paging_tmpl.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. /*
  25. * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
  26. * uses for EPT without A/D paging type.
  27. */
  28. extern u64 __pure __using_nonexistent_pte_bit(void)
  29. __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
  30. #if PTTYPE == 64
  31. #define pt_element_t u64
  32. #define guest_walker guest_walker64
  33. #define FNAME(name) paging##64_##name
  34. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  35. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  36. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  37. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  38. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  39. #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
  40. #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
  41. #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  42. #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  43. #ifdef CONFIG_X86_64
  44. #define PT_MAX_FULL_LEVELS 4
  45. #define CMPXCHG cmpxchg
  46. #else
  47. #define CMPXCHG cmpxchg64
  48. #define PT_MAX_FULL_LEVELS 2
  49. #endif
  50. #elif PTTYPE == 32
  51. #define pt_element_t u32
  52. #define guest_walker guest_walker32
  53. #define FNAME(name) paging##32_##name
  54. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  55. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  56. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  57. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  58. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  59. #define PT_MAX_FULL_LEVELS 2
  60. #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
  61. #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
  62. #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  63. #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  64. #define CMPXCHG cmpxchg
  65. #elif PTTYPE == PTTYPE_EPT
  66. #define pt_element_t u64
  67. #define guest_walker guest_walkerEPT
  68. #define FNAME(name) ept_##name
  69. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  70. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  71. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  72. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  73. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  74. #define PT_GUEST_ACCESSED_MASK 0
  75. #define PT_GUEST_DIRTY_MASK 0
  76. #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
  77. #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
  78. #define CMPXCHG cmpxchg64
  79. #define PT_MAX_FULL_LEVELS 4
  80. #else
  81. #error Invalid PTTYPE value
  82. #endif
  83. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  84. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  85. /*
  86. * The guest_walker structure emulates the behavior of the hardware page
  87. * table walker.
  88. */
  89. struct guest_walker {
  90. int level;
  91. unsigned max_level;
  92. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  93. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  94. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  95. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  96. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  97. bool pte_writable[PT_MAX_FULL_LEVELS];
  98. unsigned pt_access;
  99. unsigned pte_access;
  100. gfn_t gfn;
  101. struct x86_exception fault;
  102. };
  103. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  104. {
  105. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  106. }
  107. static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
  108. {
  109. unsigned mask;
  110. /* dirty bit is not supported, so no need to track it */
  111. if (!PT_GUEST_DIRTY_MASK)
  112. return;
  113. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  114. mask = (unsigned)~ACC_WRITE_MASK;
  115. /* Allow write access to dirty gptes */
  116. mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
  117. PT_WRITABLE_MASK;
  118. *access &= mask;
  119. }
  120. static inline int FNAME(is_present_gpte)(unsigned long pte)
  121. {
  122. #if PTTYPE != PTTYPE_EPT
  123. return pte & PT_PRESENT_MASK;
  124. #else
  125. return pte & 7;
  126. #endif
  127. }
  128. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  129. pt_element_t __user *ptep_user, unsigned index,
  130. pt_element_t orig_pte, pt_element_t new_pte)
  131. {
  132. int npages;
  133. pt_element_t ret;
  134. pt_element_t *table;
  135. struct page *page;
  136. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  137. /* Check if the user is doing something meaningless. */
  138. if (unlikely(npages != 1))
  139. return -EFAULT;
  140. table = kmap_atomic(page);
