uprobes.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997
  1. /*
  2. * User-space Probes (UProbes) for x86
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2008-2011
  19. * Authors:
  20. * Srikar Dronamraju
  21. * Jim Keniston
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/sched.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/uprobes.h>
  27. #include <linux/uaccess.h>
  28. #include <linux/kdebug.h>
  29. #include <asm/processor.h>
  30. #include <asm/insn.h>
  31. #include <asm/mmu_context.h>
  32. /* Post-execution fixups. */
  33. /* Adjust IP back to vicinity of actual insn */
  34. #define UPROBE_FIX_IP 0x01
  35. /* Adjust the return address of a call insn */
  36. #define UPROBE_FIX_CALL 0x02
  37. /* Instruction will modify TF, don't change it */
  38. #define UPROBE_FIX_SETF 0x04
  39. #define UPROBE_FIX_RIP_SI 0x08
  40. #define UPROBE_FIX_RIP_DI 0x10
  41. #define UPROBE_FIX_RIP_BX 0x20
  42. #define UPROBE_FIX_RIP_MASK \
  43. (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  44. #define UPROBE_TRAP_NR UINT_MAX
  45. /* Adaptations for mhiramat x86 decoder v14. */
  46. #define OPCODE1(insn) ((insn)->opcode.bytes[0])
  47. #define OPCODE2(insn) ((insn)->opcode.bytes[1])
  48. #define OPCODE3(insn) ((insn)->opcode.bytes[2])
  49. #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
  50. #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  51. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  52. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  53. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  54. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  55. << (row % 32))
  56. /*
  57. * Good-instruction tables for 32-bit apps. This is non-const and volatile
  58. * to keep gcc from statically optimizing it out, as variable_test_bit makes
  59. * some versions of gcc to think only *(unsigned long*) is used.
  60. *
  61. * Opcodes we'll probably never support:
  62. * 6c-6f - ins,outs. SEGVs if used in userspace
  63. * e4-e7 - in,out imm. SEGVs if used in userspace
  64. * ec-ef - in,out acc. SEGVs if used in userspace
  65. * cc - int3. SIGTRAP if used in userspace
  66. * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  67. * (why we support bound (62) then? it's similar, and similarly unused...)
  68. * f1 - int1. SIGTRAP if used in userspace
  69. * f4 - hlt. SEGVs if used in userspace
  70. * fa - cli. SEGVs if used in userspace
  71. * fb - sti. SEGVs if used in userspace
  72. *
  73. * Opcodes which need some work to be supported:
  74. * 07,17,1f - pop es/ss/ds
  75. * Normally not used in userspace, but would execute if used.
  76. * Can cause GP or stack exception if tries to load wrong segment descriptor.
  77. * We hesitate to run them under single step since kernel's handling
  78. * of userspace single-stepping (TF flag) is fragile.
  79. * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  80. * on the same grounds that they are never used.
  81. * cd - int N.
  82. * Used by userspace for "int 80" syscall entry. (Other "int N"
  83. * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  84. * Not supported since kernel's handling of userspace single-stepping
  85. * (TF flag) is fragile.
  86. * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  87. */
  88. #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  89. static volatile u32 good_insns_32[256 / 32] = {
  90. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  91. /* ---------------------------------------------- */
  92. W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  93. W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  94. W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  95. W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  96. W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  97. W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  98. W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  99. W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  100. W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  101. W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  102. W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
  103. W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
  104. W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
  105. W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
  106. W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
  107. W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
  108. /* ---------------------------------------------- */
  109. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  110. };
  111. #else
  112. #define good_insns_32 NULL
  113. #endif
  114. /* Good-instruction tables for 64-bit apps.
