time.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <linux/clk-provider.h>
  57. #include <linux/suspend.h>
  58. #include <linux/rtc.h>
  59. #include <asm/trace.h>
  60. #include <asm/io.h>
  61. #include <asm/processor.h>
  62. #include <asm/nvram.h>
  63. #include <asm/cache.h>
  64. #include <asm/machdep.h>
  65. #include <asm/uaccess.h>
  66. #include <asm/time.h>
  67. #include <asm/prom.h>
  68. #include <asm/irq.h>
  69. #include <asm/div64.h>
  70. #include <asm/smp.h>
  71. #include <asm/vdso_datapage.h>
  72. #include <asm/firmware.h>
  73. #include <asm/cputime.h>
  74. #include <asm/asm-prototypes.h>
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/timekeeper_internal.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .read = rtc_read,
  85. };
  86. static cycle_t timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  95. u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  96. static int decrementer_set_next_event(unsigned long evt,
  97. struct clock_event_device *dev);
  98. static int decrementer_shutdown(struct clock_event_device *evt);
  99. struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .irq = 0,
  103. .set_next_event = decrementer_set_next_event,
  104. .set_state_shutdown = decrementer_shutdown,
  105. .tick_resume = decrementer_shutdown,
  106. .features = CLOCK_EVT_FEAT_ONESHOT |
  107. CLOCK_EVT_FEAT_C3STOP,
  108. };
  109. EXPORT_SYMBOL(decrementer_clockevent);
  110. DEFINE_PER_CPU(u64, decrementers_next_tb);
  111. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  112. #define XSEC_PER_SEC (1024*1024)
  113. #ifdef CONFIG_PPC64
  114. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  115. #else
  116. /* compute ((xsec << 12) * max) >> 32 */
  117. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  118. #endif
  119. unsigned long tb_ticks_per_jiffy;
  120. unsigned long tb_ticks_per_usec = 100; /* sane default */
  121. EXPORT_SYMBOL(tb_ticks_per_usec);
  122. unsigned long tb_ticks_per_sec;
  123. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  124. DEFINE_SPINLOCK(rtc_lock);
  125. EXPORT_SYMBOL_GPL(rtc_lock);
  126. static u64 tb_to_ns_scale __read_mostly;
  127. static unsigned tb_to_ns_shift __read_mostly;
  128. static u64 boot_tb __read_mostly;
  129. extern struct timezone sys_tz;
  130. static long timezone_offset;
  131. unsigned long ppc_proc_freq;
  132. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  133. unsigned long ppc_tb_freq;
  134. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  135. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  136. /*
  137. * Factors for converting from cputime_t (timebase ticks) to
  138. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  139. * These are all stored as 0.64 fixed-point binary fractions.
  140. */
  141. u64 __cputime_jiffies_factor;
  142. EXPORT_SYMBOL(__cputime_jiffies_factor);
  143. u64 __cputime_usec_factor;
  144. EXPORT_SYMBOL(__cputime_usec_factor);
  145. u64 __cputime_sec_factor;
  146. EXPORT_SYMBOL(__cputime_sec_factor);
  147. u64 __cputime_clockt_factor;
  148. EXPORT_SYMBOL(__cputime_clockt_factor);
  149. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  150. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  151. cputime_t cputime_one_jiffy;
  152. #ifdef CONFIG_PPC_SPLPAR
  153. void (*dtl_consumer)(struct dtl_entry *, u64);
  154. #endif
  155. #ifdef CONFIG_PPC64
  156. #define get_accounting(tsk) (&get_paca()->accounting)
  157. #else
  158. #define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
  159. #endif
  160. static void calc_cputime_factors(void)
  161. {
  162. struct div_result res;
  163. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  164. __cputime_jiffies_factor = res.result_low;
  165. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  166. __cputime_usec_factor = res.result_low;
  167. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  168. __cputime_sec_factor = res.result_low;
  169. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  170. __cputime_clockt_factor = res.result_low;
  171. }
  172. /*
  173. * Read the SPURR on systems that have it, otherwise the PURR,
  174. * or if that doesn't exist return the timebase value passed in.
