alternative.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804
  1. #define pr_fmt(fmt) "SMP alternatives: " fmt
  2. #include <linux/module.h>
  3. #include <linux/sched.h>
  4. #include <linux/mutex.h>
  5. #include <linux/list.h>
  6. #include <linux/stringify.h>
  7. #include <linux/mm.h>
  8. #include <linux/vmalloc.h>
  9. #include <linux/memory.h>
  10. #include <linux/stop_machine.h>
  11. #include <linux/slab.h>
  12. #include <linux/kdebug.h>
  13. #include <asm/text-patching.h>
  14. #include <asm/alternative.h>
  15. #include <asm/sections.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/mce.h>
  18. #include <asm/nmi.h>
  19. #include <asm/cacheflush.h>
  20. #include <asm/tlbflush.h>
  21. #include <asm/io.h>
  22. #include <asm/fixmap.h>
  23. int __read_mostly alternatives_patched;
  24. EXPORT_SYMBOL_GPL(alternatives_patched);
  25. #define MAX_PATCH_LEN (255-1)
  26. static int __initdata_or_module debug_alternative;
  27. static int __init debug_alt(char *str)
  28. {
  29. debug_alternative = 1;
  30. return 1;
  31. }
  32. __setup("debug-alternative", debug_alt);
  33. static int noreplace_smp;
  34. static int __init setup_noreplace_smp(char *str)
  35. {
  36. noreplace_smp = 1;
  37. return 1;
  38. }
  39. __setup("noreplace-smp", setup_noreplace_smp);
  40. #define DPRINTK(fmt, args...) \
  41. do { \
  42. if (debug_alternative) \
  43. printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \
  44. } while (0)
  45. #define DUMP_BYTES(buf, len, fmt, args...) \
  46. do { \
  47. if (unlikely(debug_alternative)) { \
  48. int j; \
  49. \
  50. if (!(len)) \
  51. break; \
  52. \
  53. printk(KERN_DEBUG fmt, ##args); \
  54. for (j = 0; j < (len) - 1; j++) \
  55. printk(KERN_CONT "%02hhx ", buf[j]); \
  56. printk(KERN_CONT "%02hhx\n", buf[j]); \
  57. } \
  58. } while (0)
  59. /*
  60. * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
  61. * that correspond to that nop. Getting from one nop to the next, we
  62. * add to the array the offset that is equal to the sum of all sizes of
  63. * nops preceding the one we are after.
  64. *
  65. * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
  66. * nice symmetry of sizes of the previous nops.
  67. */
  68. #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
  69. static const unsigned char intelnops[] =
  70. {
  71. GENERIC_NOP1,
  72. GENERIC_NOP2,
  73. GENERIC_NOP3,
  74. GENERIC_NOP4,
  75. GENERIC_NOP5,
  76. GENERIC_NOP6,
  77. GENERIC_NOP7,
  78. GENERIC_NOP8,
  79. GENERIC_NOP5_ATOMIC
  80. };
  81. static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
  82. {
  83. NULL,
  84. intelnops,
  85. intelnops + 1,
  86. intelnops + 1 + 2,
  87. intelnops + 1 + 2 + 3,
  88. intelnops + 1 + 2 + 3 + 4,
  89. intelnops + 1 + 2 + 3 + 4 + 5,
  90. intelnops + 1 + 2 + 3 + 4 + 5 + 6,
  91. intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
  92. intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
  93. };
  94. #endif
  95. #ifdef K8_NOP1
  96. static const unsigned char k8nops[] =
  97. {
  98. K8_NOP1,
  99. K8_NOP2,
  100. K8_NOP3,
  101. K8_NOP4,
  102. K8_NOP5,
  103. K8_NOP6,
  104. K8_NOP7,
  105. K8_NOP8,
  106. K8_NOP5_ATOMIC
  107. };
  108. static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
  109. {
  110. NULL,
  111. k8nops,
  112. k8nops + 1,
  113. k8nops + 1 + 2,
  114. k8nops + 1 + 2 + 3,
  115. k8nops + 1 + 2 + 3 + 4,
  116. k8nops + 1 + 2 + 3 + 4 + 5,
  117. k8nops + 1 + 2 + 3 + 4 + 5 + 6,
  118. k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
  119. k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
