123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566 |
- /*
- * Copyright (C) 1991, 1992 Linus Torvalds
- * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
- * Copyright (C) 2011 Don Zickus Red Hat, Inc.
- *
- * Pentium III FXSR, SSE support
- * Gareth Hughes <gareth@valinux.com>, May 2000
- */
- /*
- * Handle hardware traps and faults.
- */
- #include <linux/spinlock.h>
- #include <linux/kprobes.h>
- #include <linux/kdebug.h>
- #include <linux/nmi.h>
- #include <linux/debugfs.h>
- #include <linux/delay.h>
- #include <linux/hardirq.h>
- #include <linux/ratelimit.h>
- #include <linux/slab.h>
- #include <linux/export.h>
- #if defined(CONFIG_EDAC)
- #include <linux/edac.h>
- #endif
- #include <linux/atomic.h>
- #include <asm/traps.h>
- #include <asm/mach_traps.h>
- #include <asm/nmi.h>
- #include <asm/x86_init.h>
- #include <asm/reboot.h>
- #include <asm/cache.h>
- #define CREATE_TRACE_POINTS
- #include <trace/events/nmi.h>
- struct nmi_desc {
- spinlock_t lock;
- struct list_head head;
- };
- static struct nmi_desc nmi_desc[NMI_MAX] =
- {
- {
- .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
- .head = LIST_HEAD_INIT(nmi_desc[0].head),
- },
- {
- .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
- .head = LIST_HEAD_INIT(nmi_desc[1].head),
- },
- {
- .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
- .head = LIST_HEAD_INIT(nmi_desc[2].head),
- },
- {
- .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
- .head = LIST_HEAD_INIT(nmi_desc[3].head),
- },
- };
- struct nmi_stats {
- unsigned int normal;
- unsigned int unknown;
- unsigned int external;
- unsigned int swallow;
- };
- static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
- static int ignore_nmis __read_mostly;
- int unknown_nmi_panic;
- /*
- * Prevent NMI reason port (0x61) being accessed simultaneously, can
- * only be used in NMI handler.
- */
- static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
- static int __init setup_unknown_nmi_panic(char *str)
- {
- unknown_nmi_panic = 1;
- return 1;
- }
- __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
- #define nmi_to_desc(type) (&nmi_desc[type])
- static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
- static int __init nmi_warning_debugfs(void)
- {
- debugfs_create_u64("nmi_longest_ns", 0644,
- arch_debugfs_dir, &nmi_longest_ns);
- return 0;
- }
- fs_initcall(nmi_warning_debugfs);
- static void nmi_max_handler(struct irq_work *w)
- {
- struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
- int remainder_ns, decimal_msecs;
- u64 whole_msecs = ACCESS_ONCE(a->max_duration);
- remainder_ns = do_div(whole_msecs, (1000 * 1000));
- decimal_msecs = remainder_ns / 1000;
- printk_ratelimited(KERN_INFO
- "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
- a->handler, whole_msecs, decimal_msecs);
- }
- static int nmi_handle(unsigned int type, struct pt_regs *regs)
- {
- struct nmi_desc *desc = nmi_to_desc(type);
- struct nmiaction *a;
- int handled=0;
- rcu_read_lock();
- /*
- * NMIs are edge-triggered, which means if you have enough
- * of them concurrently, you can lose some because only one
- * can be latched at any given time. Walk the whole list
- * to handle those situations.