  175. */
  176. static unsigned long read_spurr(unsigned long tb)
  177. {
  178. if (cpu_has_feature(CPU_FTR_SPURR))
  179. return mfspr(SPRN_SPURR);
  180. if (cpu_has_feature(CPU_FTR_PURR))
  181. return mfspr(SPRN_PURR);
  182. return tb;
  183. }
  184. #ifdef CONFIG_PPC_SPLPAR
  185. /*
  186. * Scan the dispatch trace log and count up the stolen time.
  187. * Should be called with interrupts disabled.
  188. */
  189. static u64 scan_dispatch_log(u64 stop_tb)
  190. {
  191. u64 i = local_paca->dtl_ridx;
  192. struct dtl_entry *dtl = local_paca->dtl_curr;
  193. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  194. struct lppaca *vpa = local_paca->lppaca_ptr;
  195. u64 tb_delta;
  196. u64 stolen = 0;
  197. u64 dtb;
  198. if (!dtl)
  199. return 0;
  200. if (i == be64_to_cpu(vpa->dtl_idx))
  201. return 0;
  202. while (i < be64_to_cpu(vpa->dtl_idx)) {
  203. dtb = be64_to_cpu(dtl->timebase);
  204. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  205. be32_to_cpu(dtl->ready_to_enqueue_time);
  206. barrier();
  207. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  208. /* buffer has overflowed */
  209. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  210. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  211. continue;
  212. }
  213. if (dtb > stop_tb)
  214. break;
  215. if (dtl_consumer)
  216. dtl_consumer(dtl, i);
  217. stolen += tb_delta;
  218. ++i;
  219. ++dtl;
  220. if (dtl == dtl_end)
  221. dtl = local_paca->dispatch_log;
  222. }
  223. local_paca->dtl_ridx = i;
  224. local_paca->dtl_curr = dtl;
  225. return stolen;
  226. }
  227. /*
  228. * Accumulate stolen time by scanning the dispatch trace log.
  229. * Called on entry from user mode.
  230. */
  231. void accumulate_stolen_time(void)
  232. {
  233. u64 sst, ust;
  234. u8 save_soft_enabled = local_paca->soft_enabled;
  235. struct cpu_accounting_data *acct = &local_paca->accounting;
  236. /* We are called early in the exception entry, before
  237. * soft/hard_enabled are sync'ed to the expected state
  238. * for the exception. We are hard disabled but the PACA
  239. * needs to reflect that so various debug stuff doesn't
  240. * complain
  241. */
  242. local_paca->soft_enabled = 0;
  243. sst = scan_dispatch_log(acct->starttime_user);
  244. ust = scan_dispatch_log(acct->starttime);
  245. acct->system_time -= sst;
  246. acct->user_time -= ust;
  247. local_paca->stolen_time += ust + sst;
  248. local_paca->soft_enabled = save_soft_enabled;
  249. }
  250. static inline u64 calculate_stolen_time(u64 stop_tb)
  251. {
  252. u64 stolen = 0;
  253. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
  254. stolen = scan_dispatch_log(stop_tb);
  255. get_paca()->accounting.system_time -= stolen;
  256. }
  257. stolen += get_paca()->stolen_time;
  258. get_paca()->stolen_time = 0;
  259. return stolen;
  260. }
  261. #else /* CONFIG_PPC_SPLPAR */
  262. static inline u64 calculate_stolen_time(u64 stop_tb)
  263. {
  264. return 0;
  265. }
  266. #endif /* CONFIG_PPC_SPLPAR */
  267. /*
  268. * Account time for a transition between system, hard irq
  269. * or soft irq state.
  270. */
  271. static unsigned long vtime_delta(struct task_struct *tsk,
  272. unsigned long *sys_scaled,
  273. unsigned long *stolen)
  274. {
  275. unsigned long now, nowscaled, deltascaled;
  276. unsigned long udelta, delta, user_scaled;
  277. struct cpu_accounting_data *acct = get_accounting(tsk);
  278. WARN_ON_ONCE(!irqs_disabled());
  279. now = mftb();
  280. nowscaled = read_spurr(now);
  281. acct->system_time += now - acct->starttime;
  282. acct->starttime = now;
  283. deltascaled = nowscaled - acct->startspurr;
  284. acct->startspurr = nowscaled;
  285. *stolen = calculate_stolen_time(now);
  286. delta = acct->system_time;
  287. acct->system_time = 0;
  288. udelta = acct->user_time - acct->utime_sspurr;
  289. acct->utime_sspurr = acct->user_time;
  290. /*
  291. * Because we don't read the SPURR on every kernel entry/exit,
  292. * deltascaled includes both user and system SPURR ticks.