  120. };
  121. #endif
  122. #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
  123. static const unsigned char k7nops[] =
  124. {
  125. K7_NOP1,
  126. K7_NOP2,
  127. K7_NOP3,
  128. K7_NOP4,
  129. K7_NOP5,
  130. K7_NOP6,
  131. K7_NOP7,
  132. K7_NOP8,
  133. K7_NOP5_ATOMIC
  134. };
  135. static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
  136. {
  137. NULL,
  138. k7nops,
  139. k7nops + 1,
  140. k7nops + 1 + 2,
  141. k7nops + 1 + 2 + 3,
  142. k7nops + 1 + 2 + 3 + 4,
  143. k7nops + 1 + 2 + 3 + 4 + 5,
  144. k7nops + 1 + 2 + 3 + 4 + 5 + 6,
  145. k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
  146. k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
  147. };
  148. #endif
  149. #ifdef P6_NOP1
  150. static const unsigned char p6nops[] =
  151. {
  152. P6_NOP1,
  153. P6_NOP2,
  154. P6_NOP3,
  155. P6_NOP4,
  156. P6_NOP5,
  157. P6_NOP6,
  158. P6_NOP7,
  159. P6_NOP8,
  160. P6_NOP5_ATOMIC
  161. };
  162. static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
  163. {
  164. NULL,
  165. p6nops,
  166. p6nops + 1,
  167. p6nops + 1 + 2,
  168. p6nops + 1 + 2 + 3,
  169. p6nops + 1 + 2 + 3 + 4,
  170. p6nops + 1 + 2 + 3 + 4 + 5,
  171. p6nops + 1 + 2 + 3 + 4 + 5 + 6,
  172. p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
  173. p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
  174. };
  175. #endif
  176. /* Initialize these to a safe default */
  177. #ifdef CONFIG_X86_64
  178. const unsigned char * const *ideal_nops = p6_nops;
  179. #else
  180. const unsigned char * const *ideal_nops = intel_nops;
  181. #endif
  182. void __init arch_init_ideal_nops(void)
  183. {
  184. switch (boot_cpu_data.x86_vendor) {
  185. case X86_VENDOR_INTEL:
  186. /*
  187. * Due to a decoder implementation quirk, some
  188. * specific Intel CPUs actually perform better with
  189. * the "k8_nops" than with the SDM-recommended NOPs.
  190. */
  191. if (boot_cpu_data.x86 == 6 &&
  192. boot_cpu_data.x86_model >= 0x0f &&
  193. boot_cpu_data.x86_model != 0x1c &&
  194. boot_cpu_data.x86_model != 0x26 &&
  195. boot_cpu_data.x86_model != 0x27 &&
  196. boot_cpu_data.x86_model < 0x30) {
  197. ideal_nops = k8_nops;
  198. } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
  199. ideal_nops = p6_nops;
  200. } else {
  201. #ifdef CONFIG_X86_64
  202. ideal_nops = k8_nops;
  203. #else
  204. ideal_nops = intel_nops;
  205. #endif
  206. }
  207. break;
  208. case X86_VENDOR_AMD:
  209. if (boot_cpu_data.x86 > 0xf) {
  210. ideal_nops = p6_nops;
  211. return;
  212. }
  213. /* fall through */
  214. default:
  215. #ifdef CONFIG_X86_64
  216. ideal_nops = k8_nops;
  217. #else
  218. if (boot_cpu_has(X86_FEATURE_K8))
  219. ideal_nops = k8_nops;
  220. else if (boot_cpu_has(X86_FEATURE_K7))
  221. ideal_nops = k7_nops;
  222. else
  223. ideal_nops = intel_nops;
  224. #endif
  225. }
  226. }
  227. /* Use this to add nops to a buffer, then text_poke the whole buffer. */
  228. static void __init_or_module add_nops(void *insns, unsigned int len)
  229. {
  230. while (len > 0) {
  231. unsigned int noplen = len;
  232. if (noplen > ASM_NOP_MAX)
  233. noplen = ASM_NOP_MAX;
  234. memcpy(insns, ideal_nops[noplen], noplen);
  235. insns += noplen;
  236. len -= noplen;
  237. }
  238. }
  239. extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
  240. extern s32 __smp_locks[], __smp_locks_end[];
  241. void *text_poke_early(void *addr, const void *opcode, size_t len);
  242. /*
  243. * Are we looking at a near JMP with a 1 or 4-byte displacement.