  141. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  142. kunmap_atomic(table);
  143. kvm_release_page_dirty(page);
  144. return (ret != orig_pte);
  145. }
  146. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  147. struct kvm_mmu_page *sp, u64 *spte,
  148. u64 gpte)
  149. {
  150. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  151. goto no_present;
  152. if (!FNAME(is_present_gpte)(gpte))
  153. goto no_present;
  154. /* if accessed bit is not supported prefetch non accessed gpte */
  155. if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
  156. goto no_present;
  157. return false;
  158. no_present:
  159. drop_spte(vcpu->kvm, spte);
  160. return true;
  161. }
  162. /*
  163. * For PTTYPE_EPT, a page table can be executable but not readable
  164. * on supported processors. Therefore, set_spte does not automatically
  165. * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
  166. * to signify readability since it isn't used in the EPT case
  167. */
  168. static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
  169. {
  170. unsigned access;
  171. #if PTTYPE == PTTYPE_EPT
  172. access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
  173. ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
  174. ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
  175. #else
  176. BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
  177. BUILD_BUG_ON(ACC_EXEC_MASK != 1);
  178. access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
  179. /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
  180. access ^= (gpte >> PT64_NX_SHIFT);
  181. #endif
  182. return access;
  183. }
  184. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  185. struct kvm_mmu *mmu,
  186. struct guest_walker *walker,
  187. int write_fault)
  188. {
  189. unsigned level, index;
  190. pt_element_t pte, orig_pte;
  191. pt_element_t __user *ptep_user;
  192. gfn_t table_gfn;
  193. int ret;
  194. /* dirty/accessed bits are not supported, so no need to update them */
  195. if (!PT_GUEST_DIRTY_MASK)
  196. return 0;
  197. for (level = walker->max_level; level >= walker->level; --level) {
  198. pte = orig_pte = walker->ptes[level - 1];
  199. table_gfn = walker->table_gfn[level - 1];
  200. ptep_user = walker->ptep_user[level - 1];
  201. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  202. if (!(pte & PT_GUEST_ACCESSED_MASK)) {
  203. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  204. pte |= PT_GUEST_ACCESSED_MASK;
  205. }
  206. if (level == walker->level && write_fault &&
  207. !(pte & PT_GUEST_DIRTY_MASK)) {
  208. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  209. pte |= PT_GUEST_DIRTY_MASK;
  210. }
  211. if (pte == orig_pte)
  212. continue;
  213. /*
  214. * If the slot is read-only, simply do not process the accessed
  215. * and dirty bits. This is the correct thing to do if the slot
  216. * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
  217. * are only supported if the accessed and dirty bits are already
  218. * set in the ROM (so that MMIO writes are never needed).
  219. *
  220. * Note that NPT does not allow this at all and faults, since
  221. * it always wants nested page table entries for the guest
  222. * page tables to be writable. And EPT works but will simply
  223. * overwrite the read-only memory to set the accessed and dirty
  224. * bits.
  225. */
  226. if (unlikely(!walker->pte_writable[level - 1]))
  227. continue;
  228. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  229. if (ret)
  230. return ret;
  231. kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
  232. walker->ptes[level - 1] = pte;
  233. }
  234. return 0;
  235. }
  236. static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
  237. {
  238. unsigned pkeys = 0;
  239. #if PTTYPE == 64
  240. pte_t pte = {.pte = gpte};
  241. pkeys = pte_flags_pkey(pte_flags(pte));
  242. #endif
  243. return pkeys;
  244. }
  245. /*
  246. * Fetch a guest pte for a guest virtual address
  247. */
  248. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  249. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  250. gva_t addr, u32 access)
  251. {
  252. int ret;
  253. pt_element_t pte;
  254. pt_element_t __user *uninitialized_var(ptep_user);
  255. gfn_t table_gfn;
  256. unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey;
  257. gpa_t pte_gpa;
  258. int offset;
  259. const int write_fault = access & PFERR_WRITE_MASK;
  260. const int user_fault = access & PFERR_USER_MASK;
  261. const int fetch_fault = access & PFERR_FETCH_MASK;
  262. u16 errcode = 0;
  263. gpa_t real_gpa;
  264. gfn_t gfn;
  265. trace_kvm_mmu_pagetable_walk(addr, access);
  266. retry_walk:
  267. walker->level = mmu->root_level;