  293. * Apportion these ticks to system SPURR ticks and user
  294. * SPURR ticks in the same ratio as the system time (delta)
  295. * and user time (udelta) values obtained from the timebase
  296. * over the same interval. The system ticks get accounted here;
  297. * the user ticks get saved up in paca->user_time_scaled to be
  298. * used by account_process_tick.
  299. */
  300. *sys_scaled = delta;
  301. user_scaled = udelta;
  302. if (deltascaled != delta + udelta) {
  303. if (udelta) {
  304. *sys_scaled = deltascaled * delta / (delta + udelta);
  305. user_scaled = deltascaled - *sys_scaled;
  306. } else {
  307. *sys_scaled = deltascaled;
  308. }
  309. }
  310. acct->user_time_scaled += user_scaled;
  311. return delta;
  312. }
  313. void vtime_account_system(struct task_struct *tsk)
  314. {
  315. unsigned long delta, sys_scaled, stolen;
  316. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  317. account_system_time(tsk, 0, delta, sys_scaled);
  318. if (stolen)
  319. account_steal_time(stolen);
  320. }
  321. EXPORT_SYMBOL_GPL(vtime_account_system);
  322. void vtime_account_idle(struct task_struct *tsk)
  323. {
  324. unsigned long delta, sys_scaled, stolen;
  325. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  326. account_idle_time(delta + stolen);
  327. }
  328. /*
  329. * Transfer the user time accumulated in the paca
  330. * by the exception entry and exit code to the generic
  331. * process user time records.
  332. * Must be called with interrupts disabled.
  333. * Assumes that vtime_account_system/idle() has been called
  334. * recently (i.e. since the last entry from usermode) so that
  335. * get_paca()->user_time_scaled is up to date.
  336. */
  337. void vtime_account_user(struct task_struct *tsk)
  338. {
  339. cputime_t utime, utimescaled;
  340. struct cpu_accounting_data *acct = get_accounting(tsk);
  341. utime = acct->user_time;
  342. utimescaled = acct->user_time_scaled;
  343. acct->user_time = 0;
  344. acct->user_time_scaled = 0;
  345. acct->utime_sspurr = 0;
  346. account_user_time(tsk, utime, utimescaled);
  347. }
  348. #ifdef CONFIG_PPC32
  349. /*
  350. * Called from the context switch with interrupts disabled, to charge all
  351. * accumulated times to the current process, and to prepare accounting on
  352. * the next process.
  353. */
  354. void arch_vtime_task_switch(struct task_struct *prev)
  355. {
  356. struct cpu_accounting_data *acct = get_accounting(current);
  357. acct->starttime = get_accounting(prev)->starttime;
  358. acct->startspurr = get_accounting(prev)->startspurr;
  359. acct->system_time = 0;
  360. acct->user_time = 0;
  361. }
  362. #endif /* CONFIG_PPC32 */
  363. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  364. #define calc_cputime_factors()
  365. #endif
  366. void __delay(unsigned long loops)
  367. {
  368. unsigned long start;
  369. int diff;
  370. if (__USE_RTC()) {
  371. start = get_rtcl();
  372. do {
  373. /* the RTCL register wraps at 1000000000 */
  374. diff = get_rtcl() - start;
  375. if (diff < 0)
  376. diff += 1000000000;
  377. } while (diff < loops);
  378. } else {
  379. start = get_tbl();
  380. while (get_tbl() - start < loops)
  381. HMT_low();
  382. HMT_medium();
  383. }
  384. }
  385. EXPORT_SYMBOL(__delay);
  386. void udelay(unsigned long usecs)
  387. {
  388. __delay(tb_ticks_per_usec * usecs);
  389. }
  390. EXPORT_SYMBOL(udelay);
  391. #ifdef CONFIG_SMP
  392. unsigned long profile_pc(struct pt_regs *regs)
  393. {
  394. unsigned long pc = instruction_pointer(regs);
  395. if (in_lock_functions(pc))
  396. return regs->link;
  397. return pc;
  398. }
  399. EXPORT_SYMBOL(profile_pc);
  400. #endif
  401. #ifdef CONFIG_IRQ_WORK
  402. /*
  403. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  404. */
  405. #ifdef CONFIG_PPC64
  406. static inline unsigned long test_irq_work_pending(void)