  244. */
  245. static inline bool is_jmp(const u8 opcode)
  246. {
  247. return opcode == 0xeb || opcode == 0xe9;
  248. }
  249. static void __init_or_module
  250. recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
  251. {
  252. u8 *next_rip, *tgt_rip;
  253. s32 n_dspl, o_dspl;
  254. int repl_len;
  255. if (a->replacementlen != 5)
  256. return;
  257. o_dspl = *(s32 *)(insnbuf + 1);
  258. /* next_rip of the replacement JMP */
  259. next_rip = repl_insn + a->replacementlen;
  260. /* target rip of the replacement JMP */
  261. tgt_rip = next_rip + o_dspl;
  262. n_dspl = tgt_rip - orig_insn;
  263. DPRINTK("target RIP: %p, new_displ: 0x%x", tgt_rip, n_dspl);
  264. if (tgt_rip - orig_insn >= 0) {
  265. if (n_dspl - 2 <= 127)
  266. goto two_byte_jmp;
  267. else
  268. goto five_byte_jmp;
  269. /* negative offset */
  270. } else {
  271. if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
  272. goto two_byte_jmp;
  273. else
  274. goto five_byte_jmp;
  275. }
  276. two_byte_jmp:
  277. n_dspl -= 2;
  278. insnbuf[0] = 0xeb;
  279. insnbuf[1] = (s8)n_dspl;
  280. add_nops(insnbuf + 2, 3);
  281. repl_len = 2;
  282. goto done;
  283. five_byte_jmp:
  284. n_dspl -= 5;
  285. insnbuf[0] = 0xe9;
  286. *(s32 *)&insnbuf[1] = n_dspl;
  287. repl_len = 5;
  288. done:
  289. DPRINTK("final displ: 0x%08x, JMP 0x%lx",
  290. n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
  291. }
  292. static void __init_or_module optimize_nops(struct alt_instr *a, u8 *instr)
  293. {
  294. unsigned long flags;
  295. int i;
  296. for (i = 0; i < a->padlen; i++) {
  297. if (instr[i] != 0x90)
  298. return;
  299. }
  300. local_irq_save(flags);
  301. add_nops(instr + (a->instrlen - a->padlen), a->padlen);
  302. sync_core();
  303. local_irq_restore(flags);
  304. DUMP_BYTES(instr, a->instrlen, "%p: [%d:%d) optimized NOPs: ",
  305. instr, a->instrlen - a->padlen, a->padlen);
  306. }
  307. /*
  308. * Replace instructions with better alternatives for this CPU type. This runs
  309. * before SMP is initialized to avoid SMP problems with self modifying code.
  310. * This implies that asymmetric systems where APs have less capabilities than
  311. * the boot processor are not handled. Tough. Make sure you disable such
  312. * features by hand.
  313. */
  314. void __init_or_module apply_alternatives(struct alt_instr *start,
  315. struct alt_instr *end)
  316. {
  317. struct alt_instr *a;
  318. u8 *instr, *replacement;
  319. u8 insnbuf[MAX_PATCH_LEN];
  320. DPRINTK("alt table %p -> %p", start, end);
  321. /*
  322. * The scan order should be from start to end. A later scanned
  323. * alternative code can overwrite previously scanned alternative code.
  324. * Some kernel functions (e.g. memcpy, memset, etc) use this order to
  325. * patch code.
  326. *
  327. * So be careful if you want to change the scan order to any other
  328. * order.
  329. */
  330. for (a = start; a < end; a++) {
  331. int insnbuf_sz = 0;
  332. instr = (u8 *)&a->instr_offset + a->instr_offset;
  333. replacement = (u8 *)&a->repl_offset + a->repl_offset;
  334. BUG_ON(a->instrlen > sizeof(insnbuf));
  335. BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
  336. if (!boot_cpu_has(a->cpuid)) {
  337. if (a->padlen > 1)
  338. optimize_nops(a, instr);
  339. continue;
  340. }
  341. DPRINTK("feat: %d*32+%d, old: (%p, len: %d), repl: (%p, len: %d), pad: %d",
  342. a->cpuid >> 5,
  343. a->cpuid & 0x1f,
  344. instr, a->instrlen,
  345. replacement, a->replacementlen, a->padlen);
  346. DUMP_BYTES(instr, a->instrlen, "%p: old_insn: ", instr);
  347. DUMP_BYTES(replacement, a->replacementlen, "%p: rpl_insn: ", replacement);
  348. memcpy(insnbuf, replacement, a->replacementlen);
  349. insnbuf_sz = a->replacementlen;
  350. /* 0xe8 is a relative jump; fix the offset. */
  351. if (*insnbuf == 0xe8 && a->replacementlen == 5) {
  352. *(s32 *)(insnbuf + 1) += replacement - instr;
  353. DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
  354. *(s32 *)(insnbuf + 1),
  355. (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
  356. }