  115. *
  116. * Genuinely invalid opcodes:
  117. * 06,07 - formerly push/pop es
  118. * 0e - formerly push cs
  119. * 16,17 - formerly push/pop ss
  120. * 1e,1f - formerly push/pop ds
  121. * 27,2f,37,3f - formerly daa/das/aaa/aas
  122. * 60,61 - formerly pusha/popa
  123. * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
  124. * 82 - formerly redundant encoding of Group1
  125. * 9a - formerly call seg:ofs
  126. * ce - formerly into
  127. * d4,d5 - formerly aam/aad
  128. * d6 - formerly undocumented salc
  129. * ea - formerly jmp seg:ofs
  130. *
  131. * Opcodes we'll probably never support:
  132. * 6c-6f - ins,outs. SEGVs if used in userspace
  133. * e4-e7 - in,out imm. SEGVs if used in userspace
  134. * ec-ef - in,out acc. SEGVs if used in userspace
  135. * cc - int3. SIGTRAP if used in userspace
  136. * f1 - int1. SIGTRAP if used in userspace
  137. * f4 - hlt. SEGVs if used in userspace
  138. * fa - cli. SEGVs if used in userspace
  139. * fb - sti. SEGVs if used in userspace
  140. *
  141. * Opcodes which need some work to be supported:
  142. * cd - int N.
  143. * Used by userspace for "int 80" syscall entry. (Other "int N"
  144. * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  145. * Not supported since kernel's handling of userspace single-stepping
  146. * (TF flag) is fragile.
  147. * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  148. */
  149. #if defined(CONFIG_X86_64)
  150. static volatile u32 good_insns_64[256 / 32] = {
  151. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  152. /* ---------------------------------------------- */
  153. W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
  154. W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
  155. W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
  156. W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
  157. W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  158. W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  159. W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  160. W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  161. W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  162. W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
  163. W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
  164. W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
  165. W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
  166. W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
  167. W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
  168. W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
  169. /* ---------------------------------------------- */
  170. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  171. };
  172. #else
  173. #define good_insns_64 NULL
  174. #endif
  175. /* Using this for both 64-bit and 32-bit apps.
  176. * Opcodes we don't support:
  177. * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
  178. * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
  179. * Also encodes tons of other system insns if mod=11.
  180. * Some are in fact non-system: xend, xtest, rdtscp, maybe more
  181. * 0f 05 - syscall
  182. * 0f 06 - clts (CPL0 insn)
  183. * 0f 07 - sysret
  184. * 0f 08 - invd (CPL0 insn)
  185. * 0f 09 - wbinvd (CPL0 insn)
  186. * 0f 0b - ud2
  187. * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
  188. * 0f 34 - sysenter
  189. * 0f 35 - sysexit
  190. * 0f 37 - getsec
  191. * 0f 78 - vmread (Intel VMX. CPL0 insn)
  192. * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
  193. * Note: with prefixes, these two opcodes are
  194. * extrq/insertq/AVX512 convert vector ops.
  195. * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
  196. * {rd,wr}{fs,gs}base,{s,l,m}fence.
  197. * Why? They are all user-executable.
  198. */
  199. static volatile u32 good_2byte_insns[256 / 32] = {
  200. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  201. /* ---------------------------------------------- */
  202. W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
  203. W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
  204. W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  205. W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  206. W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  207. W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  208. W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
  209. W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
  210. W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  211. W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  212. W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
  213. W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
  214. W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  215. W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
  216. W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
  217. W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
  218. /* ---------------------------------------------- */
  219. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  220. };
  221. #undef W
  222. /*
  223. * opcodes we may need to refine support for:
  224. *
  225. * 0f - 2-byte instructions: For many of these instructions, the validity
  226. * depends on the prefix and/or the reg field. On such instructions, we
  227. * just consider the opcode combination valid if it corresponds to any
  228. * valid instruction.
  229. *
  230. * 8f - Group 1 - only reg = 0 is OK
  231. * c6-c7 - Group 11 - only reg = 0 is OK
  232. * d9-df - fpu insns with some illegal encodings
  233. * f2, f3 - repnz, repz prefixes. These are also the first byte for
  234. * certain floating-point instructions, such as addsd.