  407. {
  408. unsigned long x;
  409. asm volatile("lbz %0,%1(13)"
  410. : "=r" (x)
  411. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  412. return x;
  413. }
  414. static inline void set_irq_work_pending_flag(void)
  415. {
  416. asm volatile("stb %0,%1(13)" : :
  417. "r" (1),
  418. "i" (offsetof(struct paca_struct, irq_work_pending)));
  419. }
  420. static inline void clear_irq_work_pending(void)
  421. {
  422. asm volatile("stb %0,%1(13)" : :
  423. "r" (0),
  424. "i" (offsetof(struct paca_struct, irq_work_pending)));
  425. }
  426. #else /* 32-bit */
  427. DEFINE_PER_CPU(u8, irq_work_pending);
  428. #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
  429. #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
  430. #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
  431. #endif /* 32 vs 64 bit */
  432. void arch_irq_work_raise(void)
  433. {
  434. preempt_disable();
  435. set_irq_work_pending_flag();
  436. set_dec(1);
  437. preempt_enable();
  438. }
  439. #else /* CONFIG_IRQ_WORK */
  440. #define test_irq_work_pending() 0
  441. #define clear_irq_work_pending()
  442. #endif /* CONFIG_IRQ_WORK */
  443. static void __timer_interrupt(void)
  444. {
  445. struct pt_regs *regs = get_irq_regs();
  446. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  447. struct clock_event_device *evt = this_cpu_ptr(&decrementers);
  448. u64 now;
  449. trace_timer_interrupt_entry(regs);
  450. if (test_irq_work_pending()) {
  451. clear_irq_work_pending();
  452. irq_work_run();
  453. }
  454. now = get_tb_or_rtc();
  455. if (now >= *next_tb) {
  456. *next_tb = ~(u64)0;
  457. if (evt->event_handler)
  458. evt->event_handler(evt);
  459. __this_cpu_inc(irq_stat.timer_irqs_event);
  460. } else {
  461. now = *next_tb - now;
  462. if (now <= decrementer_max)
  463. set_dec(now);
  464. /* We may have raced with new irq work */
  465. if (test_irq_work_pending())
  466. set_dec(1);
  467. __this_cpu_inc(irq_stat.timer_irqs_others);
  468. }
  469. #ifdef CONFIG_PPC64
  470. /* collect purr register values often, for accurate calculations */
  471. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  472. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  473. cu->current_tb = mfspr(SPRN_PURR);
  474. }
  475. #endif
  476. trace_timer_interrupt_exit(regs);
  477. }
  478. /*
  479. * timer_interrupt - gets called when the decrementer overflows,
  480. * with interrupts disabled.
  481. */
  482. void timer_interrupt(struct pt_regs * regs)
  483. {
  484. struct pt_regs *old_regs;
  485. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  486. /* Ensure a positive value is written to the decrementer, or else
  487. * some CPUs will continue to take decrementer exceptions.
  488. */
  489. set_dec(decrementer_max);
  490. /* Some implementations of hotplug will get timer interrupts while
  491. * offline, just ignore these and we also need to set
  492. * decrementers_next_tb as MAX to make sure __check_irq_replay
  493. * don't replay timer interrupt when return, otherwise we'll trap
  494. * here infinitely :(
  495. */
  496. if (!cpu_online(smp_processor_id())) {
  497. *next_tb = ~(u64)0;
  498. return;
  499. }
  500. /* Conditionally hard-enable interrupts now that the DEC has been
  501. * bumped to its maximum value
  502. */
  503. may_hard_irq_enable();
  504. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  505. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  506. do_IRQ(regs);
  507. #endif
  508. old_regs = set_irq_regs(regs);
  509. irq_enter();
  510. __timer_interrupt();
  511. irq_exit();
  512. set_irq_regs(old_regs);
  513. }
  514. EXPORT_SYMBOL(timer_interrupt);
  515. /*
  516. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  517. * left pending on exit from a KVM guest. We don't need to do anything
  518. * to clear them, as they are edge-triggered.
