crash.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*
  2. * Architecture specific (PPC64) functions for kexec based crash dumps.
  3. *
  4. * Copyright (C) 2005, IBM Corp.
  5. *
  6. * Created by: Haren Myneni
  7. *
  8. * This source code is licensed under the GNU General Public License,
  9. * Version 2. See the file COPYING for more details.
  10. *
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/smp.h>
  14. #include <linux/reboot.h>
  15. #include <linux/kexec.h>
  16. #include <linux/export.h>
  17. #include <linux/crash_dump.h>
  18. #include <linux/delay.h>
  19. #include <linux/irq.h>
  20. #include <linux/types.h>
  21. #include <asm/processor.h>
  22. #include <asm/machdep.h>
  23. #include <asm/kexec.h>
  24. #include <asm/kdump.h>
  25. #include <asm/prom.h>
  26. #include <asm/smp.h>
  27. #include <asm/setjmp.h>
  28. #include <asm/debug.h>
  29. /*
  30. * The primary CPU waits a while for all secondary CPUs to enter. This is to
  31. * avoid sending an IPI if the secondary CPUs are entering
  32. * crash_kexec_secondary on their own (eg via a system reset).
  33. *
  34. * The secondary timeout has to be longer than the primary. Both timeouts are
  35. * in milliseconds.
  36. */
  37. #define PRIMARY_TIMEOUT 500
  38. #define SECONDARY_TIMEOUT 1000
  39. #define IPI_TIMEOUT 10000
  40. #define REAL_MODE_TIMEOUT 10000
  41. /* This keeps a track of which one is the crashing cpu. */
  42. int crashing_cpu = -1;
  43. static int time_to_dump;
  44. #define CRASH_HANDLER_MAX 3
  45. /* List of shutdown handles */
  46. static crash_shutdown_t crash_shutdown_handles[CRASH_HANDLER_MAX];
  47. static DEFINE_SPINLOCK(crash_handlers_lock);
  48. static unsigned long crash_shutdown_buf[JMP_BUF_LEN];
  49. static int crash_shutdown_cpu = -1;
  50. static int handle_fault(struct pt_regs *regs)
  51. {
  52. if (crash_shutdown_cpu == smp_processor_id())
  53. longjmp(crash_shutdown_buf, 1);
  54. return 0;
  55. }
  56. #ifdef CONFIG_SMP
  57. static atomic_t cpus_in_crash;
  58. static void crash_ipi_callback(struct pt_regs *regs)
  59. {
  60. static cpumask_t cpus_state_saved = CPU_MASK_NONE;
  61. int cpu = smp_processor_id();
  62. if (!cpu_online(cpu))
  63. return;
  64. hard_irq_disable();
  65. if (!cpumask_test_cpu(cpu, &cpus_state_saved)) {
  66. crash_save_cpu(regs, cpu);
  67. cpumask_set_cpu(cpu, &cpus_state_saved);
  68. }
  69. atomic_inc(&cpus_in_crash);
  70. smp_mb__after_atomic();
  71. /*
  72. * Starting the kdump boot.
  73. * This barrier is needed to make sure that all CPUs are stopped.
  74. */
  75. while (!time_to_dump)
  76. cpu_relax();
  77. if (ppc_md.kexec_cpu_down)
  78. ppc_md.kexec_cpu_down(1, 1);
  79. #ifdef CONFIG_PPC64
  80. kexec_smp_wait();
  81. #else
  82. for (;;); /* FIXME */
  83. #endif
  84. /* NOTREACHED */
  85. }
  86. static void crash_kexec_prepare_cpus(int cpu)
  87. {
  88. unsigned int msecs;
  89. unsigned int ncpus = num_online_cpus() - 1;/* Excluding the panic cpu */
  90. int tries = 0;
  91. int (*old_handler)(struct pt_regs *regs);
  92. printk(KERN_EMERG "Sending IPI to other CPUs\n");
  93. crash_send_ipi(crash_ipi_callback);
  94. smp_wmb();
  95. again:
  96. /*
  97. * FIXME: Until we will have the way to stop other CPUs reliably,
  98. * the crash CPU will send an IPI and wait for other CPUs to
  99. * respond.
