caampkc.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608
  1. /*
  2. * caam - Freescale FSL CAAM support for Public Key Cryptography
  3. *
  4. * Copyright 2016 Freescale Semiconductor, Inc.
  5. *
  6. * There is no Shared Descriptor for PKC so that the Job Descriptor must carry
  7. * all the desired key parameters, input and output pointers.
  8. */
  9. #include "compat.h"
  10. #include "regs.h"
  11. #include "intern.h"
  12. #include "jr.h"
  13. #include "error.h"
  14. #include "desc_constr.h"
  15. #include "sg_sw_sec4.h"
  16. #include "caampkc.h"
  17. #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + sizeof(struct rsa_pub_pdb))
  18. #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \
  19. sizeof(struct rsa_priv_f1_pdb))
  20. static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
  21. struct akcipher_request *req)
  22. {
  23. dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
  24. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  25. if (edesc->sec4_sg_bytes)
  26. dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
  27. DMA_TO_DEVICE);
  28. }
  29. static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
  30. struct akcipher_request *req)
  31. {
  32. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  33. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  34. struct caam_rsa_key *key = &ctx->key;
  35. struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
  36. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  37. dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
  38. }
  39. static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
  40. struct akcipher_request *req)
  41. {
  42. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  43. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  44. struct caam_rsa_key *key = &ctx->key;
  45. struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
  46. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  47. dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
  48. }
  49. /* RSA Job Completion handler */
  50. static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
  51. {
  52. struct akcipher_request *req = context;
  53. struct rsa_edesc *edesc;
  54. if (err)
  55. caam_jr_strstatus(dev, err);
  56. edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
  57. rsa_pub_unmap(dev, edesc, req);
  58. rsa_io_unmap(dev, edesc, req);
  59. kfree(edesc);
  60. akcipher_request_complete(req, err);
  61. }
  62. static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err,
  63. void *context)
  64. {
  65. struct akcipher_request *req = context;
  66. struct rsa_edesc *edesc;
  67. if (err)
  68. caam_jr_strstatus(dev, err);
  69. edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
  70. rsa_priv_f1_unmap(dev, edesc, req);
  71. rsa_io_unmap(dev, edesc, req);
  72. kfree(edesc);
  73. akcipher_request_complete(req, err);
  74. }
  75. static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
  76. size_t desclen)
  77. {
  78. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  79. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  80. struct device *dev = ctx->dev;
  81. struct rsa_edesc *edesc;
  82. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  83. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  84. int sgc;
  85. int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
  86. int src_nents, dst_nents;
  87. src_nents = sg_nents_for_len(req->src, req->src_len);
  88. dst_nents = sg_nents_for_len(req->dst, req->dst_len);
  89. if (src_nents > 1)
  90. sec4_sg_len = src_nents;
  91. if (dst_nents > 1)
  92. sec4_sg_len += dst_nents;
  93. sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
  94. /* allocate space for base edesc, hw desc commands and link tables */
  95. edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
  96. GFP_DMA | flags);
  97. if (!edesc)
  98. return ERR_PTR(-ENOMEM);
  99. sgc = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
  100. if (unlikely(!sgc)) {
  101. dev_err(dev, "unable to map source\n");
  102. goto src_fail;
  103. }
  104. sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
  105. if (unlikely(!sgc)) {
  106. dev_err(dev, "unable to map destination\n");
  107. goto dst_fail;
  108. }
  109. edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
  110. sec4_sg_index = 0;
  111. if (src_nents > 1) {
  112. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  113. sec4_sg_index += src_nents;
  114. }
  115. if (dst_nents > 1)
  116. sg_to_sec4_sg_last(req->dst, dst_nents,
  117. edesc->sec4_sg + sec4_sg_index, 0);
  118. /* Save nents for later use in Job Descriptor */