  519. */
  520. void hdec_interrupt(struct pt_regs *regs)
  521. {
  522. }
  523. #ifdef CONFIG_SUSPEND
  524. static void generic_suspend_disable_irqs(void)
  525. {
  526. /* Disable the decrementer, so that it doesn't interfere
  527. * with suspending.
  528. */
  529. set_dec(decrementer_max);
  530. local_irq_disable();
  531. set_dec(decrementer_max);
  532. }
  533. static void generic_suspend_enable_irqs(void)
  534. {
  535. local_irq_enable();
  536. }
  537. /* Overrides the weak version in kernel/power/main.c */
  538. void arch_suspend_disable_irqs(void)
  539. {
  540. if (ppc_md.suspend_disable_irqs)
  541. ppc_md.suspend_disable_irqs();
  542. generic_suspend_disable_irqs();
  543. }
  544. /* Overrides the weak version in kernel/power/main.c */
  545. void arch_suspend_enable_irqs(void)
  546. {
  547. generic_suspend_enable_irqs();
  548. if (ppc_md.suspend_enable_irqs)
  549. ppc_md.suspend_enable_irqs();
  550. }
  551. #endif
  552. unsigned long long tb_to_ns(unsigned long long ticks)
  553. {
  554. return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
  555. }
  556. EXPORT_SYMBOL_GPL(tb_to_ns);
  557. /*
  558. * Scheduler clock - returns current time in nanosec units.
  559. *
  560. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  561. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  562. * are 64-bit unsigned numbers.
  563. */
  564. unsigned long long sched_clock(void)
  565. {
  566. if (__USE_RTC())
  567. return get_rtc();
  568. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  569. }
  570. #ifdef CONFIG_PPC_PSERIES
  571. /*
  572. * Running clock - attempts to give a view of time passing for a virtualised
  573. * kernels.
  574. * Uses the VTB register if available otherwise a next best guess.
  575. */
  576. unsigned long long running_clock(void)
  577. {
  578. /*
  579. * Don't read the VTB as a host since KVM does not switch in host
  580. * timebase into the VTB when it takes a guest off the CPU, reading the
  581. * VTB would result in reading 'last switched out' guest VTB.
  582. *
  583. * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
  584. * would be unsafe to rely only on the #ifdef above.
  585. */
  586. if (firmware_has_feature(FW_FEATURE_LPAR) &&
  587. cpu_has_feature(CPU_FTR_ARCH_207S))
  588. return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  589. /*
  590. * This is a next best approximation without a VTB.
  591. * On a host which is running bare metal there should never be any stolen
  592. * time and on a host which doesn't do any virtualisation TB *should* equal
  593. * VTB so it makes no difference anyway.
  594. */
  595. return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
  596. }
  597. #endif
  598. static int __init get_freq(char *name, int cells, unsigned long *val)
  599. {
  600. struct device_node *cpu;
  601. const __be32 *fp;
  602. int found = 0;
  603. /* The cpu node should have timebase and clock frequency properties */
  604. cpu = of_find_node_by_type(NULL, "cpu");
  605. if (cpu) {
  606. fp = of_get_property(cpu, name, NULL);
  607. if (fp) {
  608. found = 1;
  609. *val = of_read_ulong(fp, cells);
  610. }
  611. of_node_put(cpu);
  612. }
  613. return found;
  614. }
  615. static void start_cpu_decrementer(void)
  616. {
  617. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  618. unsigned int tcr;
  619. /* Clear any pending timer interrupts */
  620. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  621. tcr = mfspr(SPRN_TCR);
  622. /*
  623. * The watchdog may have already been enabled by u-boot. So leave
  624. * TRC[WP] (Watchdog Period) alone.