  235. *
  236. * fe - Group 4 - only reg = 0 or 1 is OK
  237. * ff - Group 5 - only reg = 0-6 is OK
  238. *
  239. * others -- Do we need to support these?
  240. *
  241. * 0f - (floating-point?) prefetch instructions
  242. * 07, 17, 1f - pop es, pop ss, pop ds
  243. * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
  244. * but 64 and 65 (fs: and gs:) seem to be used, so we support them
  245. * 67 - addr16 prefix
  246. * ce - into
  247. * f0 - lock prefix
  248. */
  249. /*
  250. * TODO:
  251. * - Where necessary, examine the modrm byte and allow only valid instructions
  252. * in the different Groups and fpu instructions.
  253. */
  254. static bool is_prefix_bad(struct insn *insn)
  255. {
  256. int i;
  257. for (i = 0; i < insn->prefixes.nbytes; i++) {
  258. switch (insn->prefixes.bytes[i]) {
  259. case 0x26: /* INAT_PFX_ES */
  260. case 0x2E: /* INAT_PFX_CS */
  261. case 0x36: /* INAT_PFX_DS */
  262. case 0x3E: /* INAT_PFX_SS */
  263. case 0xF0: /* INAT_PFX_LOCK */
  264. return true;
  265. }
  266. }
  267. return false;
  268. }
  269. static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
  270. {
  271. u32 volatile *good_insns;
  272. insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
  273. /* has the side-effect of processing the entire instruction */
  274. insn_get_length(insn);
  275. if (!insn_complete(insn))
  276. return -ENOEXEC;
  277. if (is_prefix_bad(insn))
  278. return -ENOTSUPP;
  279. if (x86_64)
  280. good_insns = good_insns_64;
  281. else
  282. good_insns = good_insns_32;
  283. if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
  284. return 0;
  285. if (insn->opcode.nbytes == 2) {
  286. if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
  287. return 0;
  288. }
  289. return -ENOTSUPP;
  290. }
  291. #ifdef CONFIG_X86_64
  292. /*
  293. * If arch_uprobe->insn doesn't use rip-relative addressing, return
  294. * immediately. Otherwise, rewrite the instruction so that it accesses
  295. * its memory operand indirectly through a scratch register. Set
  296. * defparam->fixups accordingly. (The contents of the scratch register
  297. * will be saved before we single-step the modified instruction,
  298. * and restored afterward).
  299. *
  300. * We do this because a rip-relative instruction can access only a
  301. * relatively small area (+/- 2 GB from the instruction), and the XOL
  302. * area typically lies beyond that area. At least for instructions
  303. * that store to memory, we can't execute the original instruction
  304. * and "fix things up" later, because the misdirected store could be
  305. * disastrous.
  306. *
  307. * Some useful facts about rip-relative instructions:
  308. *
  309. * - There's always a modrm byte with bit layout "00 reg 101".
  310. * - There's never a SIB byte.
  311. * - The displacement is always 4 bytes.
  312. * - REX.B=1 bit in REX prefix, which normally extends r/m field,
  313. * has no effect on rip-relative mode. It doesn't make modrm byte
  314. * with r/m=101 refer to register 1101 = R13.
  315. */
  316. static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
  317. {
  318. u8 *cursor;
  319. u8 reg;
  320. u8 reg2;
  321. if (!insn_rip_relative(insn))
  322. return;
  323. /*
  324. * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
  325. * Clear REX.b bit (extension of MODRM.rm field):
  326. * we want to encode low numbered reg, not r8+.
  327. */
  328. if (insn->rex_prefix.nbytes) {
  329. cursor = auprobe->insn + insn_offset_rex_prefix(insn);
  330. /* REX byte has 0100wrxb layout, clearing REX.b bit */
  331. *cursor &= 0xfe;
  332. }
  333. /*
  334. * Similar treatment for VEX3/EVEX prefix.
  335. * TODO: add XOP treatment when insn decoder supports them
  336. */
  337. if (insn->vex_prefix.nbytes >= 3) {
  338. /*
  339. * vex2: c5 rvvvvLpp (has no b bit)
  340. * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
  341. * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
  342. * Setting VEX3.b (setting because it has inverted meaning).