  100. */
  101. msecs = IPI_TIMEOUT;
  102. while ((atomic_read(&cpus_in_crash) < ncpus) && (--msecs > 0))
  103. mdelay(1);
  104. /* Would it be better to replace the trap vector here? */
  105. if (atomic_read(&cpus_in_crash) >= ncpus) {
  106. printk(KERN_EMERG "IPI complete\n");
  107. return;
  108. }
  109. printk(KERN_EMERG "ERROR: %d cpu(s) not responding\n",
  110. ncpus - atomic_read(&cpus_in_crash));
  111. /*
  112. * If we have a panic timeout set then we can't wait indefinitely
  113. * for someone to activate system reset. We also give up on the
  114. * second time through if system reset fail to work.
  115. */
  116. if ((panic_timeout > 0) || (tries > 0))
  117. return;
  118. /*
  119. * A system reset will cause all CPUs to take an 0x100 exception.
  120. * The primary CPU returns here via setjmp, and the secondary
  121. * CPUs reexecute the crash_kexec_secondary path.
  122. */
  123. old_handler = __debugger;
  124. __debugger = handle_fault;
  125. crash_shutdown_cpu = smp_processor_id();
  126. if (setjmp(crash_shutdown_buf) == 0) {
  127. printk(KERN_EMERG "Activate system reset (dumprestart) "
  128. "to stop other cpu(s)\n");
  129. /*
  130. * A system reset will force all CPUs to execute the
  131. * crash code again. We need to reset cpus_in_crash so we
  132. * wait for everyone to do this.
  133. */
  134. atomic_set(&cpus_in_crash, 0);
  135. smp_mb();
  136. while (atomic_read(&cpus_in_crash) < ncpus)
  137. cpu_relax();
  138. }
  139. crash_shutdown_cpu = -1;
  140. __debugger = old_handler;
  141. tries++;
  142. goto again;
  143. }
  144. /*
  145. * This function will be called by secondary cpus.
  146. */
  147. void crash_kexec_secondary(struct pt_regs *regs)
  148. {
  149. unsigned long flags;
  150. int msecs = SECONDARY_TIMEOUT;
  151. local_irq_save(flags);
  152. /* Wait for the primary crash CPU to signal its progress */
  153. while (crashing_cpu < 0) {
  154. if (--msecs < 0) {
  155. /* No response, kdump image may not have been loaded */
  156. local_irq_restore(flags);
  157. return;
  158. }
  159. mdelay(1);
  160. }
  161. crash_ipi_callback(regs);
  162. }
  163. #else /* ! CONFIG_SMP */
  164. static void crash_kexec_prepare_cpus(int cpu)
  165. {
  166. /*
  167. * move the secondaries to us so that we can copy
  168. * the new kernel 0-0x100 safely
  169. *
  170. * do this if kexec in setup.c ?
  171. */
  172. #ifdef CONFIG_PPC64
  173. smp_release_cpus();
  174. #else
  175. /* FIXME */
  176. #endif
  177. }
  178. void crash_kexec_secondary(struct pt_regs *regs)
  179. {
  180. }
  181. #endif /* CONFIG_SMP */
  182. /* wait for all the CPUs to hit real mode but timeout if they don't come in */
  183. #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
  184. static void __maybe_unused crash_kexec_wait_realmode(int cpu)
  185. {
  186. unsigned int msecs;
  187. int i;
  188. msecs = REAL_MODE_TIMEOUT;
  189. for (i=0; i < nr_cpu_ids && msecs > 0; i++) {
  190. if (i == cpu)
  191. continue;
  192. while (paca[i].kexec_state < KEXEC_STATE_REAL_MODE) {
  193. barrier();
  194. if (!cpu_possible(i) || !cpu_online(i) || (msecs <= 0))
  195. break;
  196. msecs--;
  197. mdelay(1);
  198. }
  199. }
  200. mb();
  201. }
  202. #else
  203. static inline void crash_kexec_wait_realmode(int cpu) {}
  204. #endif /* CONFIG_SMP && CONFIG_PPC64 */
  205. /*
  206. * Register a function to be called on shutdown. Only use this if you
  207. * can't reset your device in the second kernel.
