123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405 |
- /*
- * apb_timer.c: Driver for Langwell APB timers
- *
- * (C) Copyright 2009 Intel Corporation
- * Author: Jacob Pan (jacob.jun.pan@intel.com)
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; version 2
- * of the License.
- *
- * Note:
- * Langwell is the south complex of Intel Moorestown MID platform. There are
- * eight external timers in total that can be used by the operating system.
- * The timer information, such as frequency and addresses, is provided to the
- * OS via SFI tables.
- * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
- * individual redirection table entries (RTE).
- * Unlike HPET, there is no master counter, therefore one of the timers are
- * used as clocksource. The overall allocation looks like:
- * - timer 0 - NR_CPUs for per cpu timer
- * - one timer for clocksource
- * - one timer for watchdog driver.
- * It is also worth notice that APB timer does not support true one-shot mode,
- * free-running mode will be used here to emulate one-shot mode.
- * APB timer can also be used as broadcast timer along with per cpu local APIC
- * timer, but by default APB timer has higher rating than local APIC timers.
- */
- #include <linux/delay.h>
- #include <linux/dw_apb_timer.h>
- #include <linux/errno.h>
- #include <linux/init.h>
- #include <linux/slab.h>
- #include <linux/pm.h>
- #include <linux/sfi.h>
- #include <linux/interrupt.h>
- #include <linux/cpu.h>
- #include <linux/irq.h>
- #include <asm/fixmap.h>
- #include <asm/apb_timer.h>
- #include <asm/intel-mid.h>
- #include <asm/time.h>
- #define APBT_CLOCKEVENT_RATING 110
- #define APBT_CLOCKSOURCE_RATING 250
- #define APBT_CLOCKEVENT0_NUM (0)
- #define APBT_CLOCKSOURCE_NUM (2)
- static phys_addr_t apbt_address;
- static int apb_timer_block_enabled;
- static void __iomem *apbt_virt_address;
- /*
- * Common DW APB timer info
- */
- static unsigned long apbt_freq;
- struct apbt_dev {
- struct dw_apb_clock_event_device *timer;
- unsigned int num;
- int cpu;
- unsigned int irq;
- char name[10];
- };
- static struct dw_apb_clocksource *clocksource_apbt;
- static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
- {
- return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
- }
- static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
- #ifdef CONFIG_SMP
- static unsigned int apbt_num_timers_used;
- #endif
- static inline void apbt_set_mapping(void)
- {
- struct sfi_timer_table_entry *mtmr;
- int phy_cs_timer_id = 0;
- if (apbt_virt_address) {
- pr_debug("APBT base already mapped\n");
- return;
- }
- mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
- if (mtmr == NULL) {
- printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
- APBT_CLOCKEVENT0_NUM);
- return;
- }
- apbt_address = (phys_addr_t)mtmr->phys_addr;
- if (!apbt_address) {
- printk(KERN_WARNING "No timer base from SFI, use default\n");
- apbt_address = APBT_DEFAULT_BASE;
- }
- apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
- if (!apbt_virt_address) {
- pr_debug("Failed mapping APBT phy address at %lu\n",\
- (unsigned long)apbt_address);
- goto panic_noapbt;
- }
- apbt_freq = mtmr->freq_hz;
- sfi_free_mtmr(mtmr);
- /* Now figure out the physical timer id for clocksource device */
- mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
- if (mtmr == NULL)
- goto panic_noapbt;
- /* Now figure out the physical timer id */
- pr_debug("Use timer %d for clocksource\n",
- (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
- phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
- APBTMRS_REG_SIZE;
- clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
- "apbt0", apbt_virt_address + phy_cs_timer_id *
- APBTMRS_REG_SIZE, apbt_freq);
- return;
- panic_noapbt:
- panic("Failed to setup APB system timer\n");
- }
- static inline void apbt_clear_mapping(void)
- {
- iounmap(apbt_virt_address);
- apbt_virt_address = NULL;
- }
- static int __init apbt_clockevent_register(void)
- {
- struct sfi_timer_table_entry *mtmr;
- struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev);
- mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
- if (mtmr == NULL) {
- printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
- APBT_CLOCKEVENT0_NUM);
- return -ENODEV;
- }
- adev->num = smp_processor_id();
- adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
- intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ?
- APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
- adev_virt_addr(adev), 0, apbt_freq);
- /* Firmware does EOI handling for us. */
- adev->timer->eoi = NULL;
- if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
- global_clock_event = &adev->timer->ced;
- printk(KERN_DEBUG "%s clockevent registered as global\n",
- global_clock_event->name);
- }
- dw_apb_clockevent_register(adev->timer);
- sfi_free_mtmr(mtmr);
- return 0;
- }
- #ifdef CONFIG_SMP
- static void apbt_setup_irq(struct apbt_dev *adev)
- {
- irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
- irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
- }
- /* Should be called with per cpu */
- void apbt_setup_secondary_clock(void)
- {
- struct apbt_dev *adev;
- int cpu;
- /* Don't register boot CPU clockevent */
- cpu = smp_processor_id();
- if (!cpu)
- return;
- adev = this_cpu_ptr(&cpu_apbt_dev);
- if (!adev->timer) {
- adev->timer = dw_apb_clockevent_init(cpu, adev->name,
- APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
- adev->irq, apbt_freq);
- adev->timer->eoi = NULL;
- } else {
- dw_apb_clockevent_resume(adev->timer);
- }
- printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
- cpu, adev->name, adev->cpu);
- apbt_setup_irq(adev);
- dw_apb_clockevent_register(adev->timer);
- return;
- }
- /*
- * this notify handler process CPU hotplug events. in case of S0i3, nonboot
- * cpus are disabled/enabled frequently, for performance reasons, we keep the
- * per cpu timer irq registered so that we do need to do free_irq/request_irq.