- */
- list_for_each_entry_rcu(a, &desc->head, list) {
- int thishandled;
- u64 delta;
- delta = sched_clock();
- thishandled = a->handler(type, regs);
- handled += thishandled;
- delta = sched_clock() - delta;
- trace_nmi_handler(a->handler, (int)delta, thishandled);
- if (delta < nmi_longest_ns || delta < a->max_duration)
- continue;
- a->max_duration = delta;
- irq_work_queue(&a->irq_work);
- }
- rcu_read_unlock();
- /* return total number of NMI events handled */
- return handled;
- }
- NOKPROBE_SYMBOL(nmi_handle);
- int __register_nmi_handler(unsigned int type, struct nmiaction *action)
- {
- struct nmi_desc *desc = nmi_to_desc(type);
- unsigned long flags;
- if (!action->handler)
- return -EINVAL;
- init_irq_work(&action->irq_work, nmi_max_handler);
- spin_lock_irqsave(&desc->lock, flags);
- /*
- * most handlers of type NMI_UNKNOWN never return because
- * they just assume the NMI is theirs. Just a sanity check
- * to manage expectations
- */
- WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
- WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
- WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
- /*
- * some handlers need to be executed first otherwise a fake
- * event confuses some handlers (kdump uses this flag)
- */
- if (action->flags & NMI_FLAG_FIRST)
- list_add_rcu(&action->list, &desc->head);
- else
- list_add_tail_rcu(&action->list, &desc->head);
-
- spin_unlock_irqrestore(&desc->lock, flags);
- return 0;
- }
- EXPORT_SYMBOL(__register_nmi_handler);
- void unregister_nmi_handler(unsigned int type, const char *name)
- {
- struct nmi_desc *desc = nmi_to_desc(type);
- struct nmiaction *n;
- unsigned long flags;
- spin_lock_irqsave(&desc->lock, flags);
- list_for_each_entry_rcu(n, &desc->head, list) {
- /*
- * the name passed in to describe the nmi handler
- * is used as the lookup key
- */
- if (!strcmp(n->name, name)) {
- WARN(in_nmi(),
- "Trying to free NMI (%s) from NMI context!\n", n->name);
- list_del_rcu(&n->list);
- break;
- }
- }
- spin_unlock_irqrestore(&desc->lock, flags);
- synchronize_rcu();
- }
- EXPORT_SYMBOL_GPL(unregister_nmi_handler);
- static void
- pci_serr_error(unsigned char reason, struct pt_regs *regs)
- {
- /* check to see if anyone registered against these types of errors */
- if (nmi_handle(NMI_SERR, regs))
- return;
- pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
- reason, smp_processor_id());
- /*
- * On some machines, PCI SERR line is used to report memory
- * errors. EDAC makes use of it.
- */
- #if defined(CONFIG_EDAC)
- if (edac_handler_set()) {
- edac_atomic_assert_error();
- return;
- }
- #endif
- if (panic_on_unrecovered_nmi)
- nmi_panic(regs, "NMI: Not continuing");
- pr_emerg("Dazed and confused, but trying to continue\n");
- /* Clear and disable the PCI SERR error line. */
- reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
- outb(reason, NMI_REASON_PORT);
- }
- NOKPROBE_SYMBOL(pci_serr_error);
- static void
- io_check_error(unsigned char reason, struct pt_regs *regs)
- {
- unsigned long i;
- /* check to see if anyone registered against these types of errors */
- if (nmi_handle(NMI_IO_CHECK, regs))
- return;
- pr_emerg(
- "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
- reason, smp_processor_id());
- show_regs(regs);
- if (panic_on_io_nmi) {
- nmi_panic(regs, "NMI IOCK error: Not continuing");
- /*
- * If we end up here, it means we have received an NMI while
- * processing panic(). Simply return without delaying and
- * re-enabling NMIs.
- */
- return;
- }
- /* Re-enable the IOCK line, wait for a few seconds */
- reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
- outb(reason, NMI_REASON_PORT);
- i = 20000;
- while (--i) {
- touch_nmi_watchdog();
- udelay(100);
- }
- reason &= ~NMI_REASON_CLEAR_IOCHK;
- outb(reason, NMI_REASON_PORT);
- }
- NOKPROBE_SYMBOL(io_check_error);
- static void
- unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
- {
- int handled;
- /*
- * Use 'false' as back-to-back NMIs are dealt with one level up.
- * Of course this makes having multiple 'unknown' handlers useless
- * as only the first one is ever run (unless it can actually determine
- * if it caused the NMI)
- */
- handled = nmi_handle(NMI_UNKNOWN, regs);
- if (handled) {
- __this_cpu_add(nmi_stats.unknown, handled);
- return;
- }
- __this_cpu_add(nmi_stats.unknown, 1);
- pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
- reason, smp_processor_id());
- pr_emerg("Do you have a strange power saving mode enabled?\n");
- if (unknown_nmi_panic || panic_on_unrecovered_nmi)
- nmi_panic(regs, "NMI: Not continuing");
- pr_emerg("Dazed and confused, but trying to continue\n");
- }
- NOKPROBE_SYMBOL(unknown_nmi_error);
- static DEFINE_PER_CPU(bool, swallow_nmi);
- static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
- static void default_do_nmi(struct pt_regs *regs)
- {
- unsigned char reason = 0;
- int handled;
- bool b2b = false;
- /*
- * CPU-specific NMI must be processed before non-CPU-specific
- * NMI, otherwise we may lose it, because the CPU-specific
- * NMI can not be detected/processed on other CPUs.
