_each_pipe(dev_priv, pipe) {
  3388. i915_reg_t reg = PIPESTAT(pipe);
  3389. pipe_stats[pipe] = I915_READ(reg);
  3390. /* Clear the PIPE*STAT regs before the IIR */
  3391. if (pipe_stats[pipe] & 0x8000ffff) {
  3392. I915_WRITE(reg, pipe_stats[pipe]);
  3393. irq_received = true;
  3394. }
  3395. }
  3396. spin_unlock(&dev_priv->irq_lock);
  3397. if (!irq_received)
  3398. break;
  3399. /* Consume port. Then clear IIR or we'll miss events */
  3400. if (I915_HAS_HOTPLUG(dev_priv) &&
  3401. iir & I915_DISPLAY_PORT_INTERRUPT) {
  3402. u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3403. if (hotplug_status)
  3404. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3405. }
  3406. I915_WRITE(IIR, iir & ~flip_mask);
  3407. new_iir = I915_READ(IIR); /* Flush posted writes */
  3408. if (iir & I915_USER_INTERRUPT)
  3409. notify_ring(&dev_priv->engine[RCS]);
  3410. for_each_pipe(dev_priv, pipe) {
  3411. int plane = pipe;
  3412. if (HAS_FBC(dev_priv))
  3413. plane = !plane;
  3414. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3415. i915_handle_vblank(dev_priv, plane, pipe, iir))
  3416. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3417. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3418. blc_event = true;
  3419. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3420. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  3421. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3422. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3423. pipe);
  3424. }
  3425. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3426. intel_opregion_asle_intr(dev_priv);
  3427. /* With MSI, interrupts are only generated when iir
  3428. * transitions from zero to nonzero. If another bit got
  3429. * set while we were handling the existing iir bits, then
  3430. * we would never get another interrupt.
  3431. *
  3432. * This is fine on non-MSI as well, as if we hit this path
  3433. * we avoid exiting the interrupt handler only to generate
  3434. * another one.
  3435. *
  3436. * Note that for MSI this could cause a stray interrupt report
  3437. * if an interrupt landed in the time between writing IIR and
  3438. * the posting read. This should be rare enough to never
  3439. * trigger the 99% of 100,000 interrupts test for disabling
  3440. * stray interrupts.
  3441. */
  3442. ret = IRQ_HANDLED;
  3443. iir = new_iir;
  3444. } while (iir & ~flip_mask);
  3445. enable_rpm_wakeref_asserts(dev_priv);
  3446. return ret;
  3447. }
  3448. static void i915_irq_uninstall(struct drm_device * dev)
  3449. {
  3450. struct drm_i915_private *dev_priv = to_i915(dev);
  3451. int pipe;
  3452. if (I915_HAS_HOTPLUG(dev)) {
  3453. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3454. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3455. }
  3456. I915_WRITE16(HWSTAM, 0xffff);
  3457. for_each_pipe(dev_priv, pipe) {
  3458. /* Clear enable bits; then clear status bits */
  3459. I915_WRITE(PIPESTAT(pipe), 0);
  3460. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3461. }
  3462. I915_WRITE(IMR, 0xffffffff);
  3463. I915_WRITE(IER, 0x0);
  3464. I915_WRITE(IIR, I915_READ(IIR));
  3465. }
  3466. static void i965_irq_preinstall(struct drm_device * dev)
  3467. {
  3468. struct drm_i915_private *dev_priv = to_i915(dev);
  3469. int pipe;
  3470. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3471. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3472. I915_WRITE(HWSTAM, 0xeffe);
  3473. for_each_pipe(dev_priv, pipe)
  3474. I915_WRITE(PIPESTAT(pipe), 0);
  3475. I915_WRITE(IMR, 0xffffffff);
  3476. I915_WRITE(IER, 0x0);
  3477. POSTING_READ(IER);
  3478. }
  3479. static int i965_irq_postinstall(struct drm_device *dev)
  3480. {
  3481. struct drm_i915_private *dev_priv = to_i915(dev);
  3482. u32 enable_mask;
  3483. u32 error_mask;
  3484. /* Unmask the interrupts that we always want on. */
  3485. dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
  3486. I915_DISPLAY_PORT_INTERRUPT |
  3487. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3488. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3489. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3490. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
  3491. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3492. enable_mask = ~dev_priv->irq_mask;
  3493. enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3494. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3495. enable_mask |= I915_USER_INTERRUPT;
  3496. if (IS_G4X(dev_priv))
  3497. enable_mask |= I915_BSD_USER_INTERRUPT;
  3498. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3499. * just to make the assert_spin_locked check happy. */
  3500. spin_lock_irq(&dev_priv->irq_lock);
  3501. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3502. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3503. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3504. spin_unlock_irq(&dev_priv->irq_lock);
  3505. /*
  3506. * Enable some error detection, note the instruction error mask
  3507. * bit is reserved, so we leave it masked.