  357. if (a->replacementlen && is_jmp(replacement[0]))
  358. recompute_jump(a, instr, replacement, insnbuf);
  359. if (a->instrlen > a->replacementlen) {
  360. add_nops(insnbuf + a->replacementlen,
  361. a->instrlen - a->replacementlen);
  362. insnbuf_sz += a->instrlen - a->replacementlen;
  363. }
  364. DUMP_BYTES(insnbuf, insnbuf_sz, "%p: final_insn: ", instr);
  365. text_poke_early(instr, insnbuf, insnbuf_sz);
  366. }
  367. }
  368. #ifdef CONFIG_SMP
  369. static void alternatives_smp_lock(const s32 *start, const s32 *end,
  370. u8 *text, u8 *text_end)
  371. {
  372. const s32 *poff;
  373. mutex_lock(&text_mutex);
  374. for (poff = start; poff < end; poff++) {
  375. u8 *ptr = (u8 *)poff + *poff;
  376. if (!*poff || ptr < text || ptr >= text_end)
  377. continue;
  378. /* turn DS segment override prefix into lock prefix */
  379. if (*ptr == 0x3e)
  380. text_poke(ptr, ((unsigned char []){0xf0}), 1);
  381. }
  382. mutex_unlock(&text_mutex);
  383. }
  384. static void alternatives_smp_unlock(const s32 *start, const s32 *end,
  385. u8 *text, u8 *text_end)
  386. {
  387. const s32 *poff;
  388. mutex_lock(&text_mutex);
  389. for (poff = start; poff < end; poff++) {
  390. u8 *ptr = (u8 *)poff + *poff;
  391. if (!*poff || ptr < text || ptr >= text_end)
  392. continue;
  393. /* turn lock prefix into DS segment override prefix */
  394. if (*ptr == 0xf0)
  395. text_poke(ptr, ((unsigned char []){0x3E}), 1);
  396. }
  397. mutex_unlock(&text_mutex);
  398. }
  399. struct smp_alt_module {
  400. /* what is this ??? */
  401. struct module *mod;
  402. char *name;
  403. /* ptrs to lock prefixes */
  404. const s32 *locks;
  405. const s32 *locks_end;
  406. /* .text segment, needed to avoid patching init code ;) */
  407. u8 *text;
  408. u8 *text_end;
  409. struct list_head next;
  410. };
  411. static LIST_HEAD(smp_alt_modules);
  412. static DEFINE_MUTEX(smp_alt);
  413. static bool uniproc_patched = false; /* protected by smp_alt */
  414. void __init_or_module alternatives_smp_module_add(struct module *mod,
  415. char *name,
  416. void *locks, void *locks_end,
  417. void *text, void *text_end)
  418. {
  419. struct smp_alt_module *smp;
  420. mutex_lock(&smp_alt);
  421. if (!uniproc_patched)
  422. goto unlock;
  423. if (num_possible_cpus() == 1)
  424. /* Don't bother remembering, we'll never have to undo it. */
  425. goto smp_unlock;
  426. smp = kzalloc(sizeof(*smp), GFP_KERNEL);
  427. if (NULL == smp)
  428. /* we'll run the (safe but slow) SMP code then ... */
  429. goto unlock;
  430. smp->mod = mod;
  431. smp->name = name;
  432. smp->locks = locks;
  433. smp->locks_end = locks_end;
  434. smp->text = text;
  435. smp->text_end = text_end;
  436. DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
  437. smp->locks, smp->locks_end,
  438. smp->text, smp->text_end, smp->name);
  439. list_add_tail(&smp->next, &smp_alt_modules);
  440. smp_unlock:
  441. alternatives_smp_unlock(locks, locks_end, text, text_end);
  442. unlock:
  443. mutex_unlock(&smp_alt);
  444. }
  445. void __init_or_module alternatives_smp_module_del(struct module *mod)
  446. {
  447. struct smp_alt_module *item;
  448. mutex_lock(&smp_alt);
  449. list_for_each_entry(item, &smp_alt_modules, next) {
  450. if (mod != item->mod)
  451. continue;
  452. list_del(&item->next);
  453. kfree(item);
  454. break;
  455. }
  456. mutex_unlock(&smp_alt);
  457. }
  458. void alternatives_enable_smp(void)
  459. {
  460. struct smp_alt_module *mod;
  461. /* Why bother if there are no other CPUs? */
  462. BUG_ON(num_possible_cpus() == 1);
  463. mutex_lock(&smp_alt);
  464. if (uniproc_patched) {
  465. pr_info("switching to SMP code\n");
  466. BUG_ON(num_online_cpus() != 1);
  467. clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
  468. clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
  469. list_for_each_entry(mod, &smp_alt_modules, next)
  470. alternatives_smp_lock(mod->locks, mod->locks_end,
  471. mod->text, mod->text_end);
  472. uniproc_patched = false;
  473. }
  474. mutex_unlock(&smp_alt);
  475. }
  476. /* Return 1 if the address range is reserved for smp-alternatives */