  343. * Setting EVEX.x since (in non-SIB encoding) EVEX.x
  344. * is the 4th bit of MODRM.rm, and needs the same treatment.
  345. * For VEX3-encoded insns, VEX3.x value has no effect in
  346. * non-SIB encoding, the change is superfluous but harmless.
  347. */
  348. cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
  349. *cursor |= 0x60;
  350. }
  351. /*
  352. * Convert from rip-relative addressing to register-relative addressing
  353. * via a scratch register.
  354. *
  355. * This is tricky since there are insns with modrm byte
  356. * which also use registers not encoded in modrm byte:
  357. * [i]div/[i]mul: implicitly use dx:ax
  358. * shift ops: implicitly use cx
  359. * cmpxchg: implicitly uses ax
  360. * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
  361. * Encoding: 0f c7/1 modrm
  362. * The code below thinks that reg=1 (cx), chooses si as scratch.
  363. * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
  364. * First appeared in Haswell (BMI2 insn). It is vex-encoded.
  365. * Example where none of bx,cx,dx can be used as scratch reg:
  366. * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
  367. * [v]pcmpistri: implicitly uses cx, xmm0
  368. * [v]pcmpistrm: implicitly uses xmm0
  369. * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
  370. * [v]pcmpestrm: implicitly uses ax, dx, xmm0
  371. * Evil SSE4.2 string comparison ops from hell.
  372. * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
  373. * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
  374. * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
  375. * AMD says it has no 3-operand form (vex.vvvv must be 1111)
  376. * and that it can have only register operands, not mem
  377. * (its modrm byte must have mode=11).
  378. * If these restrictions will ever be lifted,
  379. * we'll need code to prevent selection of di as scratch reg!
  380. *
  381. * Summary: I don't know any insns with modrm byte which
  382. * use SI register implicitly. DI register is used only
  383. * by one insn (maskmovq) and BX register is used
  384. * only by one too (cmpxchg8b).
  385. * BP is stack-segment based (may be a problem?).
  386. * AX, DX, CX are off-limits (many implicit users).
  387. * SP is unusable (it's stack pointer - think about "pop mem";
  388. * also, rsp+disp32 needs sib encoding -> insn length change).
  389. */
  390. reg = MODRM_REG(insn); /* Fetch modrm.reg */
  391. reg2 = 0xff; /* Fetch vex.vvvv */
  392. if (insn->vex_prefix.nbytes)
  393. reg2 = insn->vex_prefix.bytes[2];
  394. /*
  395. * TODO: add XOP vvvv reading.
  396. *
  397. * vex.vvvv field is in bits 6-3, bits are inverted.
  398. * But in 32-bit mode, high-order bit may be ignored.
  399. * Therefore, let's consider only 3 low-order bits.
  400. */
  401. reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
  402. /*
  403. * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
  404. *
  405. * Choose scratch reg. Order is important: must not select bx
  406. * if we can use si (cmpxchg8b case!)
  407. */
  408. if (reg != 6 && reg2 != 6) {
  409. reg2 = 6;
  410. auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
  411. } else if (reg != 7 && reg2 != 7) {
  412. reg2 = 7;
  413. auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
  414. /* TODO (paranoia): force maskmovq to not use di */
  415. } else {
  416. reg2 = 3;
  417. auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
  418. }
  419. /*
  420. * Point cursor at the modrm byte. The next 4 bytes are the
  421. * displacement. Beyond the displacement, for some instructions,
  422. * is the immediate operand.
  423. */
  424. cursor = auprobe->insn + insn_offset_modrm(insn);
  425. /*
  426. * Change modrm from "00 reg 101" to "10 reg reg2". Example:
  427. * 89 05 disp32 mov %eax,disp32(%rip) becomes
  428. * 89 86 disp32 mov %eax,disp32(%rsi)
  429. */
  430. *cursor = 0x80 | (reg << 3) | reg2;
  431. }
  432. static inline unsigned long *
  433. scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
  434. {
  435. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
  436. return &regs->si;
  437. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
  438. return &regs->di;
  439. return &regs->bx;
  440. }
  441. /*
  442. * If we're emulating a rip-relative instruction, save the contents
  443. * of the scratch register and store the target address in that register.