  3508. */
  3509. if (IS_G4X(dev_priv)) {
  3510. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3511. GM45_ERROR_MEM_PRIV |
  3512. GM45_ERROR_CP_PRIV |
  3513. I915_ERROR_MEMORY_REFRESH);
  3514. } else {
  3515. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3516. I915_ERROR_MEMORY_REFRESH);
  3517. }
  3518. I915_WRITE(EMR, error_mask);
  3519. I915_WRITE(IMR, dev_priv->irq_mask);
  3520. I915_WRITE(IER, enable_mask);
  3521. POSTING_READ(IER);
  3522. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3523. POSTING_READ(PORT_HOTPLUG_EN);
  3524. i915_enable_asle_pipestat(dev_priv);
  3525. return 0;
  3526. }
  3527. static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
  3528. {
  3529. u32 hotplug_en;
  3530. assert_spin_locked(&dev_priv->irq_lock);
  3531. /* Note HDMI and DP share hotplug bits */
  3532. /* enable bits are the same for all generations */
  3533. hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
  3534. /* Programming the CRT detection parameters tends
  3535. to generate a spurious hotplug event about three
  3536. seconds later. So just do it once.
  3537. */
  3538. if (IS_G4X(dev_priv))
  3539. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3540. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3541. /* Ignore TV since it's buggy */
  3542. i915_hotplug_interrupt_update_locked(dev_priv,
  3543. HOTPLUG_INT_EN_MASK |
  3544. CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
  3545. CRT_HOTPLUG_ACTIVATION_PERIOD_64,
  3546. hotplug_en);
  3547. }
  3548. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3549. {
  3550. struct drm_device *dev = arg;
  3551. struct drm_i915_private *dev_priv = to_i915(dev);
  3552. u32 iir, new_iir;
  3553. u32 pipe_stats[I915_MAX_PIPES];
  3554. int ret = IRQ_NONE, pipe;
  3555. u32 flip_mask =
  3556. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3557. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3558. if (!intel_irqs_enabled(dev_priv))
  3559. return IRQ_NONE;
  3560. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3561. disable_rpm_wakeref_asserts(dev_priv);
  3562. iir = I915_READ(IIR);
  3563. for (;;) {
  3564. bool irq_received = (iir & ~flip_mask) != 0;
  3565. bool blc_event = false;
  3566. /* Can't rely on pipestat interrupt bit in iir as it might
  3567. * have been cleared after the pipestat interrupt was received.
  3568. * It doesn't set the bit in iir again, but it still produces
  3569. * interrupts (for non-MSI).
  3570. */
  3571. spin_lock(&dev_priv->irq_lock);
  3572. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3573. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3574. for_each_pipe(dev_priv, pipe) {
  3575. i915_reg_t reg = PIPESTAT(pipe);
  3576. pipe_stats[pipe] = I915_READ(reg);
  3577. /*
  3578. * Clear the PIPE*STAT regs before the IIR
  3579. */
  3580. if (pipe_stats[pipe] & 0x8000ffff) {
  3581. I915_WRITE(reg, pipe_stats[pipe]);
  3582. irq_received = true;
  3583. }
  3584. }
  3585. spin_unlock(&dev_priv->irq_lock);
  3586. if (!irq_received)
  3587. break;
  3588. ret = IRQ_HANDLED;
  3589. /* Consume port. Then clear IIR or we'll miss events */
  3590. if (iir & I915_DISPLAY_PORT_INTERRUPT) {
  3591. u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3592. if (hotplug_status)
  3593. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3594. }
  3595. I915_WRITE(IIR, iir & ~flip_mask);
  3596. new_iir = I915_READ(IIR); /* Flush posted writes */
  3597. if (iir & I915_USER_INTERRUPT)
  3598. notify_ring(&dev_priv->engine[RCS]);
  3599. if (iir & I915_BSD_USER_INTERRUPT)
  3600. notify_ring(&dev_priv->engine[VCS]);
  3601. for_each_pipe(dev_priv, pipe) {
  3602. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  3603. i915_handle_vblank(dev_priv, pipe, pipe, iir))
  3604. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
  3605. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3606. blc_event = true;
  3607. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3608. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  3609. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3610. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  3611. }
  3612. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3613. intel_opregion_asle_intr(dev_priv);
  3614. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  3615. gmbus_irq_handler(dev_priv);
  3616. /* With MSI, interrupts are only generated when iir
  3617. * transitions from zero to nonzero. If another bit got
  3618. * set while we were handling the existing iir bits, then
  3619. * we would never get another interrupt.