  119. edesc->src_nents = src_nents;
  120. edesc->dst_nents = dst_nents;
  121. if (!sec4_sg_bytes)
  122. return edesc;
  123. edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
  124. sec4_sg_bytes, DMA_TO_DEVICE);
  125. if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
  126. dev_err(dev, "unable to map S/G table\n");
  127. goto sec4_sg_fail;
  128. }
  129. edesc->sec4_sg_bytes = sec4_sg_bytes;
  130. return edesc;
  131. sec4_sg_fail:
  132. dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
  133. dst_fail:
  134. dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
  135. src_fail:
  136. kfree(edesc);
  137. return ERR_PTR(-ENOMEM);
  138. }
  139. static int set_rsa_pub_pdb(struct akcipher_request *req,
  140. struct rsa_edesc *edesc)
  141. {
  142. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  143. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  144. struct caam_rsa_key *key = &ctx->key;
  145. struct device *dev = ctx->dev;
  146. struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
  147. int sec4_sg_index = 0;
  148. pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
  149. if (dma_mapping_error(dev, pdb->n_dma)) {
  150. dev_err(dev, "Unable to map RSA modulus memory\n");
  151. return -ENOMEM;
  152. }
  153. pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
  154. if (dma_mapping_error(dev, pdb->e_dma)) {
  155. dev_err(dev, "Unable to map RSA public exponent memory\n");
  156. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  157. return -ENOMEM;
  158. }
  159. if (edesc->src_nents > 1) {
  160. pdb->sgf |= RSA_PDB_SGF_F;
  161. pdb->f_dma = edesc->sec4_sg_dma;
  162. sec4_sg_index += edesc->src_nents;
  163. } else {
  164. pdb->f_dma = sg_dma_address(req->src);
  165. }
  166. if (edesc->dst_nents > 1) {
  167. pdb->sgf |= RSA_PDB_SGF_G;
  168. pdb->g_dma = edesc->sec4_sg_dma +
  169. sec4_sg_index * sizeof(struct sec4_sg_entry);
  170. } else {
  171. pdb->g_dma = sg_dma_address(req->dst);
  172. }
  173. pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
  174. pdb->f_len = req->src_len;
  175. return 0;
  176. }
  177. static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
  178. struct rsa_edesc *edesc)
  179. {
  180. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  181. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  182. struct caam_rsa_key *key = &ctx->key;
  183. struct device *dev = ctx->dev;
  184. struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
  185. int sec4_sg_index = 0;
  186. pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
  187. if (dma_mapping_error(dev, pdb->n_dma)) {
  188. dev_err(dev, "Unable to map modulus memory\n");
  189. return -ENOMEM;
  190. }
  191. pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
  192. if (dma_mapping_error(dev, pdb->d_dma)) {
  193. dev_err(dev, "Unable to map RSA private exponent memory\n");
  194. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  195. return -ENOMEM;
  196. }
  197. if (edesc->src_nents > 1) {
  198. pdb->sgf |= RSA_PRIV_PDB_SGF_G;
  199. pdb->g_dma = edesc->sec4_sg_dma;
  200. sec4_sg_index += edesc->src_nents;
  201. } else {
  202. pdb->g_dma = sg_dma_address(req->src);
  203. }
  204. if (edesc->dst_nents > 1) {
  205. pdb->sgf |= RSA_PRIV_PDB_SGF_F;
  206. pdb->f_dma = edesc->sec4_sg_dma +
  207. sec4_sg_index * sizeof(struct sec4_sg_entry);
  208. } else {
  209. pdb->f_dma = sg_dma_address(req->dst);
  210. }
  211. pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
  212. return 0;
  213. }
  214. static int caam_rsa_enc(struct akcipher_request *req)
  215. {
  216. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  217. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  218. struct caam_rsa_key *key = &ctx->key;
  219. struct device *jrdev = ctx->dev;
  220. struct rsa_edesc *edesc;
  221. int ret;
  222. if (unlikely(!key->n || !key->e))
  223. return -EINVAL;
  224. if (req->dst_len < key->n_sz) {
  225. req->dst_len = key->n_sz;
  226. dev_err(jrdev, "Output buffer length less than parameter n\n");
  227. return -EOVERFLOW;
  228. }
  229. /* Allocate extended descriptor */
  230. edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
  231. if (IS_ERR(edesc))
  232. return PTR_ERR(edesc);
  233. /* Set RSA Encrypt Protocol Data Block */
  234. ret = set_rsa_pub_pdb(req, edesc);
  235. if (ret)
  236. goto init_fail;
  237. /* Initialize Job Descriptor */
  238. init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
  239. ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req);
  240. if (!ret)
  241. return -EINPROGRESS;
  242. rsa_pub_unmap(jrdev, edesc, req);