  477. int alternatives_text_reserved(void *start, void *end)
  478. {
  479. struct smp_alt_module *mod;
  480. const s32 *poff;
  481. u8 *text_start = start;
  482. u8 *text_end = end;
  483. list_for_each_entry(mod, &smp_alt_modules, next) {
  484. if (mod->text > text_end || mod->text_end < text_start)
  485. continue;
  486. for (poff = mod->locks; poff < mod->locks_end; poff++) {
  487. const u8 *ptr = (const u8 *)poff + *poff;
  488. if (text_start <= ptr && text_end > ptr)
  489. return 1;
  490. }
  491. }
  492. return 0;
  493. }
  494. #endif /* CONFIG_SMP */
  495. #ifdef CONFIG_PARAVIRT
  496. void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
  497. struct paravirt_patch_site *end)
  498. {
  499. struct paravirt_patch_site *p;
  500. char insnbuf[MAX_PATCH_LEN];
  501. for (p = start; p < end; p++) {
  502. unsigned int used;
  503. BUG_ON(p->len > MAX_PATCH_LEN);
  504. /* prep the buffer with the original instructions */
  505. memcpy(insnbuf, p->instr, p->len);
  506. used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
  507. (unsigned long)p->instr, p->len);
  508. BUG_ON(used > p->len);
  509. /* Pad the rest with nops */
  510. add_nops(insnbuf + used, p->len - used);
  511. text_poke_early(p->instr, insnbuf, p->len);
  512. }
  513. }
  514. extern struct paravirt_patch_site __start_parainstructions[],
  515. __stop_parainstructions[];
  516. #endif /* CONFIG_PARAVIRT */
  517. void __init alternative_instructions(void)
  518. {
  519. /* The patching is not fully atomic, so try to avoid local interruptions
  520. that might execute the to be patched code.
  521. Other CPUs are not running. */
  522. stop_nmi();
  523. /*
  524. * Don't stop machine check exceptions while patching.
  525. * MCEs only happen when something got corrupted and in this
  526. * case we must do something about the corruption.
  527. * Ignoring it is worse than a unlikely patching race.
  528. * Also machine checks tend to be broadcast and if one CPU
  529. * goes into machine check the others follow quickly, so we don't
  530. * expect a machine check to cause undue problems during to code
  531. * patching.
  532. */
  533. apply_alternatives(__alt_instructions, __alt_instructions_end);
  534. #ifdef CONFIG_SMP
  535. /* Patch to UP if other cpus not imminent. */
  536. if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
  537. uniproc_patched = true;
  538. alternatives_smp_module_add(NULL, "core kernel",
  539. __smp_locks, __smp_locks_end,
  540. _text, _etext);
  541. }
  542. if (!uniproc_patched || num_possible_cpus() == 1)
  543. free_init_pages("SMP alternatives",
  544. (unsigned long)__smp_locks,
  545. (unsigned long)__smp_locks_end);
  546. #endif
  547. apply_paravirt(__parainstructions, __parainstructions_end);
  548. restart_nmi();
  549. alternatives_patched = 1;
  550. }
  551. /**
  552. * text_poke_early - Update instructions on a live kernel at boot time
  553. * @addr: address to modify
  554. * @opcode: source of the copy
  555. * @len: length to copy
  556. *
  557. * When you use this code to patch more than one byte of an instruction
  558. * you need to make sure that other CPUs cannot execute this code in parallel.
  559. * Also no thread must be currently preempted in the middle of these
  560. * instructions. And on the local CPU you need to be protected again NMI or MCE
  561. * handlers seeing an inconsistent instruction while you patch.
  562. */
  563. void *__init_or_module text_poke_early(void *addr, const void *opcode,
  564. size_t len)
  565. {
  566. unsigned long flags;
  567. local_irq_save(flags);
  568. memcpy(addr, opcode, len);
  569. sync_core();
  570. local_irq_restore(flags);
  571. /* Could also do a CLFLUSH here to speed up CPU recovery; but
  572. that causes hangs on some VIA CPUs. */
  573. return addr;
  574. }
  575. /**
  576. * text_poke - Update instructions on a live kernel
  577. * @addr: address to modify
  578. * @opcode: source of the copy
  579. * @len: length to copy
  580. *
  581. * Only atomic text poke/set should be allowed when not doing early patching.