  268. pte = mmu->get_cr3(vcpu);
  269. #if PTTYPE == 64
  270. if (walker->level == PT32E_ROOT_LEVEL) {
  271. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  272. trace_kvm_mmu_paging_element(pte, walker->level);
  273. if (!FNAME(is_present_gpte)(pte))
  274. goto error;
  275. --walker->level;
  276. }
  277. #endif
  278. walker->max_level = walker->level;
  279. ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
  280. accessed_dirty = PT_GUEST_ACCESSED_MASK;
  281. pt_access = pte_access = ACC_ALL;
  282. ++walker->level;
  283. do {
  284. gfn_t real_gfn;
  285. unsigned long host_addr;
  286. pt_access &= pte_access;
  287. --walker->level;
  288. index = PT_INDEX(addr, walker->level);
  289. table_gfn = gpte_to_gfn(pte);
  290. offset = index * sizeof(pt_element_t);
  291. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  292. BUG_ON(walker->level < 1);
  293. walker->table_gfn[walker->level - 1] = table_gfn;
  294. walker->pte_gpa[walker->level - 1] = pte_gpa;
  295. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  296. PFERR_USER_MASK|PFERR_WRITE_MASK,
  297. &walker->fault);
  298. /*
  299. * FIXME: This can happen if emulation (for of an INS/OUTS
  300. * instruction) triggers a nested page fault. The exit
  301. * qualification / exit info field will incorrectly have
  302. * "guest page access" as the nested page fault's cause,
  303. * instead of "guest page structure access". To fix this,
  304. * the x86_exception struct should be augmented with enough
  305. * information to fix the exit_qualification or exit_info_1
  306. * fields.
  307. */
  308. if (unlikely(real_gfn == UNMAPPED_GVA))
  309. return 0;
  310. real_gfn = gpa_to_gfn(real_gfn);
  311. host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
  312. &walker->pte_writable[walker->level - 1]);
  313. if (unlikely(kvm_is_error_hva(host_addr)))
  314. goto error;
  315. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  316. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  317. goto error;
  318. walker->ptep_user[walker->level - 1] = ptep_user;
  319. trace_kvm_mmu_paging_element(pte, walker->level);
  320. if (unlikely(!FNAME(is_present_gpte)(pte)))
  321. goto error;
  322. if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
  323. errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  324. goto error;
  325. }
  326. accessed_dirty &= pte;
  327. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  328. walker->ptes[walker->level - 1] = pte;
  329. } while (!is_last_gpte(mmu, walker->level, pte));
  330. pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
  331. errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access);
  332. if (unlikely(errcode))
  333. goto error;
  334. gfn = gpte_to_gfn_lvl(pte, walker->level);
  335. gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
  336. if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
  337. gfn += pse36_gfn_delta(pte);
  338. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
  339. if (real_gpa == UNMAPPED_GVA)
  340. return 0;
  341. walker->gfn = real_gpa >> PAGE_SHIFT;
  342. if (!write_fault)
  343. FNAME(protect_clean_gpte)(&pte_access, pte);
  344. else
  345. /*
  346. * On a write fault, fold the dirty bit into accessed_dirty.
  347. * For modes without A/D bits support accessed_dirty will be
  348. * always clear.
  349. */
  350. accessed_dirty &= pte >>
  351. (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
  352. if (unlikely(!accessed_dirty)) {
  353. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  354. if (unlikely(ret < 0))
  355. goto error;
  356. else if (ret)
  357. goto retry_walk;
  358. }
  359. walker->pt_access = pt_access;
  360. walker->pte_access = pte_access;
  361. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  362. __func__, (u64)pte, pte_access, pt_access);
  363. return 1;
  364. error:
  365. errcode |= write_fault | user_fault;
  366. if (fetch_fault && (mmu->nx ||
  367. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  368. errcode |= PFERR_FETCH_MASK;
  369. walker->fault.vector = PF_VECTOR;
  370. walker->fault.error_code_valid = true;
  371. walker->fault.error_code = errcode;
  372. #if PTTYPE == PTTYPE_EPT
  373. /*
  374. * Use PFERR_RSVD_MASK in error_code to to tell if EPT
  375. * misconfiguration requires to be injected. The detection is
  376. * done by is_rsvd_bits_set() above.
  377. *
  378. * We set up the value of exit_qualification to inject:
  379. * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
  380. * [5:3] - Calculated by the page walk of the guest EPT page tables
  381. * [7:8] - Derived from [7:8] of real exit_qualification
  382. *
  383. * The other bits are set to 0.