  243. init_fail:
  244. rsa_io_unmap(jrdev, edesc, req);
  245. kfree(edesc);
  246. return ret;
  247. }
  248. static int caam_rsa_dec(struct akcipher_request *req)
  249. {
  250. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  251. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  252. struct caam_rsa_key *key = &ctx->key;
  253. struct device *jrdev = ctx->dev;
  254. struct rsa_edesc *edesc;
  255. int ret;
  256. if (unlikely(!key->n || !key->d))
  257. return -EINVAL;
  258. if (req->dst_len < key->n_sz) {
  259. req->dst_len = key->n_sz;
  260. dev_err(jrdev, "Output buffer length less than parameter n\n");
  261. return -EOVERFLOW;
  262. }
  263. /* Allocate extended descriptor */
  264. edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
  265. if (IS_ERR(edesc))
  266. return PTR_ERR(edesc);
  267. /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
  268. ret = set_rsa_priv_f1_pdb(req, edesc);
  269. if (ret)
  270. goto init_fail;
  271. /* Initialize Job Descriptor */
  272. init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
  273. ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req);
  274. if (!ret)
  275. return -EINPROGRESS;
  276. rsa_priv_f1_unmap(jrdev, edesc, req);
  277. init_fail:
  278. rsa_io_unmap(jrdev, edesc, req);
  279. kfree(edesc);
  280. return ret;
  281. }
  282. static void caam_rsa_free_key(struct caam_rsa_key *key)
  283. {
  284. kzfree(key->d);
  285. kfree(key->e);
  286. kfree(key->n);
  287. key->d = NULL;
  288. key->e = NULL;
  289. key->n = NULL;
  290. key->d_sz = 0;
  291. key->e_sz = 0;
  292. key->n_sz = 0;
  293. }
  294. /**
  295. * caam_read_raw_data - Read a raw byte stream as a positive integer.
  296. * The function skips buffer's leading zeros, copies the remained data
  297. * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
  298. * the address of the new buffer.
  299. *
  300. * @buf : The data to read
  301. * @nbytes: The amount of data to read
  302. */
  303. static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
  304. {
  305. u8 *val;
  306. while (!*buf && *nbytes) {
  307. buf++;
  308. (*nbytes)--;
  309. }
  310. val = kzalloc(*nbytes, GFP_DMA | GFP_KERNEL);
  311. if (!val)
  312. return NULL;
  313. memcpy(val, buf, *nbytes);
  314. return val;
  315. }
  316. static int caam_rsa_check_key_length(unsigned int len)
  317. {
  318. if (len > 4096)
  319. return -EINVAL;
  320. return 0;
  321. }
  322. static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
  323. unsigned int keylen)
  324. {
  325. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  326. struct rsa_key raw_key = {0};
  327. struct caam_rsa_key *rsa_key = &ctx->key;
  328. int ret;
  329. /* Free the old RSA key if any */
  330. caam_rsa_free_key(rsa_key);
  331. ret = rsa_parse_pub_key(&raw_key, key, keylen);
  332. if (ret)
  333. return ret;
  334. /* Copy key in DMA zone */
  335. rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL);
  336. if (!rsa_key->e)
  337. goto err;
  338. /*
  339. * Skip leading zeros and copy the positive integer to a buffer
  340. * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
  341. * expects a positive integer for the RSA modulus and uses its length as
  342. * decryption output length.
  343. */
  344. rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
  345. if (!rsa_key->n)
  346. goto err;
  347. if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
  348. caam_rsa_free_key(rsa_key);
  349. return -EINVAL;
  350. }
  351. rsa_key->e_sz = raw_key.e_sz;
  352. rsa_key->n_sz = raw_key.n_sz;
  353. memcpy(rsa_key->e, raw_key.e, raw_key.e_sz);
  354. return 0;
  355. err:
  356. caam_rsa_free_key(rsa_key);
  357. return -ENOMEM;
  358. }
  359. static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
  360. unsigned int keylen)
  361. {
  362. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  363. struct rsa_key raw_key = {0};
  364. struct caam_rsa_key *rsa_key = &ctx->key;
  365. int ret;
  366. /* Free the old RSA key if any */
  367. caam_rsa_free_key(rsa_key);
  368. ret = rsa_parse_priv_key(&raw_key, key, keylen);
  369. if (ret)
  370. return ret;
  371. /* Copy key in DMA zone */
  372. rsa_key->d = kzalloc(raw_key.d_sz, GFP_DMA | GFP_KERNEL);
  373. if (!rsa_key->d)
  374. goto err;
  375. rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL);
  376. if (!rsa_key->e)
  377. goto err;
  378. /*
  379. * Skip leading zeros and copy the positive integer to a buffer
  380. * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
  381. * expects a positive integer for the RSA modulus and uses its length as
  382. * decryption output length.