  625. */
  626. tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
  627. tcr |= TCR_DIE; /* Enable decrementer */
  628. mtspr(SPRN_TCR, tcr);
  629. #endif
  630. }
  631. void __init generic_calibrate_decr(void)
  632. {
  633. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  634. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  635. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  636. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  637. "(not found)\n");
  638. }
  639. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  640. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  641. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  642. printk(KERN_ERR "WARNING: Estimating processor frequency "
  643. "(not found)\n");
  644. }
  645. }
  646. int update_persistent_clock(struct timespec now)
  647. {
  648. struct rtc_time tm;
  649. if (!ppc_md.set_rtc_time)
  650. return -ENODEV;
  651. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  652. tm.tm_year -= 1900;
  653. tm.tm_mon -= 1;
  654. return ppc_md.set_rtc_time(&tm);
  655. }
  656. static void __read_persistent_clock(struct timespec *ts)
  657. {
  658. struct rtc_time tm;
  659. static int first = 1;
  660. ts->tv_nsec = 0;
  661. /* XXX this is a litle fragile but will work okay in the short term */
  662. if (first) {
  663. first = 0;
  664. if (ppc_md.time_init)
  665. timezone_offset = ppc_md.time_init();
  666. /* get_boot_time() isn't guaranteed to be safe to call late */
  667. if (ppc_md.get_boot_time) {
  668. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  669. return;
  670. }
  671. }
  672. if (!ppc_md.get_rtc_time) {
  673. ts->tv_sec = 0;
  674. return;
  675. }
  676. ppc_md.get_rtc_time(&tm);
  677. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  678. tm.tm_hour, tm.tm_min, tm.tm_sec);
  679. }
  680. void read_persistent_clock(struct timespec *ts)
  681. {
  682. __read_persistent_clock(ts);
  683. /* Sanitize it in case real time clock is set below EPOCH */
  684. if (ts->tv_sec < 0) {
  685. ts->tv_sec = 0;
  686. ts->tv_nsec = 0;
  687. }
  688. }
  689. /* clocksource code */
  690. static cycle_t rtc_read(struct clocksource *cs)
  691. {
  692. return (cycle_t)get_rtc();
  693. }
  694. static cycle_t timebase_read(struct clocksource *cs)
  695. {
  696. return (cycle_t)get_tb();
  697. }
  698. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  699. struct clocksource *clock, u32 mult, cycle_t cycle_last)
  700. {
  701. u64 new_tb_to_xs, new_stamp_xsec;
  702. u32 frac_sec;
  703. if (clock != &clocksource_timebase)
  704. return;
  705. /* Make userspace gettimeofday spin until we're done. */
  706. ++vdso_data->tb_update_count;
  707. smp_mb();
  708. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  709. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  710. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  711. do_div(new_stamp_xsec, 1000000000);
  712. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  713. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  714. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  715. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  716. /*
  717. * tb_update_count is used to allow the userspace gettimeofday code
  718. * to assure itself that it sees a consistent view of the tb_to_xs and
  719. * stamp_xsec variables. It reads the tb_update_count, then reads
  720. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  721. * the two values of tb_update_count match and are even then the
  722. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  723. * loops back and reads them again until this criteria is met.
  724. * We expect the caller to have done the first increment of
  725. * vdso_data->tb_update_count already.
  726. */
  727. vdso_data->tb_orig_stamp = cycle_last;
  728. vdso_data->stamp_xsec = new_stamp_xsec;
  729. vdso_data->tb_to_xs = new_tb_to_xs;
  730. vdso_data->wtom_clock_sec = wtm->tv_sec;
  731. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  732. vdso_data->stamp_xtime = *wall_time;
  733. vdso_data->stamp_sec_fraction = frac_sec;
  734. smp_wmb();
  735. ++(vdso_data->tb_update_count);
  736. }
  737. void update_vsyscall_tz(void)
  738. {
  739. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  740. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  741. }
  742. static void __init clocksource_init(void)
  743. {
  744. struct clocksource *clock;
  745. if (__USE_RTC())
  746. clock = &clocksource_rtc;
  747. else
  748. clock = &clocksource_timebase;
  749. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  750. printk(KERN_ERR "clocksource: %s is already registered\n",
  751. clock->name);
  752. return;
  753. }
  754. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  755. clock->name, clock->mult, clock->shift);
  756. }
  757. static int decrementer_set_next_event(unsigned long evt,
  758. struct clock_event_device *dev)
  759. {
  760. __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
  761. set_dec(evt);
  762. /* We may have raced with new irq work */
  763. if (test_irq_work_pending())
  764. set_dec(1);
  765. return 0;
  766. }
  767. static int decrementer_shutdown(struct clock_event_device *dev)
  768. {
  769. decrementer_set_next_event(decrementer_max, dev);
  770. return 0;
  771. }
  772. /* Interrupt handler for the timer broadcast IPI */
  773. void tick_broadcast_ipi_handler(void)
  774. {
  775. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  776. *next_tb = get_tb_or_rtc();
  777. __timer_interrupt();
  778. }
  779. static void register_decrementer_clockevent(int cpu)
  780. {
  781. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  782. *dec = decrementer_clockevent;
  783. dec->cpumask = cpumask_of(cpu);
  784. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  785. dec->name, dec->mult, dec->shift, cpu);
  786. clockevents_register_device(dec);
  787. }
  788. static void enable_large_decrementer(void)
  789. {
  790. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  791. return;
  792. if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
  793. return;
  794. /*
  795. * If we're running as the hypervisor we need to enable the LD manually
  796. * otherwise firmware should have done it for us.