  384. */
  385. if (!(errcode & PFERR_RSVD_MASK)) {
  386. vcpu->arch.exit_qualification &= 0x187;
  387. vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
  388. }
  389. #endif
  390. walker->fault.address = addr;
  391. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  392. trace_kvm_mmu_walker_error(walker->fault.error_code);
  393. return 0;
  394. }
  395. static int FNAME(walk_addr)(struct guest_walker *walker,
  396. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  397. {
  398. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  399. access);
  400. }
  401. #if PTTYPE != PTTYPE_EPT
  402. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  403. struct kvm_vcpu *vcpu, gva_t addr,
  404. u32 access)
  405. {
  406. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  407. addr, access);
  408. }
  409. #endif
  410. static bool
  411. FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  412. u64 *spte, pt_element_t gpte, bool no_dirty_log)
  413. {
  414. unsigned pte_access;
  415. gfn_t gfn;
  416. kvm_pfn_t pfn;
  417. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  418. return false;
  419. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  420. gfn = gpte_to_gfn(gpte);
  421. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  422. FNAME(protect_clean_gpte)(&pte_access, gpte);
  423. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  424. no_dirty_log && (pte_access & ACC_WRITE_MASK));
  425. if (is_error_pfn(pfn))
  426. return false;
  427. /*
  428. * we call mmu_set_spte() with host_writable = true because
  429. * pte_prefetch_gfn_to_pfn always gets a writable pfn.
  430. */
  431. mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
  432. true, true);
  433. return true;
  434. }
  435. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  436. u64 *spte, const void *pte)
  437. {
  438. pt_element_t gpte = *(const pt_element_t *)pte;
  439. FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
  440. }
  441. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  442. struct guest_walker *gw, int level)
  443. {
  444. pt_element_t curr_pte;
  445. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  446. u64 mask;
  447. int r, index;
  448. if (level == PT_PAGE_TABLE_LEVEL) {
  449. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  450. base_gpa = pte_gpa & ~mask;
  451. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  452. r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
  453. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  454. curr_pte = gw->prefetch_ptes[index];
  455. } else
  456. r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
  457. &curr_pte, sizeof(curr_pte));
  458. return r || curr_pte != gw->ptes[level - 1];
  459. }
  460. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  461. u64 *sptep)
  462. {
  463. struct kvm_mmu_page *sp;
  464. pt_element_t *gptep = gw->prefetch_ptes;
  465. u64 *spte;
  466. int i;
  467. sp = page_header(__pa(sptep));
  468. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  469. return;
  470. if (sp->role.direct)
  471. return __direct_pte_prefetch(vcpu, sp, sptep);
  472. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  473. spte = sp->spt + i;
  474. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  475. if (spte == sptep)
  476. continue;
  477. if (is_shadow_present_pte(*spte))
  478. continue;
  479. if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
  480. break;
  481. }
  482. }
  483. /*
  484. * Fetch a shadow pte for a specific level in the paging hierarchy.
  485. * If the guest tries to write a write-protected page, we need to
  486. * emulate this operation, return 1 to indicate this case.
  487. */
  488. static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  489. struct guest_walker *gw,
  490. int write_fault, int hlevel,
  491. kvm_pfn_t pfn, bool map_writable, bool prefault)
  492. {
  493. struct kvm_mmu_page *sp = NULL;
  494. struct kvm_shadow_walk_iterator it;
  495. unsigned direct_access, access = gw->pt_access;
  496. int top_level, emulate;
  497. direct_access = gw->pte_access;
  498. top_level = vcpu->arch.mmu.root_level;
  499. if (top_level == PT32E_ROOT_LEVEL)
  500. top_level = PT32_ROOT_LEVEL;
  501. /*
  502. * Verify that the top-level gpte is still there. Since the page
  503. * is a root page, it is either write protected (and cannot be
  504. * changed from now on) or it is invalid (in which case, we don't
  505. * really care if it changes underneath us after this point).