  3620. *
  3621. * This is fine on non-MSI as well, as if we hit this path
  3622. * we avoid exiting the interrupt handler only to generate
  3623. * another one.
  3624. *
  3625. * Note that for MSI this could cause a stray interrupt report
  3626. * if an interrupt landed in the time between writing IIR and
  3627. * the posting read. This should be rare enough to never
  3628. * trigger the 99% of 100,000 interrupts test for disabling
  3629. * stray interrupts.
  3630. */
  3631. iir = new_iir;
  3632. }
  3633. enable_rpm_wakeref_asserts(dev_priv);
  3634. return ret;
  3635. }
  3636. static void i965_irq_uninstall(struct drm_device * dev)
  3637. {
  3638. struct drm_i915_private *dev_priv = to_i915(dev);
  3639. int pipe;
  3640. if (!dev_priv)
  3641. return;
  3642. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3643. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3644. I915_WRITE(HWSTAM, 0xffffffff);
  3645. for_each_pipe(dev_priv, pipe)
  3646. I915_WRITE(PIPESTAT(pipe), 0);
  3647. I915_WRITE(IMR, 0xffffffff);
  3648. I915_WRITE(IER, 0x0);
  3649. for_each_pipe(dev_priv, pipe)
  3650. I915_WRITE(PIPESTAT(pipe),
  3651. I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
  3652. I915_WRITE(IIR, I915_READ(IIR));
  3653. }
  3654. /**
  3655. * intel_irq_init - initializes irq support
  3656. * @dev_priv: i915 device instance
  3657. *
  3658. * This function initializes all the irq support including work items, timers
  3659. * and all the vtables. It does not setup the interrupt itself though.
  3660. */
  3661. void intel_irq_init(struct drm_i915_private *dev_priv)
  3662. {
  3663. struct drm_device *dev = &dev_priv->drm;
  3664. intel_hpd_init_work(dev_priv);
  3665. INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
  3666. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3667. /* Let's track the enabled rps events */
  3668. if (IS_VALLEYVIEW(dev_priv))
  3669. /* WaGsvRC0ResidencyMethod:vlv */
  3670. dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
  3671. else
  3672. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3673. dev_priv->rps.pm_intr_keep = 0;
  3674. /*
  3675. * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
  3676. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3677. *
  3678. * TODO: verify if this can be reproduced on VLV,CHV.
  3679. */
  3680. if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
  3681. dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
  3682. if (INTEL_INFO(dev_priv)->gen >= 8)
  3683. dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
  3684. INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
  3685. i915_hangcheck_elapsed);
  3686. if (IS_GEN2(dev_priv)) {
  3687. /* Gen2 doesn't have a hardware frame counter */
  3688. dev->max_vblank_count = 0;
  3689. dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
  3690. } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
  3691. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3692. dev->driver->get_vblank_counter = g4x_get_vblank_counter;
  3693. } else {
  3694. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3695. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3696. }
  3697. /*
  3698. * Opt out of the vblank disable timer on everything except gen2.
  3699. * Gen2 doesn't have a hardware frame counter and so depends on
  3700. * vblank interrupts to produce sane vblank seuquence numbers.
  3701. */
  3702. if (!IS_GEN2(dev_priv))
  3703. dev->vblank_disable_immediate = true;
  3704. /* Most platforms treat the display irq block as an always-on
  3705. * power domain. vlv/chv can disable it at runtime and need
  3706. * special care to avoid writing any of the display block registers
  3707. * outside of the power domain. We defer setting up the display irqs
  3708. * in this case to the runtime pm.