  444. */
  445. static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  446. {
  447. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
  448. struct uprobe_task *utask = current->utask;
  449. unsigned long *sr = scratch_reg(auprobe, regs);
  450. utask->autask.saved_scratch_register = *sr;
  451. *sr = utask->vaddr + auprobe->defparam.ilen;
  452. }
  453. }
  454. static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  455. {
  456. if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
  457. struct uprobe_task *utask = current->utask;
  458. unsigned long *sr = scratch_reg(auprobe, regs);
  459. *sr = utask->autask.saved_scratch_register;
  460. }
  461. }
  462. #else /* 32-bit: */
  463. /*
  464. * No RIP-relative addressing on 32-bit
  465. */
  466. static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
  467. {
  468. }
  469. static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  470. {
  471. }
  472. static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  473. {
  474. }
  475. #endif /* CONFIG_X86_64 */
  476. struct uprobe_xol_ops {
  477. bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
  478. int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
  479. int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
  480. void (*abort)(struct arch_uprobe *, struct pt_regs *);
  481. };
  482. static inline int sizeof_long(void)
  483. {
  484. return in_ia32_syscall() ? 4 : 8;
  485. }
  486. static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  487. {
  488. riprel_pre_xol(auprobe, regs);
  489. return 0;
  490. }
  491. static int push_ret_address(struct pt_regs *regs, unsigned long ip)
  492. {
  493. unsigned long new_sp = regs->sp - sizeof_long();
  494. if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
  495. return -EFAULT;
  496. regs->sp = new_sp;
  497. return 0;
  498. }
  499. /*
  500. * We have to fix things up as follows:
  501. *
  502. * Typically, the new ip is relative to the copied instruction. We need
  503. * to make it relative to the original instruction (FIX_IP). Exceptions
  504. * are return instructions and absolute or indirect jump or call instructions.
  505. *
  506. * If the single-stepped instruction was a call, the return address that
  507. * is atop the stack is the address following the copied instruction. We
  508. * need to make it the address following the original instruction (FIX_CALL).
  509. *
  510. * If the original instruction was a rip-relative instruction such as
  511. * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
  512. * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
  513. * We need to restore the contents of the scratch register
  514. * (FIX_RIP_reg).
  515. */
  516. static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  517. {
  518. struct uprobe_task *utask = current->utask;
  519. riprel_post_xol(auprobe, regs);
  520. if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
  521. long correction = utask->vaddr - utask->xol_vaddr;
  522. regs->ip += correction;
  523. } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
  524. regs->sp += sizeof_long(); /* Pop incorrect return address */
  525. if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
  526. return -ERESTART;
  527. }
  528. /* popf; tell the caller to not touch TF */
  529. if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
  530. utask->autask.saved_tf = true;
  531. return 0;
  532. }
  533. static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  534. {
  535. riprel_post_xol(auprobe, regs);
  536. }
  537. static const struct uprobe_xol_ops default_xol_ops = {
  538. .pre_xol = default_pre_xol_op,
  539. .post_xol = default_post_xol_op,
  540. .abort = default_abort_op,
  541. };
  542. static bool branch_is_call(struct arch_uprobe *auprobe)
  543. {
  544. return auprobe->branch.opc1 == 0xe8;
  545. }
  546. #define CASE_COND \
  547. COND(70, 71, XF(OF)) \
  548. COND(72, 73, XF(CF)) \
  549. COND(74, 75, XF(ZF)) \