  506. */
  507. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  508. goto out_gpte_changed;
  509. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  510. goto out_gpte_changed;
  511. for (shadow_walk_init(&it, vcpu, addr);
  512. shadow_walk_okay(&it) && it.level > gw->level;
  513. shadow_walk_next(&it)) {
  514. gfn_t table_gfn;
  515. clear_sp_write_flooding_count(it.sptep);
  516. drop_large_spte(vcpu, it.sptep);
  517. sp = NULL;
  518. if (!is_shadow_present_pte(*it.sptep)) {
  519. table_gfn = gw->table_gfn[it.level - 2];
  520. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  521. false, access);
  522. }
  523. /*
  524. * Verify that the gpte in the page we've just write
  525. * protected is still there.
  526. */
  527. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  528. goto out_gpte_changed;
  529. if (sp)
  530. link_shadow_page(vcpu, it.sptep, sp);
  531. }
  532. for (;
  533. shadow_walk_okay(&it) && it.level > hlevel;
  534. shadow_walk_next(&it)) {
  535. gfn_t direct_gfn;
  536. clear_sp_write_flooding_count(it.sptep);
  537. validate_direct_spte(vcpu, it.sptep, direct_access);
  538. drop_large_spte(vcpu, it.sptep);
  539. if (is_shadow_present_pte(*it.sptep))
  540. continue;
  541. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  542. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  543. true, direct_access);
  544. link_shadow_page(vcpu, it.sptep, sp);
  545. }
  546. clear_sp_write_flooding_count(it.sptep);
  547. emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
  548. it.level, gw->gfn, pfn, prefault, map_writable);
  549. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  550. return emulate;
  551. out_gpte_changed:
  552. kvm_release_pfn_clean(pfn);
  553. return 0;
  554. }
  555. /*
  556. * To see whether the mapped gfn can write its page table in the current
  557. * mapping.
  558. *
  559. * It is the helper function of FNAME(page_fault). When guest uses large page
  560. * size to map the writable gfn which is used as current page table, we should
  561. * force kvm to use small page size to map it because new shadow page will be
  562. * created when kvm establishes shadow page table that stop kvm using large
  563. * page size. Do it early can avoid unnecessary #PF and emulation.
  564. *
  565. * @write_fault_to_shadow_pgtable will return true if the fault gfn is
  566. * currently used as its page table.
  567. *
  568. * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
  569. * since the PDPT is always shadowed, that means, we can not use large page
  570. * size to map the gfn which is used as PDPT.
  571. */
  572. static bool
  573. FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
  574. struct guest_walker *walker, int user_fault,
  575. bool *write_fault_to_shadow_pgtable)
  576. {
  577. int level;
  578. gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
  579. bool self_changed = false;
  580. if (!(walker->pte_access & ACC_WRITE_MASK ||
  581. (!is_write_protection(vcpu) && !user_fault)))
  582. return false;
  583. for (level = walker->level; level <= walker->max_level; level++) {
  584. gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
  585. self_changed |= !(gfn & mask);
  586. *write_fault_to_shadow_pgtable |= !gfn;
  587. }
  588. return self_changed;
  589. }
  590. /*
  591. * Page fault handler. There are several causes for a page fault:
  592. * - there is no shadow pte for the guest pte
  593. * - write access through a shadow pte marked read only so that we can set
  594. * the dirty bit
  595. * - write access to a shadow pte marked read only so we can update the page
  596. * dirty bitmap, when userspace requests it
  597. * - mmio access; in this case we will never install a present shadow pte
  598. * - normal guest page fault due to the guest pte marked not present, not
  599. * writable, or not executable
  600. *
  601. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  602. * a negative value on error.
  603. */
  604. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  605. bool prefault)
  606. {
  607. int write_fault = error_code & PFERR_WRITE_MASK;
  608. int user_fault = error_code & PFERR_USER_MASK;
  609. struct guest_walker walker;
  610. int r;
  611. kvm_pfn_t pfn;
  612. int level = PT_PAGE_TABLE_LEVEL;
  613. bool force_pt_level = false;
  614. unsigned long mmu_seq;
  615. bool map_writable, is_self_change_mapping;
  616. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  617. r = mmu_topup_memory_caches(vcpu);
  618. if (r)
  619. return r;
  620. /*
  621. * If PFEC.RSVD is set, this is a shadow page fault.
