mmu.h 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. #ifndef __KVM_X86_MMU_H
  2. #define __KVM_X86_MMU_H
  3. #include <linux/kvm_host.h>
  4. #include "kvm_cache_regs.h"
  5. #define PT64_PT_BITS 9
  6. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  7. #define PT32_PT_BITS 10
  8. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  9. #define PT_WRITABLE_SHIFT 1
  10. #define PT_USER_SHIFT 2
  11. #define PT_PRESENT_MASK (1ULL << 0)
  12. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  13. #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  14. #define PT_PWT_MASK (1ULL << 3)
  15. #define PT_PCD_MASK (1ULL << 4)
  16. #define PT_ACCESSED_SHIFT 5
  17. #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  18. #define PT_DIRTY_SHIFT 6
  19. #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  20. #define PT_PAGE_SIZE_SHIFT 7
  21. #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  22. #define PT_PAT_MASK (1ULL << 7)
  23. #define PT_GLOBAL_MASK (1ULL << 8)
  24. #define PT64_NX_SHIFT 63
  25. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  26. #define PT_PAT_SHIFT 7
  27. #define PT_DIR_PAT_SHIFT 12
  28. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  29. #define PT32_DIR_PSE36_SIZE 4
  30. #define PT32_DIR_PSE36_SHIFT 13
  31. #define PT32_DIR_PSE36_MASK \
  32. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  33. #define PT64_ROOT_LEVEL 4
  34. #define PT32_ROOT_LEVEL 2
  35. #define PT32E_ROOT_LEVEL 3
  36. #define PT_PDPE_LEVEL 3
  37. #define PT_DIRECTORY_LEVEL 2
  38. #define PT_PAGE_TABLE_LEVEL 1
  39. #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
  40. static inline u64 rsvd_bits(int s, int e)
  41. {
  42. return ((1ULL << (e - s + 1)) - 1) << s;
  43. }
  44. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
  45. void
  46. reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
  47. /*
  48. * Return values of handle_mmio_page_fault:
  49. * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
  50. * directly.
  51. * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
  52. * fault path update the mmio spte.
  53. * RET_MMIO_PF_RETRY: let CPU fault again on the address.
  54. * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
  55. */
  56. enum {
  57. RET_MMIO_PF_EMULATE = 1,
  58. RET_MMIO_PF_INVALID = 2,
  59. RET_MMIO_PF_RETRY = 0,
  60. RET_MMIO_PF_BUG = -1
  61. };
  62. int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
  63. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
  64. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
  65. bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  66. static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
  67. {
  68. if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
  69. return kvm->arch.n_max_mmu_pages -
  70. kvm->arch.n_used_mmu_pages;
  71. return 0;
  72. }
  73. static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  74. {
  75. if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
  76. return 0;
  77. return kvm_mmu_load(vcpu);
  78. }
  79. /*
  80. * Currently, we have two sorts of write-protection, a) the first one
  81. * write-protects guest page to sync the guest modification, b) another one is
  82. * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
  83. * between these two sorts are:
  84. * 1) the first case clears SPTE_MMU_WRITEABLE bit.
  85. * 2) the first case requires flushing tlb immediately avoiding corrupting
  86. * shadow page table between all vcpus so it should be in the protection of
  87. * mmu-lock. And the another case does not need to flush tlb until returning
  88. * the dirty bitmap to userspace since it only write-protects the page
  89. * logged in the bitmap, that means the page in the dirty bitmap is not
  90. * missed, so it can flush tlb out of mmu-lock.
  91. *
  92. * So, there is the problem: the first case can meet the corrupted tlb caused
  93. * by another case which write-protects pages but without flush tlb
  94. * immediately. In order to making the first case be aware this problem we let
  95. * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
  96. * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
  97. *
  98. * Anyway, whenever a spte is updated (only permission and status bits are
  99. * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
  100. * readonly, if that happens, we need to flush tlb. Fortunately,
  101. * mmu_spte_update() has already handled it perfectly.
  102. *
  103. * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
  104. * - if we want to see if it has writable tlb entry or if the spte can be
  105. * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
  106. * case, otherwise
  107. * - if we fix page fault on the spte or do write-protection by dirty logging,
  108. * check PT_WRITABLE_MASK.
  109. *
  110. * TODO: introduce APIs to split these two cases.
  111. */
  112. static inline int is_writable_pte(unsigned long pte)
  113. {
  114. return pte & PT_WRITABLE_MASK;
  115. }
  116. static inline bool is_write_protection(struct kvm_vcpu *vcpu)
  117. {
  118. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  119. }
  120. /*
  121. * Check if a given access (described through the I/D, W/R and U/S bits of a
  122. * page fault error code pfec) causes a permission fault with the given PTE
  123. * access rights (in ACC_* format).
  124. *
  125. * Return zero if the access does not fault; return the page fault error code
  126. * if the access faults.
  127. */
  128. static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  129. unsigned pte_access, unsigned pte_pkey,
  130. unsigned pfec)
  131. {
  132. int cpl = kvm_x86_ops->get_cpl(vcpu);
  133. unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
  134. /*
  135. * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
  136. *
  137. * If CPL = 3, SMAP applies to all supervisor-mode data accesses
  138. * (these are implicit supervisor accesses) regardless of the value
  139. * of EFLAGS.AC.
  140. *
  141. * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
  142. * the result in X86_EFLAGS_AC. We then insert it in place of
  143. * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
  144. * but it will be one in index if SMAP checks are being overridden.
  145. * It is important to keep this branchless.
  146. */
  147. unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
  148. int index = (pfec >> 1) +
  149. (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
  150. bool fault = (mmu->permissions[index] >> pte_access) & 1;
  151. u32 errcode = PFERR_PRESENT_MASK;
  152. WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
  153. if (unlikely(mmu->pkru_mask)) {
  154. u32 pkru_bits, offset;
  155. /*
  156. * PKRU defines 32 bits, there are 16 domains and 2
  157. * attribute bits per domain in pkru. pte_pkey is the
  158. * index of the protection domain, so pte_pkey * 2 is
  159. * is the index of the first bit for the domain.
  160. */
  161. pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
  162. /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
  163. offset = (pfec & ~1) +
  164. ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
  165. pkru_bits &= mmu->pkru_mask >> offset;
  166. errcode |= -pkru_bits & PFERR_PK_MASK;
  167. fault |= (pkru_bits != 0);
  168. }
  169. return -(u32)fault & errcode;
  170. }
  171. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
  172. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
  173. void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
  174. void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
  175. bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
  176. struct kvm_memory_slot *slot, u64 gfn);
  177. #endif