- */
- /*
- * Back-to-back NMIs are interesting because they can either
- * be two NMI or more than two NMIs (any thing over two is dropped
- * due to NMI being edge-triggered). If this is the second half
- * of the back-to-back NMI, assume we dropped things and process
- * more handlers. Otherwise reset the 'swallow' NMI behaviour
- */
- if (regs->ip == __this_cpu_read(last_nmi_rip))
- b2b = true;
- else
- __this_cpu_write(swallow_nmi, false);
- __this_cpu_write(last_nmi_rip, regs->ip);
- handled = nmi_handle(NMI_LOCAL, regs);
- __this_cpu_add(nmi_stats.normal, handled);
- if (handled) {
- /*
- * There are cases when a NMI handler handles multiple
- * events in the current NMI. One of these events may
- * be queued for in the next NMI. Because the event is
- * already handled, the next NMI will result in an unknown
- * NMI. Instead lets flag this for a potential NMI to
- * swallow.
- */
- if (handled > 1)
- __this_cpu_write(swallow_nmi, true);
- return;
- }
- /*
- * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
- *
- * Another CPU may be processing panic routines while holding
- * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
- * and if so, call its callback directly. If there is no CPU preparing
- * crash dump, we simply loop here.
- */
- while (!raw_spin_trylock(&nmi_reason_lock)) {
- run_crash_ipi_callback(regs);
- cpu_relax();
- }
- reason = x86_platform.get_nmi_reason();
- if (reason & NMI_REASON_MASK) {
- if (reason & NMI_REASON_SERR)
- pci_serr_error(reason, regs);
- else if (reason & NMI_REASON_IOCHK)
- io_check_error(reason, regs);
- #ifdef CONFIG_X86_32
- /*
- * Reassert NMI in case it became active
- * meanwhile as it's edge-triggered:
- */
- reassert_nmi();
- #endif
- __this_cpu_add(nmi_stats.external, 1);
- raw_spin_unlock(&nmi_reason_lock);
- return;
- }
- raw_spin_unlock(&nmi_reason_lock);
- /*
- * Only one NMI can be latched at a time. To handle
- * this we may process multiple nmi handlers at once to
- * cover the case where an NMI is dropped. The downside
- * to this approach is we may process an NMI prematurely,
- * while its real NMI is sitting latched. This will cause
- * an unknown NMI on the next run of the NMI processing.
- *
- * We tried to flag that condition above, by setting the
- * swallow_nmi flag when we process more than one event.
- * This condition is also only present on the second half
- * of a back-to-back NMI, so we flag that condition too.
- *
- * If both are true, we assume we already processed this
- * NMI previously and we swallow it. Otherwise we reset
- * the logic.
- *
- * There are scenarios where we may accidentally swallow
- * a 'real' unknown NMI. For example, while processing
- * a perf NMI another perf NMI comes in along with a
- * 'real' unknown NMI. These two NMIs get combined into
- * one (as descibed above). When the next NMI gets
- * processed, it will be flagged by perf as handled, but
- * noone will know that there was a 'real' unknown NMI sent
- * also. As a result it gets swallowed. Or if the first
- * perf NMI returns two events handled then the second
- * NMI will get eaten by the logic below, again losing a
- * 'real' unknown NMI. But this is the best we can do
- * for now.
- */
- if (b2b && __this_cpu_read(swallow_nmi))
- __this_cpu_add(nmi_stats.swallow, 1);
- else
- unknown_nmi_error(reason, regs);
- }
- NOKPROBE_SYMBOL(default_do_nmi);
- /*
- * NMIs can page fault or hit breakpoints which will cause it to lose
- * its NMI context with the CPU when the breakpoint or page fault does an IRET.
- *
- * As a result, NMIs can nest if NMIs get unmasked due an IRET during
- * NMI processing. On x86_64, the asm glue protects us from nested NMIs
- * if the outer NMI came from kernel mode, but we can still nest if the
- * outer NMI came from user mode.