  622. * The bit needs to be cleared before walking guest page tables.
  623. */
  624. error_code &= ~PFERR_RSVD_MASK;
  625. /*
  626. * Look up the guest pte for the faulting address.
  627. */
  628. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  629. /*
  630. * The page is not mapped by the guest. Let the guest handle it.
  631. */
  632. if (!r) {
  633. pgprintk("%s: guest page fault\n", __func__);
  634. if (!prefault)
  635. inject_page_fault(vcpu, &walker.fault);
  636. return 0;
  637. }
  638. if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
  639. shadow_page_table_clear_flood(vcpu, addr);
  640. return 1;
  641. }
  642. vcpu->arch.write_fault_to_shadow_pgtable = false;
  643. is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
  644. &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
  645. if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
  646. level = mapping_level(vcpu, walker.gfn, &force_pt_level);
  647. if (likely(!force_pt_level)) {
  648. level = min(walker.level, level);
  649. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  650. }
  651. } else
  652. force_pt_level = true;
  653. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  654. smp_rmb();
  655. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  656. &map_writable))
  657. return 0;
  658. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  659. walker.gfn, pfn, walker.pte_access, &r))
  660. return r;
  661. /*
  662. * Do not change pte_access if the pfn is a mmio page, otherwise
  663. * we will cache the incorrect access into mmio spte.
  664. */
  665. if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
  666. !is_write_protection(vcpu) && !user_fault &&
  667. !is_noslot_pfn(pfn)) {
  668. walker.pte_access |= ACC_WRITE_MASK;
  669. walker.pte_access &= ~ACC_USER_MASK;
  670. /*
  671. * If we converted a user page to a kernel page,
  672. * so that the kernel can write to it when cr0.wp=0,
  673. * then we should prevent the kernel from executing it
  674. * if SMEP is enabled.
  675. */
  676. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  677. walker.pte_access &= ~ACC_EXEC_MASK;
  678. }
  679. spin_lock(&vcpu->kvm->mmu_lock);
  680. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  681. goto out_unlock;
  682. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  683. make_mmu_pages_available(vcpu);
  684. if (!force_pt_level)
  685. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  686. r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
  687. level, pfn, map_writable, prefault);
  688. ++vcpu->stat.pf_fixed;
  689. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  690. spin_unlock(&vcpu->kvm->mmu_lock);
  691. return r;
  692. out_unlock:
  693. spin_unlock(&vcpu->kvm->mmu_lock);
  694. kvm_release_pfn_clean(pfn);
  695. return 0;
  696. }
  697. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  698. {
  699. int offset = 0;
  700. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  701. if (PTTYPE == 32)
  702. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  703. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  704. }
  705. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  706. {
  707. struct kvm_shadow_walk_iterator iterator;
  708. struct kvm_mmu_page *sp;
  709. int level;
  710. u64 *sptep;
  711. vcpu_clear_mmio_info(vcpu, gva);
  712. /*
  713. * No need to check return value here, rmap_can_add() can
  714. * help us to skip pte prefetch later.