  3709. */
  3710. dev_priv->display_irqs_enabled = true;
  3711. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3712. dev_priv->display_irqs_enabled = false;
  3713. dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
  3714. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3715. if (IS_CHERRYVIEW(dev_priv)) {
  3716. dev->driver->irq_handler = cherryview_irq_handler;
  3717. dev->driver->irq_preinstall = cherryview_irq_preinstall;
  3718. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3719. dev->driver->irq_uninstall = cherryview_irq_uninstall;
  3720. dev->driver->enable_vblank = valleyview_enable_vblank;
  3721. dev->driver->disable_vblank = valleyview_disable_vblank;
  3722. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3723. } else if (IS_VALLEYVIEW(dev_priv)) {
  3724. dev->driver->irq_handler = valleyview_irq_handler;
  3725. dev->driver->irq_preinstall = valleyview_irq_preinstall;
  3726. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3727. dev->driver->irq_uninstall = valleyview_irq_uninstall;
  3728. dev->driver->enable_vblank = valleyview_enable_vblank;
  3729. dev->driver->disable_vblank = valleyview_disable_vblank;
  3730. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3731. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  3732. dev->driver->irq_handler = gen8_irq_handler;
  3733. dev->driver->irq_preinstall = gen8_irq_reset;
  3734. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3735. dev->driver->irq_uninstall = gen8_irq_uninstall;
  3736. dev->driver->enable_vblank = gen8_enable_vblank;
  3737. dev->driver->disable_vblank = gen8_disable_vblank;
  3738. if (IS_BROXTON(dev))
  3739. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3740. else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
  3741. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3742. else
  3743. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3744. } else if (HAS_PCH_SPLIT(dev)) {
  3745. dev->driver->irq_handler = ironlake_irq_handler;
  3746. dev->driver->irq_preinstall = ironlake_irq_reset;
  3747. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3748. dev->driver->irq_uninstall = ironlake_irq_uninstall;
  3749. dev->driver->enable_vblank = ironlake_enable_vblank;
  3750. dev->driver->disable_vblank = ironlake_disable_vblank;
  3751. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3752. } else {
  3753. if (IS_GEN2(dev_priv)) {
  3754. dev->driver->irq_preinstall = i8xx_irq_preinstall;
  3755. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3756. dev->driver->irq_handler = i8xx_irq_handler;
  3757. dev->driver->irq_uninstall = i8xx_irq_uninstall;
  3758. } else if (IS_GEN3(dev_priv)) {
  3759. dev->driver->irq_preinstall = i915_irq_preinstall;
  3760. dev->driver->irq_postinstall = i915_irq_postinstall;
  3761. dev->driver->irq_uninstall = i915_irq_uninstall;
  3762. dev->driver->irq_handler = i915_irq_handler;
  3763. } else {
  3764. dev->driver->irq_preinstall = i965_irq_preinstall;
  3765. dev->driver->irq_postinstall = i965_irq_postinstall;
  3766. dev->driver->irq_uninstall = i965_irq_uninstall;
  3767. dev->driver->irq_handler = i965_irq_handler;
  3768. }
  3769. if (I915_HAS_HOTPLUG(dev_priv))
  3770. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3771. dev->driver->enable_vblank = i915_enable_vblank;
  3772. dev->driver->disable_vblank = i915_disable_vblank;
  3773. }
  3774. }
  3775. /**
  3776. * intel_irq_install - enables the hardware interrupt
  3777. * @dev_priv: i915 device instance
  3778. *
  3779. * This function enables the hardware interrupt handling, but leaves the hotplug
  3780. * handling still disabled. It is called after intel_irq_init().
  3781. *
  3782. * In the driver load and resume code we need working interrupts in a few places
  3783. * but don't want to deal with the hassle of concurrent probe and hotplug
  3784. * workers. Hence the split into this two-stage approach.
  3785. */
  3786. int intel_irq_install(struct drm_i915_private *dev_priv)
  3787. {
  3788. /*
  3789. * We enable some interrupt sources in our postinstall hooks, so mark
  3790. * interrupts as enabled _before_ actually enabling them to avoid
  3791. * special cases in our ordering checks.
  3792. */
  3793. dev_priv->pm.irqs_enabled = true;
  3794. return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
  3795. }
  3796. /**
  3797. * intel_irq_uninstall - finilizes all irq handling
  3798. * @dev_priv: i915 device instance
  3799. *
  3800. * This stops interrupt and hotplug handling and unregisters and frees all
  3801. * resources acquired in the init functions.
  3802. */
  3803. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3804. {
  3805. drm_irq_uninstall(&dev_priv->drm);
  3806. intel_hpd_cancel_work(dev_priv);
  3807. dev_priv->pm.irqs_enabled = false;
  3808. }
  3809. /**
  3810. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3811. * @dev_priv: i915 device instance
  3812. *
  3813. * This function is used to disable interrupts at runtime, both in the runtime
  3814. * pm and the system suspend/resume code.
  3815. */
  3816. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3817. {
  3818. dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
  3819. dev_priv->pm.irqs_enabled = false;
  3820. synchronize_irq(dev_priv->drm.irq);
  3821. }
  3822. /**
  3823. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3824. * @dev_priv: i915 device instance
  3825. *
  3826. * This function is used to enable interrupts at runtime, both in the runtime
  3827. * pm and the system suspend/resume code.
  3828. */
  3829. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3830. {
  3831. dev_priv->pm.irqs_enabled = true;
  3832. dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
  3833. dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
  3834. }