  797. */
  798. if (cpu_has_feature(CPU_FTR_HVMODE))
  799. mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
  800. }
  801. static void __init set_decrementer_max(void)
  802. {
  803. struct device_node *cpu;
  804. u32 bits = 32;
  805. /* Prior to ISAv3 the decrementer is always 32 bit */
  806. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  807. return;
  808. cpu = of_find_node_by_type(NULL, "cpu");
  809. if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
  810. if (bits > 64 || bits < 32) {
  811. pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
  812. bits = 32;
  813. }
  814. /* calculate the signed maximum given this many bits */
  815. decrementer_max = (1ul << (bits - 1)) - 1;
  816. }
  817. of_node_put(cpu);
  818. pr_info("time_init: %u bit decrementer (max: %llx)\n",
  819. bits, decrementer_max);
  820. }
  821. static void __init init_decrementer_clockevent(void)
  822. {
  823. int cpu = smp_processor_id();
  824. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  825. decrementer_clockevent.max_delta_ns =
  826. clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
  827. decrementer_clockevent.min_delta_ns =
  828. clockevent_delta2ns(2, &decrementer_clockevent);
  829. register_decrementer_clockevent(cpu);
  830. }
  831. void secondary_cpu_time_init(void)
  832. {
  833. /* Enable and test the large decrementer for this cpu */
  834. enable_large_decrementer();
  835. /* Start the decrementer on CPUs that have manual control
  836. * such as BookE
  837. */
  838. start_cpu_decrementer();
  839. /* FIME: Should make unrelatred change to move snapshot_timebase
  840. * call here ! */
  841. register_decrementer_clockevent(smp_processor_id());
  842. }
  843. /* This function is only called on the boot processor */
  844. void __init time_init(void)
  845. {
  846. struct div_result res;
  847. u64 scale;
  848. unsigned shift;
  849. if (__USE_RTC()) {
  850. /* 601 processor: dec counts down by 128 every 128ns */
  851. ppc_tb_freq = 1000000000;
  852. } else {
  853. /* Normal PowerPC with timebase register */
  854. ppc_md.calibrate_decr();
  855. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  856. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  857. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  858. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  859. }
  860. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  861. tb_ticks_per_sec = ppc_tb_freq;
  862. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  863. calc_cputime_factors();
  864. setup_cputime_one_jiffy();
  865. /*
  866. * Compute scale factor for sched_clock.
  867. * The calibrate_decr() function has set tb_ticks_per_sec,
  868. * which is the timebase frequency.
  869. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  870. * the 128-bit result as a 64.64 fixed-point number.
  871. * We then shift that number right until it is less than 1.0,
  872. * giving us the scale factor and shift count to use in
  873. * sched_clock().
