123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997 |
- /*
- * User-space Probes (UProbes) for x86
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * Copyright (C) IBM Corporation, 2008-2011
- * Authors:
- * Srikar Dronamraju
- * Jim Keniston
- */
- #include <linux/kernel.h>
- #include <linux/sched.h>
- #include <linux/ptrace.h>
- #include <linux/uprobes.h>
- #include <linux/uaccess.h>
- #include <linux/kdebug.h>
- #include <asm/processor.h>
- #include <asm/insn.h>
- #include <asm/mmu_context.h>
- /* Post-execution fixups. */
- /* Adjust IP back to vicinity of actual insn */
- #define UPROBE_FIX_IP 0x01
- /* Adjust the return address of a call insn */
- #define UPROBE_FIX_CALL 0x02
- /* Instruction will modify TF, don't change it */
- #define UPROBE_FIX_SETF 0x04
- #define UPROBE_FIX_RIP_SI 0x08
- #define UPROBE_FIX_RIP_DI 0x10
- #define UPROBE_FIX_RIP_BX 0x20
- #define UPROBE_FIX_RIP_MASK \
- (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
- #define UPROBE_TRAP_NR UINT_MAX
- /* Adaptations for mhiramat x86 decoder v14. */
- #define OPCODE1(insn) ((insn)->opcode.bytes[0])
- #define OPCODE2(insn) ((insn)->opcode.bytes[1])
- #define OPCODE3(insn) ((insn)->opcode.bytes[2])
- #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
- #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
- (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
- (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
- (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
- (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
- << (row % 32))
- /*
- * Good-instruction tables for 32-bit apps. This is non-const and volatile
- * to keep gcc from statically optimizing it out, as variable_test_bit makes
- * some versions of gcc to think only *(unsigned long*) is used.
- *
- * Opcodes we'll probably never support:
- * 6c-6f - ins,outs. SEGVs if used in userspace
- * e4-e7 - in,out imm. SEGVs if used in userspace
- * ec-ef - in,out acc. SEGVs if used in userspace
- * cc - int3. SIGTRAP if used in userspace
- * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
- * (why we support bound (62) then? it's similar, and similarly unused...)
- * f1 - int1. SIGTRAP if used in userspace
- * f4 - hlt. SEGVs if used in userspace
- * fa - cli. SEGVs if used in userspace
- * fb - sti. SEGVs if used in userspace
- *
- * Opcodes which need some work to be supported:
- * 07,17,1f - pop es/ss/ds
- * Normally not used in userspace, but would execute if used.
- * Can cause GP or stack exception if tries to load wrong segment descriptor.
- * We hesitate to run them under single step since kernel's handling
- * of userspace single-stepping (TF flag) is fragile.
- * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
- * on the same grounds that they are never used.
- * cd - int N.
- * Used by userspace for "int 80" syscall entry. (Other "int N"
- * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
- * Not supported since kernel's handling of userspace single-stepping
- * (TF flag) is fragile.
- * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
- */
- #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
- static volatile u32 good_insns_32[256 / 32] = {
- /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
- /* ---------------------------------------------- */
- W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
- W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
- W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
- W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
- W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
- W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
- W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
- W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
- W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
- W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
- W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
- W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
- W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
- W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
- W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
- W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
- /* ---------------------------------------------- */
- /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
- };
- #else
- #define good_insns_32 NULL
- #endif
- /* Good-instruction tables for 64-bit apps.