  550. COND(78, 79, XF(SF)) \
  551. COND(7a, 7b, XF(PF)) \
  552. COND(76, 77, XF(CF) || XF(ZF)) \
  553. COND(7c, 7d, XF(SF) != XF(OF)) \
  554. COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
  555. #define COND(op_y, op_n, expr) \
  556. case 0x ## op_y: DO((expr) != 0) \
  557. case 0x ## op_n: DO((expr) == 0)
  558. #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
  559. static bool is_cond_jmp_opcode(u8 opcode)
  560. {
  561. switch (opcode) {
  562. #define DO(expr) \
  563. return true;
  564. CASE_COND
  565. #undef DO
  566. default:
  567. return false;
  568. }
  569. }
  570. static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
  571. {
  572. unsigned long flags = regs->flags;
  573. switch (auprobe->branch.opc1) {
  574. #define DO(expr) \
  575. return expr;
  576. CASE_COND
  577. #undef DO
  578. default: /* not a conditional jmp */
  579. return true;
  580. }
  581. }
  582. #undef XF
  583. #undef COND
  584. #undef CASE_COND
  585. static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  586. {
  587. unsigned long new_ip = regs->ip += auprobe->branch.ilen;
  588. unsigned long offs = (long)auprobe->branch.offs;
  589. if (branch_is_call(auprobe)) {
  590. /*
  591. * If it fails we execute this (mangled, see the comment in
  592. * branch_clear_offset) insn out-of-line. In the likely case
  593. * this should trigger the trap, and the probed application
  594. * should die or restart the same insn after it handles the
  595. * signal, arch_uprobe_post_xol() won't be even called.
  596. *
  597. * But there is corner case, see the comment in ->post_xol().
  598. */
  599. if (push_ret_address(regs, new_ip))
  600. return false;
  601. } else if (!check_jmp_cond(auprobe, regs)) {
  602. offs = 0;
  603. }
  604. regs->ip = new_ip + offs;
  605. return true;
  606. }
  607. static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
  608. {
  609. BUG_ON(!branch_is_call(auprobe));
  610. /*
  611. * We can only get here if branch_emulate_op() failed to push the ret
  612. * address _and_ another thread expanded our stack before the (mangled)
  613. * "call" insn was executed out-of-line. Just restore ->sp and restart.
  614. * We could also restore ->ip and try to call branch_emulate_op() again.
  615. */
  616. regs->sp += sizeof_long();
  617. return -ERESTART;
  618. }
  619. static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
  620. {
  621. /*
  622. * Turn this insn into "call 1f; 1:", this is what we will execute
  623. * out-of-line if ->emulate() fails. We only need this to generate
  624. * a trap, so that the probed task receives the correct signal with
  625. * the properly filled siginfo.
  626. *
  627. * But see the comment in ->post_xol(), in the unlikely case it can
  628. * succeed. So we need to ensure that the new ->ip can not fall into
  629. * the non-canonical area and trigger #GP.
  630. *
  631. * We could turn it into (say) "pushf", but then we would need to
  632. * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
  633. * of ->insn[] for set_orig_insn().
  634. */
  635. memset(auprobe->insn + insn_offset_immediate(insn),
  636. 0, insn->immediate.nbytes);
  637. }
  638. static const struct uprobe_xol_ops branch_xol_ops = {
  639. .emulate = branch_emulate_op,
  640. .post_xol = branch_post_xol_op,
  641. };
  642. /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
  643. static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
  644. {
  645. u8 opc1 = OPCODE1(insn);
  646. int i;
  647. switch (opc1) {
  648. case 0xeb: /* jmp 8 */
  649. case 0xe9: /* jmp 32 */
  650. case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
  651. break;
  652. case 0xe8: /* call relative */
  653. branch_clear_offset(auprobe, insn);
  654. break;
  655. case 0x0f:
  656. if (insn->opcode.nbytes != 2)
  657. return -ENOSYS;
  658. /*
  659. * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
  660. * OPCODE1() of the "short" jmp which checks the same condition.