  383. */
  384. rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
  385. if (!rsa_key->n)
  386. goto err;
  387. if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
  388. caam_rsa_free_key(rsa_key);
  389. return -EINVAL;
  390. }
  391. rsa_key->d_sz = raw_key.d_sz;
  392. rsa_key->e_sz = raw_key.e_sz;
  393. rsa_key->n_sz = raw_key.n_sz;
  394. memcpy(rsa_key->d, raw_key.d, raw_key.d_sz);
  395. memcpy(rsa_key->e, raw_key.e, raw_key.e_sz);
  396. return 0;
  397. err:
  398. caam_rsa_free_key(rsa_key);
  399. return -ENOMEM;
  400. }
  401. static int caam_rsa_max_size(struct crypto_akcipher *tfm)
  402. {
  403. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  404. struct caam_rsa_key *key = &ctx->key;
  405. return (key->n) ? key->n_sz : -EINVAL;
  406. }
  407. /* Per session pkc's driver context creation function */
  408. static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
  409. {
  410. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  411. ctx->dev = caam_jr_alloc();
  412. if (IS_ERR(ctx->dev)) {
  413. pr_err("Job Ring Device allocation for transform failed\n");
  414. return PTR_ERR(ctx->dev);
  415. }
  416. return 0;
  417. }
  418. /* Per session pkc's driver context cleanup function */
  419. static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
  420. {
  421. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  422. struct caam_rsa_key *key = &ctx->key;
  423. caam_rsa_free_key(key);
  424. caam_jr_free(ctx->dev);
  425. }
  426. static struct akcipher_alg caam_rsa = {
  427. .encrypt = caam_rsa_enc,
  428. .decrypt = caam_rsa_dec,
  429. .sign = caam_rsa_dec,
  430. .verify = caam_rsa_enc,
  431. .set_pub_key = caam_rsa_set_pub_key,
  432. .set_priv_key = caam_rsa_set_priv_key,
  433. .max_size = caam_rsa_max_size,
  434. .init = caam_rsa_init_tfm,
  435. .exit = caam_rsa_exit_tfm,
  436. .base = {
  437. .cra_name = "rsa",
  438. .cra_driver_name = "rsa-caam",
  439. .cra_priority = 3000,
  440. .cra_module = THIS_MODULE,
  441. .cra_ctxsize = sizeof(struct caam_rsa_ctx),
  442. },
  443. };
  444. /* Public Key Cryptography module initialization handler */
  445. static int __init caam_pkc_init(void)
  446. {
  447. struct device_node *dev_node;
  448. struct platform_device *pdev;
  449. struct device *ctrldev;
  450. struct caam_drv_private *priv;
  451. u32 cha_inst, pk_inst;
  452. int err;
  453. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  454. if (!dev_node) {
  455. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  456. if (!dev_node)
  457. return -ENODEV;
  458. }
  459. pdev = of_find_device_by_node(dev_node);
  460. if (!pdev) {
  461. of_node_put(dev_node);
  462. return -ENODEV;
  463. }
  464. ctrldev = &pdev->dev;
  465. priv = dev_get_drvdata(ctrldev);
  466. of_node_put(dev_node);
  467. /*
  468. * If priv is NULL, it's probably because the caam driver wasn't
  469. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  470. */
  471. if (!priv)
  472. return -ENODEV;
  473. /* Determine public key hardware accelerator presence. */
  474. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  475. pk_inst = (cha_inst & CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
  476. /* Do not register algorithms if PKHA is not present. */
  477. if (!pk_inst)
  478. return -ENODEV;
  479. err = crypto_register_akcipher(&caam_rsa);
  480. if (err)
  481. dev_warn(ctrldev, "%s alg registration failed\n",
  482. caam_rsa.base.cra_driver_name);
  483. else
  484. dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
  485. return err;
  486. }
  487. static void __exit caam_pkc_exit(void)
  488. {
  489. crypto_unregister_akcipher(&caam_rsa);
  490. }
  491. module_init(caam_pkc_init);
  492. module_exit(caam_pkc_exit);
  493. MODULE_LICENSE("Dual BSD/GPL");
  494. MODULE_DESCRIPTION("FSL CAAM support for PKC functions of crypto API");
  495. MODULE_AUTHOR("Freescale Semiconductor");