- *
- * Genuinely invalid opcodes:
- * 06,07 - formerly push/pop es
- * 0e - formerly push cs
- * 16,17 - formerly push/pop ss
- * 1e,1f - formerly push/pop ds
- * 27,2f,37,3f - formerly daa/das/aaa/aas
- * 60,61 - formerly pusha/popa
- * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
- * 82 - formerly redundant encoding of Group1
- * 9a - formerly call seg:ofs
- * ce - formerly into
- * d4,d5 - formerly aam/aad
- * d6 - formerly undocumented salc
- * ea - formerly jmp seg:ofs
- *
- * Opcodes we'll probably never support:
- * 6c-6f - ins,outs. SEGVs if used in userspace
- * e4-e7 - in,out imm. SEGVs if used in userspace
- * ec-ef - in,out acc. SEGVs if used in userspace
- * cc - int3. SIGTRAP if used in userspace
- * f1 - int1. SIGTRAP if used in userspace
- * f4 - hlt. SEGVs if used in userspace
- * fa - cli. SEGVs if used in userspace
- * fb - sti. SEGVs if used in userspace
- *
- * Opcodes which need some work to be supported:
- * cd - int N.
- * Used by userspace for "int 80" syscall entry. (Other "int N"
- * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
- * Not supported since kernel's handling of userspace single-stepping
- * (TF flag) is fragile.
- * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
- */
- #if defined(CONFIG_X86_64)
- static volatile u32 good_insns_64[256 / 32] = {
- /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
- /* ---------------------------------------------- */
- W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
- W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
- W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
- W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
- W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
- W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
- W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
- W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
- W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
- W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
- W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
- W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
- W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
- W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
- W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
- W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
- /* ---------------------------------------------- */
- /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
- };
- #else
- #define good_insns_64 NULL
- #endif
- /* Using this for both 64-bit and 32-bit apps.
- * Opcodes we don't support:
- * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
- * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
- * Also encodes tons of other system insns if mod=11.
- * Some are in fact non-system: xend, xtest, rdtscp, maybe more
- * 0f 05 - syscall
- * 0f 06 - clts (CPL0 insn)
- * 0f 07 - sysret
- * 0f 08 - invd (CPL0 insn)
- * 0f 09 - wbinvd (CPL0 insn)
- * 0f 0b - ud2
- * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
- * 0f 34 - sysenter
- * 0f 35 - sysexit
- * 0f 37 - getsec
- * 0f 78 - vmread (Intel VMX. CPL0 insn)
- * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
- * Note: with prefixes, these two opcodes are
- * extrq/insertq/AVX512 convert vector ops.
- * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
- * {rd,wr}{fs,gs}base,{s,l,m}fence.
- * Why? They are all user-executable.
- */
- static volatile u32 good_2byte_insns[256 / 32] = {
- /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
- /* ---------------------------------------------- */
- W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
- W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
- W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
- W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
- W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
- W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
- W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
- W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
- W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
- W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
- W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
- W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
- W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
- W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
- W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
- W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
- /* ---------------------------------------------- */
- /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
- };
- #undef W
- /*
- * opcodes we may need to refine support for:
- *
- * 0f - 2-byte instructions: For many of these instructions, the validity
- * depends on the prefix and/or the reg field. On such instructions, we
- * just consider the opcode combination valid if it corresponds to any
- * valid instruction.
- *
- * 8f - Group 1 - only reg = 0 is OK
- * c6-c7 - Group 11 - only reg = 0 is OK
- * d9-df - fpu insns with some illegal encodings
- * f2, f3 - repnz, repz prefixes. These are also the first byte for
- * certain floating-point instructions, such as addsd.
- *
- * fe - Group 4 - only reg = 0 or 1 is OK
- * ff - Group 5 - only reg = 0-6 is OK
- *
- * others -- Do we need to support these?
- *
- * 0f - (floating-point?) prefetch instructions
- * 07, 17, 1f - pop es, pop ss, pop ds
- * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
- * but 64 and 65 (fs: and gs:) seem to be used, so we support them
- * 67 - addr16 prefix
- * ce - into
- * f0 - lock prefix
- */
- /*
- * TODO:
- * - Where necessary, examine the modrm byte and allow only valid instructions
- * in the different Groups and fpu instructions.