  661. */
  662. opc1 = OPCODE2(insn) - 0x10;
  663. default:
  664. if (!is_cond_jmp_opcode(opc1))
  665. return -ENOSYS;
  666. }
  667. /*
  668. * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
  669. * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
  670. * No one uses these insns, reject any branch insns with such prefix.
  671. */
  672. for (i = 0; i < insn->prefixes.nbytes; i++) {
  673. if (insn->prefixes.bytes[i] == 0x66)
  674. return -ENOTSUPP;
  675. }
  676. auprobe->branch.opc1 = opc1;
  677. auprobe->branch.ilen = insn->length;
  678. auprobe->branch.offs = insn->immediate.value;
  679. auprobe->ops = &branch_xol_ops;
  680. return 0;
  681. }
  682. /**
  683. * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
  684. * @mm: the probed address space.
  685. * @arch_uprobe: the probepoint information.
  686. * @addr: virtual address at which to install the probepoint
  687. * Return 0 on success or a -ve number on error.
  688. */
  689. int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
  690. {
  691. struct insn insn;
  692. u8 fix_ip_or_call = UPROBE_FIX_IP;
  693. int ret;
  694. ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
  695. if (ret)
  696. return ret;
  697. ret = branch_setup_xol_ops(auprobe, &insn);
  698. if (ret != -ENOSYS)
  699. return ret;
  700. /*
  701. * Figure out which fixups default_post_xol_op() will need to perform,
  702. * and annotate defparam->fixups accordingly.
  703. */
  704. switch (OPCODE1(&insn)) {
  705. case 0x9d: /* popf */
  706. auprobe->defparam.fixups |= UPROBE_FIX_SETF;
  707. break;
  708. case 0xc3: /* ret or lret -- ip is correct */
  709. case 0xcb:
  710. case 0xc2:
  711. case 0xca:
  712. case 0xea: /* jmp absolute -- ip is correct */
  713. fix_ip_or_call = 0;
  714. break;
  715. case 0x9a: /* call absolute - Fix return addr, not ip */
  716. fix_ip_or_call = UPROBE_FIX_CALL;
  717. break;
  718. case 0xff:
  719. switch (MODRM_REG(&insn)) {
  720. case 2: case 3: /* call or lcall, indirect */
  721. fix_ip_or_call = UPROBE_FIX_CALL;
  722. break;
  723. case 4: case 5: /* jmp or ljmp, indirect */
  724. fix_ip_or_call = 0;
  725. break;
  726. }
  727. /* fall through */
  728. default:
  729. riprel_analyze(auprobe, &insn);
  730. }
  731. auprobe->defparam.ilen = insn.length;
  732. auprobe->defparam.fixups |= fix_ip_or_call;
  733. auprobe->ops = &default_xol_ops;
  734. return 0;
  735. }
  736. /*
  737. * arch_uprobe_pre_xol - prepare to execute out of line.
  738. * @auprobe: the probepoint information.
  739. * @regs: reflects the saved user state of current task.
  740. */
  741. int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  742. {
  743. struct uprobe_task *utask = current->utask;
  744. if (auprobe->ops->pre_xol) {
  745. int err = auprobe->ops->pre_xol(auprobe, regs);
  746. if (err)
  747. return err;
  748. }
  749. regs->ip = utask->xol_vaddr;
  750. utask->autask.saved_trap_nr = current->thread.trap_nr;
  751. current->thread.trap_nr = UPROBE_TRAP_NR;
  752. utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
  753. regs->flags |= X86_EFLAGS_TF;
  754. if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
  755. set_task_blockstep(current, false);
  756. return 0;
  757. }
  758. /*
  759. * If xol insn itself traps and generates a signal(Say,
  760. * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
  761. * instruction jumps back to its own address. It is assumed that anything
  762. * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
  763. *
  764. * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
  765. * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
  766. * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
  767. */
  768. bool arch_uprobe_xol_was_trapped(struct task_struct *t)
  769. {
  770. if (t->thread.trap_nr != UPROBE_TRAP_NR)
  771. return true;
  772. return false;
  773. }
  774. /*
  775. * Called after single-stepping. To avoid the SMP problems that can
  776. * occur when we temporarily put back the original opcode to
  777. * single-step, we single-stepped a copy of the instruction.