  874. */
  875. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  876. scale = res.result_low;
  877. for (shift = 0; res.result_high != 0; ++shift) {
  878. scale = (scale >> 1) | (res.result_high << 63);
  879. res.result_high >>= 1;
  880. }
  881. tb_to_ns_scale = scale;
  882. tb_to_ns_shift = shift;
  883. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  884. boot_tb = get_tb_or_rtc();
  885. /* If platform provided a timezone (pmac), we correct the time */
  886. if (timezone_offset) {
  887. sys_tz.tz_minuteswest = -timezone_offset / 60;
  888. sys_tz.tz_dsttime = 0;
  889. }
  890. vdso_data->tb_update_count = 0;
  891. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  892. /* initialise and enable the large decrementer (if we have one) */
  893. set_decrementer_max();
  894. enable_large_decrementer();
  895. /* Start the decrementer on CPUs that have manual control
  896. * such as BookE
  897. */
  898. start_cpu_decrementer();
  899. /* Register the clocksource */
  900. clocksource_init();
  901. init_decrementer_clockevent();
  902. tick_setup_hrtimer_broadcast();
  903. #ifdef CONFIG_COMMON_CLK
  904. of_clk_init(NULL);
  905. #endif
  906. }
  907. #define FEBRUARY 2
  908. #define STARTOFTIME 1970
  909. #define SECDAY 86400L
  910. #define SECYR (SECDAY * 365)
  911. #define leapyear(year) ((year) % 4 == 0 && \
  912. ((year) % 100 != 0 || (year) % 400 == 0))
  913. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  914. #define days_in_month(a) (month_days[(a) - 1])
  915. static int month_days[12] = {
  916. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  917. };
  918. void to_tm(int tim, struct rtc_time * tm)
  919. {
  920. register int i;
  921. register long hms, day;
  922. day = tim / SECDAY;
  923. hms = tim % SECDAY;
  924. /* Hours, minutes, seconds are easy */
  925. tm->tm_hour = hms / 3600;
  926. tm->tm_min = (hms % 3600) / 60;
  927. tm->tm_sec = (hms % 3600) % 60;
  928. /* Number of years in days */
  929. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  930. day -= days_in_year(i);
  931. tm->tm_year = i;
  932. /* Number of months in days left */
  933. if (leapyear(tm->tm_year))
  934. days_in_month(FEBRUARY) = 29;
  935. for (i = 1; day >= days_in_month(i); i++)
  936. day -= days_in_month(i);
  937. days_in_month(FEBRUARY) = 28;
  938. tm->tm_mon = i;
  939. /* Days are what is left over (+1) from all that. */
  940. tm->tm_mday = day + 1;
  941. /*
  942. * No-one uses the day of the week.
  943. */
  944. tm->tm_wday = -1;
  945. }
  946. EXPORT_SYMBOL(to_tm);
  947. /*
  948. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  949. * result.
  950. */
  951. void div128_by_32(u64 dividend_high, u64 dividend_low,
  952. unsigned divisor, struct div_result *dr)
  953. {
  954. unsigned long a, b, c, d;
  955. unsigned long w, x, y, z;
  956. u64 ra, rb, rc;
  957. a = dividend_high >> 32;
  958. b = dividend_high & 0xffffffff;
  959. c = dividend_low >> 32;
  960. d = dividend_low & 0xffffffff;
  961. w = a / divisor;
  962. ra = ((u64)(a - (w * divisor)) << 32) + b;
  963. rb = ((u64) do_div(ra, divisor) << 32) + c;
  964. x = ra;
  965. rc = ((u64) do_div(rb, divisor) << 32) + d;
  966. y = rb;
  967. do_div(rc, divisor);
  968. z = rc;
  969. dr->result_high = ((u64)w << 32) + x;
  970. dr->result_low = ((u64)y << 32) + z;
  971. }
  972. /* We don't need to calibrate delay, we use the CPU timebase for that */
  973. void calibrate_delay(void)
  974. {
  975. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  976. * as the number of __delay(1) in a jiffy, so make it so
  977. */
  978. loops_per_jiffy = tb_ticks_per_jiffy;
  979. }
  980. #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
  981. static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
  982. {
  983. ppc_md.get_rtc_time(tm);
  984. return rtc_valid_tm(tm);
  985. }
  986. static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
  987. {
  988. if (!ppc_md.set_rtc_time)
  989. return -EOPNOTSUPP;
  990. if (ppc_md.set_rtc_time(tm) < 0)
  991. return -EOPNOTSUPP;
  992. return 0;
  993. }
  994. static const struct rtc_class_ops rtc_generic_ops = {
  995. .read_time = rtc_generic_get_time,
  996. .set_time = rtc_generic_set_time,
  997. };
  998. static int __init rtc_init(void)
  999. {
  1000. struct platform_device *pdev;
  1001. if (!ppc_md.get_rtc_time)
  1002. return -ENODEV;
  1003. pdev = platform_device_register_data(NULL, "rtc-generic", -1,
  1004. &rtc_generic_ops,
  1005. sizeof(rtc_generic_ops));
  1006. return PTR_ERR_OR_ZERO(pdev);
  1007. }
  1008. device_initcall(rtc_init);
  1009. #endif