- */
- static bool is_prefix_bad(struct insn *insn)
- {
- int i;
- for (i = 0; i < insn->prefixes.nbytes; i++) {
- switch (insn->prefixes.bytes[i]) {
- case 0x26: /* INAT_PFX_ES */
- case 0x2E: /* INAT_PFX_CS */
- case 0x36: /* INAT_PFX_DS */
- case 0x3E: /* INAT_PFX_SS */
- case 0xF0: /* INAT_PFX_LOCK */
- return true;
- }
- }
- return false;
- }
- static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
- {
- u32 volatile *good_insns;
- insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
- /* has the side-effect of processing the entire instruction */
- insn_get_length(insn);
- if (!insn_complete(insn))
- return -ENOEXEC;
- if (is_prefix_bad(insn))
- return -ENOTSUPP;
- if (x86_64)
- good_insns = good_insns_64;
- else
- good_insns = good_insns_32;
- if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
- return 0;
- if (insn->opcode.nbytes == 2) {
- if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
- return 0;
- }
- return -ENOTSUPP;
- }
- #ifdef CONFIG_X86_64
- /*
- * If arch_uprobe->insn doesn't use rip-relative addressing, return
- * immediately. Otherwise, rewrite the instruction so that it accesses
- * its memory operand indirectly through a scratch register. Set
- * defparam->fixups accordingly. (The contents of the scratch register
- * will be saved before we single-step the modified instruction,
- * and restored afterward).
- *
- * We do this because a rip-relative instruction can access only a
- * relatively small area (+/- 2 GB from the instruction), and the XOL
- * area typically lies beyond that area. At least for instructions
- * that store to memory, we can't execute the original instruction
- * and "fix things up" later, because the misdirected store could be
- * disastrous.
- *
- * Some useful facts about rip-relative instructions:
- *
- * - There's always a modrm byte with bit layout "00 reg 101".
- * - There's never a SIB byte.
- * - The displacement is always 4 bytes.
- * - REX.B=1 bit in REX prefix, which normally extends r/m field,
- * has no effect on rip-relative mode. It doesn't make modrm byte
- * with r/m=101 refer to register 1101 = R13.
- */
- static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
- {
- u8 *cursor;
- u8 reg;
- u8 reg2;
- if (!insn_rip_relative(insn))
- return;
- /*
- * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
- * Clear REX.b bit (extension of MODRM.rm field):
- * we want to encode low numbered reg, not r8+.
- */
- if (insn->rex_prefix.nbytes) {
- cursor = auprobe->insn + insn_offset_rex_prefix(insn);
- /* REX byte has 0100wrxb layout, clearing REX.b bit */
- *cursor &= 0xfe;
- }
- /*
- * Similar treatment for VEX3/EVEX prefix.
- * TODO: add XOP treatment when insn decoder supports them
- */
- if (insn->vex_prefix.nbytes >= 3) {
- /*
- * vex2: c5 rvvvvLpp (has no b bit)
- * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
- * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
- * Setting VEX3.b (setting because it has inverted meaning).
- * Setting EVEX.x since (in non-SIB encoding) EVEX.x
- * is the 4th bit of MODRM.rm, and needs the same treatment.
- * For VEX3-encoded insns, VEX3.x value has no effect in
- * non-SIB encoding, the change is superfluous but harmless.
- */
- cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
- *cursor |= 0x60;
- }
- /*
- * Convert from rip-relative addressing to register-relative addressing
- * via a scratch register.
- *
- * This is tricky since there are insns with modrm byte
- * which also use registers not encoded in modrm byte:
- * [i]div/[i]mul: implicitly use dx:ax
- * shift ops: implicitly use cx
- * cmpxchg: implicitly uses ax
- * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
- * Encoding: 0f c7/1 modrm
- * The code below thinks that reg=1 (cx), chooses si as scratch.
- * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
- * First appeared in Haswell (BMI2 insn). It is vex-encoded.
- * Example where none of bx,cx,dx can be used as scratch reg:
- * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
- * [v]pcmpistri: implicitly uses cx, xmm0
- * [v]pcmpistrm: implicitly uses xmm0
- * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
- * [v]pcmpestrm: implicitly uses ax, dx, xmm0
- * Evil SSE4.2 string comparison ops from hell.
- * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
- * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
- * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
- * AMD says it has no 3-operand form (vex.vvvv must be 1111)
- * and that it can have only register operands, not mem
- * (its modrm byte must have mode=11).
- * If these restrictions will ever be lifted,
- * we'll need code to prevent selection of di as scratch reg!
- *
- * Summary: I don't know any insns with modrm byte which
- * use SI register implicitly. DI register is used only
- * by one insn (maskmovq) and BX register is used
- * only by one too (cmpxchg8b).
- * BP is stack-segment based (may be a problem?).
- * AX, DX, CX are off-limits (many implicit users).
- * SP is unusable (it's stack pointer - think about "pop mem";
- * also, rsp+disp32 needs sib encoding -> insn length change).
- */
- reg = MODRM_REG(insn); /* Fetch modrm.reg */
- reg2 = 0xff; /* Fetch vex.vvvv */
- if (insn->vex_prefix.nbytes)
- reg2 = insn->vex_prefix.bytes[2];
- /*
- * TODO: add XOP vvvv reading.
- *
- * vex.vvvv field is in bits 6-3, bits are inverted.
- * But in 32-bit mode, high-order bit may be ignored.
- * Therefore, let's consider only 3 low-order bits.
- */
- reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
- /*
- * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
- *
- * Choose scratch reg. Order is important: must not select bx
- * if we can use si (cmpxchg8b case!)
- */
- if (reg != 6 && reg2 != 6) {
- reg2 = 6;
- auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
- } else if (reg != 7 && reg2 != 7) {
- reg2 = 7;
- auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
- /* TODO (paranoia): force maskmovq to not use di */
- } else {
- reg2 = 3;
- auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
- }
- /*
- * Point cursor at the modrm byte. The next 4 bytes are the
- * displacement. Beyond the displacement, for some instructions,
- * is the immediate operand.
- */
- cursor = auprobe->insn + insn_offset_modrm(insn);
- /*
- * Change modrm from "00 reg 101" to "10 reg reg2". Example:
- * 89 05 disp32 mov %eax,disp32(%rip) becomes
- * 89 86 disp32 mov %eax,disp32(%rsi)
- */
- *cursor = 0x80 | (reg << 3) | reg2;
- }
- static inline unsigned long *
- scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
- return ®s->si;
- if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
- return ®s->di;
- return ®s->bx;
- }
- /*
- * If we're emulating a rip-relative instruction, save the contents
- * of the scratch register and store the target address in that register.
- */
- static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
- struct uprobe_task *utask = current->utask;
- unsigned long *sr = scratch_reg(auprobe, regs);
- utask->autask.saved_scratch_register = *sr;
- *sr = utask->vaddr + auprobe->defparam.ilen;
- }
- }
- static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
- struct uprobe_task *utask = current->utask;
- unsigned long *sr = scratch_reg(auprobe, regs);
- *sr = utask->autask.saved_scratch_register;
- }
- }
- #else /* 32-bit: */
- /*
- * No RIP-relative addressing on 32-bit
- */
- static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
- {
- }
- static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- }
- static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- }
- #endif /* CONFIG_X86_64 */
- struct uprobe_xol_ops {
- bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
- int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
- int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
- void (*abort)(struct arch_uprobe *, struct pt_regs *);
- };
- static inline int sizeof_long(void)
- {
- return in_ia32_syscall() ? 4 : 8;
- }
- static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- riprel_pre_xol(auprobe, regs);
- return 0;
- }
- static int push_ret_address(struct pt_regs *regs, unsigned long ip)
- {
- unsigned long new_sp = regs->sp - sizeof_long();
- if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
- return -EFAULT;
- regs->sp = new_sp;
- return 0;
- }
- /*
- * We have to fix things up as follows:
- *
- * Typically, the new ip is relative to the copied instruction. We need
- * to make it relative to the original instruction (FIX_IP). Exceptions
- * are return instructions and absolute or indirect jump or call instructions.