  715. */
  716. mmu_topup_memory_caches(vcpu);
  717. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  718. WARN_ON(1);
  719. return;
  720. }
  721. spin_lock(&vcpu->kvm->mmu_lock);
  722. for_each_shadow_entry(vcpu, gva, iterator) {
  723. level = iterator.level;
  724. sptep = iterator.sptep;
  725. sp = page_header(__pa(sptep));
  726. if (is_last_spte(*sptep, level)) {
  727. pt_element_t gpte;
  728. gpa_t pte_gpa;
  729. if (!sp->unsync)
  730. break;
  731. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  732. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  733. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  734. kvm_flush_remote_tlbs(vcpu->kvm);
  735. if (!rmap_can_add(vcpu))
  736. break;
  737. if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
  738. sizeof(pt_element_t)))
  739. break;
  740. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  741. }
  742. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  743. break;
  744. }
  745. spin_unlock(&vcpu->kvm->mmu_lock);
  746. }
  747. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  748. struct x86_exception *exception)
  749. {
  750. struct guest_walker walker;
  751. gpa_t gpa = UNMAPPED_GVA;
  752. int r;
  753. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  754. if (r) {
  755. gpa = gfn_to_gpa(walker.gfn);
  756. gpa |= vaddr & ~PAGE_MASK;
  757. } else if (exception)
  758. *exception = walker.fault;
  759. return gpa;
  760. }
  761. #if PTTYPE != PTTYPE_EPT
  762. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  763. u32 access,
  764. struct x86_exception *exception)
  765. {
  766. struct guest_walker walker;
  767. gpa_t gpa = UNMAPPED_GVA;
  768. int r;
  769. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  770. if (r) {
  771. gpa = gfn_to_gpa(walker.gfn);
  772. gpa |= vaddr & ~PAGE_MASK;
  773. } else if (exception)
  774. *exception = walker.fault;
  775. return gpa;
  776. }
  777. #endif
  778. /*
  779. * Using the cached information from sp->gfns is safe because:
  780. * - The spte has a reference to the struct page, so the pfn for a given gfn
  781. * can't change unless all sptes pointing to it are nuked first.
  782. *
  783. * Note:
  784. * We should flush all tlbs if spte is dropped even though guest is
  785. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  786. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  787. * used by guest then tlbs are not flushed, so guest is allowed to access the
  788. * freed pages.
  789. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  790. */
  791. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  792. {
  793. int i, nr_present = 0;
  794. bool host_writable;
  795. gpa_t first_pte_gpa;
  796. /* direct kvm_mmu_page can not be unsync. */
  797. BUG_ON(sp->role.direct);
  798. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  799. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  800. unsigned pte_access;
  801. pt_element_t gpte;
  802. gpa_t pte_gpa;
  803. gfn_t gfn;
  804. if (!sp->spt[i])
  805. continue;
  806. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  807. if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
  808. sizeof(pt_element_t)))
  809. return 0;
  810. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  811. /*
  812. * Update spte before increasing tlbs_dirty to make
  813. * sure no tlb flush is lost after spte is zapped; see
  814. * the comments in kvm_flush_remote_tlbs().
  815. */
  816. smp_wmb();
  817. vcpu->kvm->tlbs_dirty++;
  818. continue;
  819. }
  820. gfn = gpte_to_gfn(gpte);
  821. pte_access = sp->role.access;
  822. pte_access &= FNAME(gpte_access)(vcpu, gpte);
  823. FNAME(protect_clean_gpte)(&pte_access, gpte);
  824. if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
  825. &nr_present))
  826. continue;
  827. if (gfn != sp->gfns[i]) {
  828. drop_spte(vcpu->kvm, &sp->spt[i]);
  829. /*
  830. * The same as above where we are doing
  831. * prefetch_invalid_gpte().
  832. */
  833. smp_wmb();
  834. vcpu->kvm->tlbs_dirty++;
  835. continue;
  836. }
  837. nr_present++;
  838. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  839. set_spte(vcpu, &sp->spt[i], pte_access,
  840. PT_PAGE_TABLE_LEVEL, gfn,
  841. spte_to_pfn(sp->spt[i]), true, false,
  842. host_writable);
  843. }
  844. return nr_present;
  845. }
  846. #undef pt_element_t
  847. #undef guest_walker
  848. #undef FNAME
  849. #undef PT_BASE_ADDR_MASK
  850. #undef PT_INDEX
  851. #undef PT_LVL_ADDR_MASK
  852. #undef PT_LVL_OFFSET_MASK
  853. #undef PT_LEVEL_BITS
  854. #undef PT_MAX_FULL_LEVELS
  855. #undef gpte_to_gfn
  856. #undef gpte_to_gfn_lvl
  857. #undef CMPXCHG
  858. #undef PT_GUEST_ACCESSED_MASK
  859. #undef PT_GUEST_DIRTY_MASK
  860. #undef PT_GUEST_DIRTY_SHIFT
  861. #undef PT_GUEST_ACCESSED_SHIFT