  778. *
  779. * This function prepares to resume execution after the single-step.
  780. */
  781. int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  782. {
  783. struct uprobe_task *utask = current->utask;
  784. bool send_sigtrap = utask->autask.saved_tf;
  785. int err = 0;
  786. WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
  787. current->thread.trap_nr = utask->autask.saved_trap_nr;
  788. if (auprobe->ops->post_xol) {
  789. err = auprobe->ops->post_xol(auprobe, regs);
  790. if (err) {
  791. /*
  792. * Restore ->ip for restart or post mortem analysis.
  793. * ->post_xol() must not return -ERESTART unless this
  794. * is really possible.
  795. */
  796. regs->ip = utask->vaddr;
  797. if (err == -ERESTART)
  798. err = 0;
  799. send_sigtrap = false;
  800. }
  801. }
  802. /*
  803. * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
  804. * so we can get an extra SIGTRAP if we do not clear TF. We need
  805. * to examine the opcode to make it right.
  806. */
  807. if (send_sigtrap)
  808. send_sig(SIGTRAP, current, 0);
  809. if (!utask->autask.saved_tf)
  810. regs->flags &= ~X86_EFLAGS_TF;
  811. return err;
  812. }
  813. /* callback routine for handling exceptions. */
  814. int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
  815. {
  816. struct die_args *args = data;
  817. struct pt_regs *regs = args->regs;
  818. int ret = NOTIFY_DONE;
  819. /* We are only interested in userspace traps */
  820. if (regs && !user_mode(regs))
  821. return NOTIFY_DONE;
  822. switch (val) {
  823. case DIE_INT3:
  824. if (uprobe_pre_sstep_notifier(regs))
  825. ret = NOTIFY_STOP;
  826. break;
  827. case DIE_DEBUG:
  828. if (uprobe_post_sstep_notifier(regs))
  829. ret = NOTIFY_STOP;
  830. default:
  831. break;
  832. }
  833. return ret;
  834. }
  835. /*
  836. * This function gets called when XOL instruction either gets trapped or
  837. * the thread has a fatal signal. Reset the instruction pointer to its
  838. * probed address for the potential restart or for post mortem analysis.
  839. */
  840. void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
  841. {
  842. struct uprobe_task *utask = current->utask;
  843. if (auprobe->ops->abort)
  844. auprobe->ops->abort(auprobe, regs);
  845. current->thread.trap_nr = utask->autask.saved_trap_nr;
  846. regs->ip = utask->vaddr;
  847. /* clear TF if it was set by us in arch_uprobe_pre_xol() */
  848. if (!utask->autask.saved_tf)
  849. regs->flags &= ~X86_EFLAGS_TF;
  850. }
  851. static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
  852. {
  853. if (auprobe->ops->emulate)
  854. return auprobe->ops->emulate(auprobe, regs);
  855. return false;
  856. }
  857. bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
  858. {
  859. bool ret = __skip_sstep(auprobe, regs);
  860. if (ret && (regs->flags & X86_EFLAGS_TF))
  861. send_sig(SIGTRAP, current, 0);
  862. return ret;
  863. }
  864. unsigned long
  865. arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
  866. {
  867. int rasize = sizeof_long(), nleft;
  868. unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
  869. if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
  870. return -1;
  871. /* check whether address has been already hijacked */
  872. if (orig_ret_vaddr == trampoline_vaddr)
  873. return orig_ret_vaddr;
  874. nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
  875. if (likely(!nleft))
  876. return orig_ret_vaddr;
  877. if (nleft != rasize) {
  878. pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
  879. "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
  880. force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
  881. }
  882. return -1;
  883. }
  884. bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
  885. struct pt_regs *regs)
  886. {
  887. if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
  888. return regs->sp < ret->stack;
  889. else
  890. return regs->sp <= ret->stack;
  891. }