- *
- * If the single-stepped instruction was a call, the return address that
- * is atop the stack is the address following the copied instruction. We
- * need to make it the address following the original instruction (FIX_CALL).
- *
- * If the original instruction was a rip-relative instruction such as
- * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
- * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
- * We need to restore the contents of the scratch register
- * (FIX_RIP_reg).
- */
- static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- struct uprobe_task *utask = current->utask;
- riprel_post_xol(auprobe, regs);
- if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
- long correction = utask->vaddr - utask->xol_vaddr;
- regs->ip += correction;
- } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
- regs->sp += sizeof_long(); /* Pop incorrect return address */
- if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
- return -ERESTART;
- }
- /* popf; tell the caller to not touch TF */
- if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
- utask->autask.saved_tf = true;
- return 0;
- }
- static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- riprel_post_xol(auprobe, regs);
- }
- static const struct uprobe_xol_ops default_xol_ops = {
- .pre_xol = default_pre_xol_op,
- .post_xol = default_post_xol_op,
- .abort = default_abort_op,
- };
- static bool branch_is_call(struct arch_uprobe *auprobe)
- {
- return auprobe->branch.opc1 == 0xe8;
- }
- #define CASE_COND \
- COND(70, 71, XF(OF)) \
- COND(72, 73, XF(CF)) \
- COND(74, 75, XF(ZF)) \
- COND(78, 79, XF(SF)) \
- COND(7a, 7b, XF(PF)) \
- COND(76, 77, XF(CF) || XF(ZF)) \
- COND(7c, 7d, XF(SF) != XF(OF)) \
- COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
- #define COND(op_y, op_n, expr) \
- case 0x ## op_y: DO((expr) != 0) \
- case 0x ## op_n: DO((expr) == 0)
- #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
- static bool is_cond_jmp_opcode(u8 opcode)
- {
- switch (opcode) {
- #define DO(expr) \
- return true;
- CASE_COND
- #undef DO
- default:
- return false;
- }
- }
- static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- unsigned long flags = regs->flags;
- switch (auprobe->branch.opc1) {
- #define DO(expr) \
- return expr;
- CASE_COND
- #undef DO
- default: /* not a conditional jmp */
- return true;
- }
- }
- #undef XF
- #undef COND
- #undef CASE_COND
- static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- unsigned long new_ip = regs->ip += auprobe->branch.ilen;
- unsigned long offs = (long)auprobe->branch.offs;
- if (branch_is_call(auprobe)) {
- /*
- * If it fails we execute this (mangled, see the comment in
- * branch_clear_offset) insn out-of-line. In the likely case
- * this should trigger the trap, and the probed application
- * should die or restart the same insn after it handles the
- * signal, arch_uprobe_post_xol() won't be even called.
- *
- * But there is corner case, see the comment in ->post_xol().
- */
- if (push_ret_address(regs, new_ip))
- return false;
- } else if (!check_jmp_cond(auprobe, regs)) {
- offs = 0;
- }
- regs->ip = new_ip + offs;
- return true;
- }
- static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- BUG_ON(!branch_is_call(auprobe));
- /*
- * We can only get here if branch_emulate_op() failed to push the ret
- * address _and_ another thread expanded our stack before the (mangled)
- * "call" insn was executed out-of-line. Just restore ->sp and restart.
- * We could also restore ->ip and try to call branch_emulate_op() again.
- */
- regs->sp += sizeof_long();
- return -ERESTART;
- }
- static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
- {
- /*
- * Turn this insn into "call 1f; 1:", this is what we will execute
- * out-of-line if ->emulate() fails. We only need this to generate
- * a trap, so that the probed task receives the correct signal with
- * the properly filled siginfo.
- *
- * But see the comment in ->post_xol(), in the unlikely case it can
- * succeed. So we need to ensure that the new ->ip can not fall into
- * the non-canonical area and trigger #GP.