  582. * It means the size must be writable atomically and the address must be aligned
  583. * in a way that permits an atomic write. It also makes sure we fit on a single
  584. * page.
  585. *
  586. * Note: Must be called under text_mutex.
  587. */
  588. void *text_poke(void *addr, const void *opcode, size_t len)
  589. {
  590. unsigned long flags;
  591. char *vaddr;
  592. struct page *pages[2];
  593. int i;
  594. if (!core_kernel_text((unsigned long)addr)) {
  595. pages[0] = vmalloc_to_page(addr);
  596. pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
  597. } else {
  598. pages[0] = virt_to_page(addr);
  599. WARN_ON(!PageReserved(pages[0]));
  600. pages[1] = virt_to_page(addr + PAGE_SIZE);
  601. }
  602. BUG_ON(!pages[0]);
  603. local_irq_save(flags);
  604. set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
  605. if (pages[1])
  606. set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
  607. vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
  608. memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
  609. clear_fixmap(FIX_TEXT_POKE0);
  610. if (pages[1])
  611. clear_fixmap(FIX_TEXT_POKE1);
  612. local_flush_tlb();
  613. sync_core();
  614. /* Could also do a CLFLUSH here to speed up CPU recovery; but
  615. that causes hangs on some VIA CPUs. */
  616. for (i = 0; i < len; i++)
  617. BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
  618. local_irq_restore(flags);
  619. return addr;
  620. }
  621. static void do_sync_core(void *info)
  622. {
  623. sync_core();
  624. }
  625. static bool bp_patching_in_progress;
  626. static void *bp_int3_handler, *bp_int3_addr;
  627. int poke_int3_handler(struct pt_regs *regs)
  628. {
  629. /* bp_patching_in_progress */
  630. smp_rmb();
  631. if (likely(!bp_patching_in_progress))
  632. return 0;
  633. if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
  634. return 0;
  635. /* set up the specified breakpoint handler */
  636. regs->ip = (unsigned long) bp_int3_handler;
  637. return 1;
  638. }
  639. /**
  640. * text_poke_bp() -- update instructions on live kernel on SMP
  641. * @addr: address to patch
  642. * @opcode: opcode of new instruction
  643. * @len: length to copy
  644. * @handler: address to jump to when the temporary breakpoint is hit
  645. *
  646. * Modify multi-byte instruction by using int3 breakpoint on SMP.
  647. * We completely avoid stop_machine() here, and achieve the
  648. * synchronization using int3 breakpoint.
  649. *
  650. * The way it is done:
  651. * - add a int3 trap to the address that will be patched
  652. * - sync cores
  653. * - update all but the first byte of the patched range
  654. * - sync cores
  655. * - replace the first byte (int3) by the first byte of
  656. * replacing opcode
  657. * - sync cores
  658. *
  659. * Note: must be called under text_mutex.
  660. */
  661. void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
  662. {
  663. unsigned char int3 = 0xcc;
  664. bp_int3_handler = handler;
  665. bp_int3_addr = (u8 *)addr + sizeof(int3);
  666. bp_patching_in_progress = true;
  667. /*
  668. * Corresponding read barrier in int3 notifier for
  669. * making sure the in_progress flags is correctly ordered wrt.
  670. * patching
  671. */
  672. smp_wmb();
  673. text_poke(addr, &int3, sizeof(int3));
  674. on_each_cpu(do_sync_core, NULL, 1);
  675. if (len - sizeof(int3) > 0) {
  676. /* patch all but the first byte */
  677. text_poke((char *)addr + sizeof(int3),
  678. (const char *) opcode + sizeof(int3),
  679. len - sizeof(int3));
  680. /*
  681. * According to Intel, this core syncing is very likely
  682. * not necessary and we'd be safe even without it. But
  683. * better safe than sorry (plus there's not only Intel).
  684. */
  685. on_each_cpu(do_sync_core, NULL, 1);
  686. }
  687. /* patch the first byte */
  688. text_poke(addr, opcode, sizeof(int3));
  689. on_each_cpu(do_sync_core, NULL, 1);
  690. bp_patching_in_progress = false;
  691. smp_wmb();
  692. return addr;
  693. }