- *
- * TODO: it might be more reliable to directly disable percpu clockevent device
- * without the notifier chain. currently, cpu 0 may get interrupts from other
- * cpu timers during the offline process due to the ordering of notification.
- * the extra interrupt is harmless.
- */
- static int apbt_cpu_dead(unsigned int cpu)
- {
- struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
- dw_apb_clockevent_pause(adev->timer);
- if (system_state == SYSTEM_RUNNING) {
- pr_debug("skipping APBT CPU %u offline\n", cpu);
- } else {
- pr_debug("APBT clockevent for cpu %u offline\n", cpu);
- dw_apb_clockevent_stop(adev->timer);
- }
- return 0;
- }
- static __init int apbt_late_init(void)
- {
- if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ||
- !apb_timer_block_enabled)
- return 0;
- return cpuhp_setup_state(CPUHP_X86_APB_DEAD, "X86_APB_DEAD", NULL,
- apbt_cpu_dead);
- }
- fs_initcall(apbt_late_init);
- #else
- void apbt_setup_secondary_clock(void) {}
- #endif /* CONFIG_SMP */
- static int apbt_clocksource_register(void)
- {
- u64 start, now;
- cycle_t t1;
- /* Start the counter, use timer 2 as source, timer 0/1 for event */
- dw_apb_clocksource_start(clocksource_apbt);
- /* Verify whether apbt counter works */
- t1 = dw_apb_clocksource_read(clocksource_apbt);
- start = rdtsc();
- /*
- * We don't know the TSC frequency yet, but waiting for
- * 200000 TSC cycles is safe:
- * 4 GHz == 50us
- * 1 GHz == 200us
- */
- do {
- rep_nop();
- now = rdtsc();
- } while ((now - start) < 200000UL);
- /* APBT is the only always on clocksource, it has to work! */
- if (t1 == dw_apb_clocksource_read(clocksource_apbt))
- panic("APBT counter not counting. APBT disabled\n");
- dw_apb_clocksource_register(clocksource_apbt);
- return 0;
- }
- /*
- * Early setup the APBT timer, only use timer 0 for booting then switch to
- * per CPU timer if possible.
- * returns 1 if per cpu apbt is setup
- * returns 0 if no per cpu apbt is chosen
- * panic if set up failed, this is the only platform timer on Moorestown.
- */
- void __init apbt_time_init(void)
- {
- #ifdef CONFIG_SMP
- int i;
- struct sfi_timer_table_entry *p_mtmr;
- struct apbt_dev *adev;
- #endif
- if (apb_timer_block_enabled)
- return;
- apbt_set_mapping();
- if (!apbt_virt_address)
- goto out_noapbt;
- /*
- * Read the frequency and check for a sane value, for ESL model
- * we extend the possible clock range to allow time scaling.
- */
- if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
- pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
- goto out_noapbt;
- }
- if (apbt_clocksource_register()) {
- pr_debug("APBT has failed to register clocksource\n");
- goto out_noapbt;
- }
- if (!apbt_clockevent_register())
- apb_timer_block_enabled = 1;
- else {
- pr_debug("APBT has failed to register clockevent\n");
- goto out_noapbt;
- }
- #ifdef CONFIG_SMP
- /* kernel cmdline disable apb timer, so we will use lapic timers */
- if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
- printk(KERN_INFO "apbt: disabled per cpu timer\n");
- return;
- }
- pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
- if (num_possible_cpus() <= sfi_mtimer_num)
- apbt_num_timers_used = num_possible_cpus();
- else
- apbt_num_timers_used = 1;
- pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
- /* here we set up per CPU timer data structure */
- for (i = 0; i < apbt_num_timers_used; i++) {
- adev = &per_cpu(cpu_apbt_dev, i);
- adev->num = i;
- adev->cpu = i;
- p_mtmr = sfi_get_mtmr(i);
- if (p_mtmr)
- adev->irq = p_mtmr->irq;
- else
- printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
- snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
- }
- #endif
- return;
- out_noapbt:
- apbt_clear_mapping();
- apb_timer_block_enabled = 0;
- panic("failed to enable APB timer\n");
- }
- /* called before apb_timer_enable, use early map */
- unsigned long apbt_quick_calibrate(void)
- {
- int i, scale;
- u64 old, new;
- cycle_t t1, t2;
- unsigned long khz = 0;
- u32 loop, shift;
- apbt_set_mapping();
- dw_apb_clocksource_start(clocksource_apbt);
- /* check if the timer can count down, otherwise return */
- old = dw_apb_clocksource_read(clocksource_apbt);
- i = 10000;
- while (--i) {
- if (old != dw_apb_clocksource_read(clocksource_apbt))
- break;
- }
- if (!i)
- goto failed;
- /* count 16 ms */
- loop = (apbt_freq / 1000) << 4;
- /* restart the timer to ensure it won't get to 0 in the calibration */
- dw_apb_clocksource_start(clocksource_apbt);
- old = dw_apb_clocksource_read(clocksource_apbt);
- old += loop;
- t1 = rdtsc();
- do {
- new = dw_apb_clocksource_read(clocksource_apbt);
- } while (new < old);
- t2 = rdtsc();
- shift = 5;
- if (unlikely(loop >> shift == 0)) {
- printk(KERN_INFO
- "APBT TSC calibration failed, not enough resolution\n");
- return 0;
- }
- scale = (int)div_u64((t2 - t1), loop >> shift);
- khz = (scale * (apbt_freq / 1000)) >> shift;
- printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
- return khz;
- failed:
- return 0;
- }
|