- *
- * We could turn it into (say) "pushf", but then we would need to
- * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
- * of ->insn[] for set_orig_insn().
- */
- memset(auprobe->insn + insn_offset_immediate(insn),
- 0, insn->immediate.nbytes);
- }
- static const struct uprobe_xol_ops branch_xol_ops = {
- .emulate = branch_emulate_op,
- .post_xol = branch_post_xol_op,
- };
- /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
- static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
- {
- u8 opc1 = OPCODE1(insn);
- int i;
- switch (opc1) {
- case 0xeb: /* jmp 8 */
- case 0xe9: /* jmp 32 */
- case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
- break;
- case 0xe8: /* call relative */
- branch_clear_offset(auprobe, insn);
- break;
- case 0x0f:
- if (insn->opcode.nbytes != 2)
- return -ENOSYS;
- /*
- * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
- * OPCODE1() of the "short" jmp which checks the same condition.
- */
- opc1 = OPCODE2(insn) - 0x10;
- default:
- if (!is_cond_jmp_opcode(opc1))
- return -ENOSYS;
- }
- /*
- * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
- * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
- * No one uses these insns, reject any branch insns with such prefix.
- */
- for (i = 0; i < insn->prefixes.nbytes; i++) {
- if (insn->prefixes.bytes[i] == 0x66)
- return -ENOTSUPP;
- }
- auprobe->branch.opc1 = opc1;
- auprobe->branch.ilen = insn->length;
- auprobe->branch.offs = insn->immediate.value;
- auprobe->ops = &branch_xol_ops;
- return 0;
- }
- /**
- * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
- * @mm: the probed address space.
- * @arch_uprobe: the probepoint information.
- * @addr: virtual address at which to install the probepoint
- * Return 0 on success or a -ve number on error.
- */
- int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
- {
- struct insn insn;
- u8 fix_ip_or_call = UPROBE_FIX_IP;
- int ret;
- ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
- if (ret)
- return ret;
- ret = branch_setup_xol_ops(auprobe, &insn);
- if (ret != -ENOSYS)
- return ret;
- /*
- * Figure out which fixups default_post_xol_op() will need to perform,
- * and annotate defparam->fixups accordingly.
- */
- switch (OPCODE1(&insn)) {
- case 0x9d: /* popf */
- auprobe->defparam.fixups |= UPROBE_FIX_SETF;
- break;
- case 0xc3: /* ret or lret -- ip is correct */
- case 0xcb:
- case 0xc2:
- case 0xca:
- case 0xea: /* jmp absolute -- ip is correct */
- fix_ip_or_call = 0;
- break;
- case 0x9a: /* call absolute - Fix return addr, not ip */
- fix_ip_or_call = UPROBE_FIX_CALL;
- break;
- case 0xff:
- switch (MODRM_REG(&insn)) {
- case 2: case 3: /* call or lcall, indirect */
- fix_ip_or_call = UPROBE_FIX_CALL;
- break;
- case 4: case 5: /* jmp or ljmp, indirect */
- fix_ip_or_call = 0;
- break;
- }
- /* fall through */
- default:
- riprel_analyze(auprobe, &insn);
- }
- auprobe->defparam.ilen = insn.length;
- auprobe->defparam.fixups |= fix_ip_or_call;
- auprobe->ops = &default_xol_ops;
- return 0;
- }
- /*
- * arch_uprobe_pre_xol - prepare to execute out of line.
- * @auprobe: the probepoint information.
- * @regs: reflects the saved user state of current task.