- *
- * To handle these nested NMIs, we have three states:
- *
- * 1) not running
- * 2) executing
- * 3) latched
- *
- * When no NMI is in progress, it is in the "not running" state.
- * When an NMI comes in, it goes into the "executing" state.
- * Normally, if another NMI is triggered, it does not interrupt
- * the running NMI and the HW will simply latch it so that when
- * the first NMI finishes, it will restart the second NMI.
- * (Note, the latch is binary, thus multiple NMIs triggering,
- * when one is running, are ignored. Only one NMI is restarted.)
- *
- * If an NMI executes an iret, another NMI can preempt it. We do not
- * want to allow this new NMI to run, but we want to execute it when the
- * first one finishes. We set the state to "latched", and the exit of
- * the first NMI will perform a dec_return, if the result is zero
- * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
- * dec_return would have set the state to NMI_EXECUTING (what we want it
- * to be when we are running). In this case, we simply jump back to
- * rerun the NMI handler again, and restart the 'latched' NMI.
- *
- * No trap (breakpoint or page fault) should be hit before nmi_restart,
- * thus there is no race between the first check of state for NOT_RUNNING
- * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
- * at this point.
- *
- * In case the NMI takes a page fault, we need to save off the CR2
- * because the NMI could have preempted another page fault and corrupt
- * the CR2 that is about to be read. As nested NMIs must be restarted
- * and they can not take breakpoints or page faults, the update of the
- * CR2 must be done before converting the nmi state back to NOT_RUNNING.
- * Otherwise, there would be a race of another nested NMI coming in
- * after setting state to NOT_RUNNING but before updating the nmi_cr2.
- */
- enum nmi_states {
- NMI_NOT_RUNNING = 0,
- NMI_EXECUTING,
- NMI_LATCHED,
- };
- static DEFINE_PER_CPU(enum nmi_states, nmi_state);
- static DEFINE_PER_CPU(unsigned long, nmi_cr2);
- #ifdef CONFIG_X86_64
- /*
- * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
- * some care, the inner breakpoint will clobber the outer breakpoint's
- * stack.
- *
- * If a breakpoint is being processed, and the debug stack is being
- * used, if an NMI comes in and also hits a breakpoint, the stack
- * pointer will be set to the same fixed address as the breakpoint that
- * was interrupted, causing that stack to be corrupted. To handle this
- * case, check if the stack that was interrupted is the debug stack, and
- * if so, change the IDT so that new breakpoints will use the current
- * stack and not switch to the fixed address. On return of the NMI,
- * switch back to the original IDT.
- */
- static DEFINE_PER_CPU(int, update_debug_stack);
- #endif
- dotraplinkage notrace void
- do_nmi(struct pt_regs *regs, long error_code)
- {
- if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
- this_cpu_write(nmi_state, NMI_LATCHED);
- return;
- }
- this_cpu_write(nmi_state, NMI_EXECUTING);
- this_cpu_write(nmi_cr2, read_cr2());
- nmi_restart:
- #ifdef CONFIG_X86_64
- /*
- * If we interrupted a breakpoint, it is possible that
- * the nmi handler will have breakpoints too. We need to
- * change the IDT such that breakpoints that happen here
- * continue to use the NMI stack.
- */
- if (unlikely(is_debug_stack(regs->sp))) {
- debug_stack_set_zero();
- this_cpu_write(update_debug_stack, 1);
- }
- #endif
- nmi_enter();
- inc_irq_stat(__nmi_count);
- if (!ignore_nmis)
- default_do_nmi(regs);
- nmi_exit();
- #ifdef CONFIG_X86_64
- if (unlikely(this_cpu_read(update_debug_stack))) {
- debug_stack_reset();
- this_cpu_write(update_debug_stack, 0);
- }
- #endif
- if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
- write_cr2(this_cpu_read(nmi_cr2));
- if (this_cpu_dec_return(nmi_state))
- goto nmi_restart;
- }
- NOKPROBE_SYMBOL(do_nmi);
- void stop_nmi(void)
- {
- ignore_nmis++;
- }
- void restart_nmi(void)
- {
- ignore_nmis--;
- }
- /* reset the back-to-back NMI logic */
- void local_touch_nmi(void)
- {
- __this_cpu_write(last_nmi_rip, 0);
- }
- EXPORT_SYMBOL_GPL(local_touch_nmi);
|