123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- #ifndef __KVM_X86_MMU_H
- #define __KVM_X86_MMU_H
- #include <linux/kvm_host.h>
- #include "kvm_cache_regs.h"
- #define PT64_PT_BITS 9
- #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
- #define PT32_PT_BITS 10
- #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
- #define PT_WRITABLE_SHIFT 1
- #define PT_USER_SHIFT 2
- #define PT_PRESENT_MASK (1ULL << 0)
- #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
- #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
- #define PT_PWT_MASK (1ULL << 3)
- #define PT_PCD_MASK (1ULL << 4)
- #define PT_ACCESSED_SHIFT 5
- #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
- #define PT_DIRTY_SHIFT 6
- #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
- #define PT_PAGE_SIZE_SHIFT 7
- #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
- #define PT_PAT_MASK (1ULL << 7)
- #define PT_GLOBAL_MASK (1ULL << 8)
- #define PT64_NX_SHIFT 63
- #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
- #define PT_PAT_SHIFT 7
- #define PT_DIR_PAT_SHIFT 12
- #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
- #define PT32_DIR_PSE36_SIZE 4
- #define PT32_DIR_PSE36_SHIFT 13
- #define PT32_DIR_PSE36_MASK \
- (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
- #define PT64_ROOT_LEVEL 4
- #define PT32_ROOT_LEVEL 2
- #define PT32E_ROOT_LEVEL 3
- #define PT_PDPE_LEVEL 3
- #define PT_DIRECTORY_LEVEL 2
- #define PT_PAGE_TABLE_LEVEL 1
- #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
- static inline u64 rsvd_bits(int s, int e)
- {
- return ((1ULL << (e - s + 1)) - 1) << s;
- }
- void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
- void
- reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
- /*
- * Return values of handle_mmio_page_fault:
- * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
- * directly.
- * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
- * fault path update the mmio spte.
- * RET_MMIO_PF_RETRY: let CPU fault again on the address.
- * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
- */
- enum {
- RET_MMIO_PF_EMULATE = 1,
- RET_MMIO_PF_INVALID = 2,
- RET_MMIO_PF_RETRY = 0,
- RET_MMIO_PF_BUG = -1
- };
- int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
- void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
- void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
- bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
- static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
- {
- if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
- return kvm->arch.n_max_mmu_pages -
- kvm->arch.n_used_mmu_pages;
- return 0;
- }
- static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
- {
- if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
- return 0;
- return kvm_mmu_load(vcpu);
- }
- /*
- * Currently, we have two sorts of write-protection, a) the first one
- * write-protects guest page to sync the guest modification, b) another one is
- * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
- * between these two sorts are:
- * 1) the first case clears SPTE_MMU_WRITEABLE bit.
- * 2) the first case requires flushing tlb immediately avoiding corrupting
- * shadow page table between all vcpus so it should be in the protection of
- * mmu-lock. And the another case does not need to flush tlb until returning
- * the dirty bitmap to userspace since it only write-protects the page
- * logged in the bitmap, that means the page in the dirty bitmap is not
- * missed, so it can flush tlb out of mmu-lock.
- *
- * So, there is the problem: the first case can meet the corrupted tlb caused
- * by another case which write-protects pages but without flush tlb
- * immediately. In order to making the first case be aware this problem we let
- * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
- * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
- *
- * Anyway, whenever a spte is updated (only permission and status bits are
- * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
- * readonly, if that happens, we need to flush tlb. Fortunately,
- * mmu_spte_update() has already handled it perfectly.
- *
- * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
- * - if we want to see if it has writable tlb entry or if the spte can be
- * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
- * case, otherwise
- * - if we fix page fault on the spte or do write-protection by dirty logging,
- * check PT_WRITABLE_MASK.
- *
- * TODO: introduce APIs to split these two cases.
- */
- static inline int is_writable_pte(unsigned long pte)
- {
- return pte & PT_WRITABLE_MASK;
- }
- static inline bool is_write_protection(struct kvm_vcpu *vcpu)
- {
- return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
- }
- /*
- * Check if a given access (described through the I/D, W/R and U/S bits of a
- * page fault error code pfec) causes a permission fault with the given PTE
- * access rights (in ACC_* format).
- *
- * Return zero if the access does not fault; return the page fault error code
- * if the access faults.
- */
- static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
- unsigned pte_access, unsigned pte_pkey,
- unsigned pfec)
- {
- int cpl = kvm_x86_ops->get_cpl(vcpu);
- unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
- /*
- * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
- *
- * If CPL = 3, SMAP applies to all supervisor-mode data accesses
- * (these are implicit supervisor accesses) regardless of the value
- * of EFLAGS.AC.
- *
- * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
- * the result in X86_EFLAGS_AC. We then insert it in place of
- * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
- * but it will be one in index if SMAP checks are being overridden.
- * It is important to keep this branchless.
- */
- unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
- int index = (pfec >> 1) +
- (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
- bool fault = (mmu->permissions[index] >> pte_access) & 1;
- u32 errcode = PFERR_PRESENT_MASK;
- WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
- if (unlikely(mmu->pkru_mask)) {
- u32 pkru_bits, offset;
- /*
- * PKRU defines 32 bits, there are 16 domains and 2
- * attribute bits per domain in pkru. pte_pkey is the
- * index of the protection domain, so pte_pkey * 2 is
- * is the index of the first bit for the domain.
- */
- pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
- /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
- offset = (pfec & ~1) +
- ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
- pkru_bits &= mmu->pkru_mask >> offset;
- errcode |= -pkru_bits & PFERR_PK_MASK;
- fault |= (pkru_bits != 0);
- }
- return -(u32)fault & errcode;
- }
- void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
- void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
- void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
- void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
- bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
- struct kvm_memory_slot *slot, u64 gfn);
- #endif
|