- */
- int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- struct uprobe_task *utask = current->utask;
- if (auprobe->ops->pre_xol) {
- int err = auprobe->ops->pre_xol(auprobe, regs);
- if (err)
- return err;
- }
- regs->ip = utask->xol_vaddr;
- utask->autask.saved_trap_nr = current->thread.trap_nr;
- current->thread.trap_nr = UPROBE_TRAP_NR;
- utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
- regs->flags |= X86_EFLAGS_TF;
- if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
- set_task_blockstep(current, false);
- return 0;
- }
- /*
- * If xol insn itself traps and generates a signal(Say,
- * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
- * instruction jumps back to its own address. It is assumed that anything
- * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
- *
- * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
- * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
- * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
- */
- bool arch_uprobe_xol_was_trapped(struct task_struct *t)
- {
- if (t->thread.trap_nr != UPROBE_TRAP_NR)
- return true;
- return false;
- }
- /*
- * Called after single-stepping. To avoid the SMP problems that can
- * occur when we temporarily put back the original opcode to
- * single-step, we single-stepped a copy of the instruction.
- *
- * This function prepares to resume execution after the single-step.
- */
- int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- struct uprobe_task *utask = current->utask;
- bool send_sigtrap = utask->autask.saved_tf;
- int err = 0;
- WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
- current->thread.trap_nr = utask->autask.saved_trap_nr;
- if (auprobe->ops->post_xol) {
- err = auprobe->ops->post_xol(auprobe, regs);
- if (err) {
- /*
- * Restore ->ip for restart or post mortem analysis.
- * ->post_xol() must not return -ERESTART unless this
- * is really possible.
- */
- regs->ip = utask->vaddr;
- if (err == -ERESTART)
- err = 0;
- send_sigtrap = false;
- }
- }
- /*
- * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
- * so we can get an extra SIGTRAP if we do not clear TF. We need
- * to examine the opcode to make it right.
- */
- if (send_sigtrap)
- send_sig(SIGTRAP, current, 0);
- if (!utask->autask.saved_tf)
- regs->flags &= ~X86_EFLAGS_TF;
- return err;
- }
- /* callback routine for handling exceptions. */
- int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
- {
- struct die_args *args = data;
- struct pt_regs *regs = args->regs;
- int ret = NOTIFY_DONE;
- /* We are only interested in userspace traps */
- if (regs && !user_mode(regs))
- return NOTIFY_DONE;
- switch (val) {
- case DIE_INT3:
- if (uprobe_pre_sstep_notifier(regs))
- ret = NOTIFY_STOP;
- break;
- case DIE_DEBUG:
- if (uprobe_post_sstep_notifier(regs))
- ret = NOTIFY_STOP;
- default:
- break;
- }
- return ret;
- }
- /*
- * This function gets called when XOL instruction either gets trapped or
- * the thread has a fatal signal. Reset the instruction pointer to its
- * probed address for the potential restart or for post mortem analysis.
- */
- void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- struct uprobe_task *utask = current->utask;
- if (auprobe->ops->abort)
- auprobe->ops->abort(auprobe, regs);
- current->thread.trap_nr = utask->autask.saved_trap_nr;
- regs->ip = utask->vaddr;
- /* clear TF if it was set by us in arch_uprobe_pre_xol() */
- if (!utask->autask.saved_tf)
- regs->flags &= ~X86_EFLAGS_TF;
- }
- static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- if (auprobe->ops->emulate)
- return auprobe->ops->emulate(auprobe, regs);
- return false;
- }
- bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
- {
- bool ret = __skip_sstep(auprobe, regs);
- if (ret && (regs->flags & X86_EFLAGS_TF))
- send_sig(SIGTRAP, current, 0);
- return ret;
- }
- unsigned long
- arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
- {
- int rasize = sizeof_long(), nleft;
- unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
- if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
- return -1;
- /* check whether address has been already hijacked */
- if (orig_ret_vaddr == trampoline_vaddr)
- return orig_ret_vaddr;
- nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
- if (likely(!nleft))
- return orig_ret_vaddr;
- if (nleft != rasize) {
- pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
- "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
- force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
- }
- return -1;
- }
- bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
- struct pt_regs *regs)
- {
- if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
- return regs->sp < ret->stack;
- else
- return regs->sp <= ret->stack;
- }
|