  208. */
  209. int crash_shutdown_register(crash_shutdown_t handler)
  210. {
  211. unsigned int i, rc;
  212. spin_lock(&crash_handlers_lock);
  213. for (i = 0 ; i < CRASH_HANDLER_MAX; i++)
  214. if (!crash_shutdown_handles[i]) {
  215. /* Insert handle at first empty entry */
  216. crash_shutdown_handles[i] = handler;
  217. rc = 0;
  218. break;
  219. }
  220. if (i == CRASH_HANDLER_MAX) {
  221. printk(KERN_ERR "Crash shutdown handles full, "
  222. "not registered.\n");
  223. rc = 1;
  224. }
  225. spin_unlock(&crash_handlers_lock);
  226. return rc;
  227. }
  228. EXPORT_SYMBOL(crash_shutdown_register);
  229. int crash_shutdown_unregister(crash_shutdown_t handler)
  230. {
  231. unsigned int i, rc;
  232. spin_lock(&crash_handlers_lock);
  233. for (i = 0 ; i < CRASH_HANDLER_MAX; i++)
  234. if (crash_shutdown_handles[i] == handler)
  235. break;
  236. if (i == CRASH_HANDLER_MAX) {
  237. printk(KERN_ERR "Crash shutdown handle not found\n");
  238. rc = 1;
  239. } else {
  240. /* Shift handles down */
  241. for (; i < (CRASH_HANDLER_MAX - 1); i++)
  242. crash_shutdown_handles[i] =
  243. crash_shutdown_handles[i+1];
  244. /*
  245. * Reset last entry to NULL now that it has been shifted down,
  246. * this will allow new handles to be added here.
  247. */
  248. crash_shutdown_handles[i] = NULL;
  249. rc = 0;
  250. }
  251. spin_unlock(&crash_handlers_lock);
  252. return rc;
  253. }
  254. EXPORT_SYMBOL(crash_shutdown_unregister);
  255. void default_machine_crash_shutdown(struct pt_regs *regs)
  256. {
  257. unsigned int i;
  258. int (*old_handler)(struct pt_regs *regs);
  259. /*
  260. * This function is only called after the system
  261. * has panicked or is otherwise in a critical state.
  262. * The minimum amount of code to allow a kexec'd kernel
  263. * to run successfully needs to happen here.
  264. *
  265. * In practice this means stopping other cpus in
  266. * an SMP system.
  267. * The kernel is broken so disable interrupts.
  268. */
  269. hard_irq_disable();
  270. /*
  271. * Make a note of crashing cpu. Will be used in machine_kexec
  272. * such that another IPI will not be sent.
  273. */
  274. crashing_cpu = smp_processor_id();
  275. /*
  276. * If we came in via system reset, wait a while for the secondary
  277. * CPUs to enter.
  278. */
  279. if (TRAP(regs) == 0x100)
  280. mdelay(PRIMARY_TIMEOUT);
  281. crash_kexec_prepare_cpus(crashing_cpu);
  282. crash_save_cpu(regs, crashing_cpu);
  283. time_to_dump = 1;
  284. crash_kexec_wait_realmode(crashing_cpu);
  285. machine_kexec_mask_interrupts();
  286. /*
  287. * Call registered shutdown routines safely. Swap out
  288. * __debugger_fault_handler, and replace on exit.
  289. */
  290. old_handler = __debugger_fault_handler;
  291. __debugger_fault_handler = handle_fault;
  292. crash_shutdown_cpu = smp_processor_id();
  293. for (i = 0; i < CRASH_HANDLER_MAX && crash_shutdown_handles[i]; i++) {
  294. if (setjmp(crash_shutdown_buf) == 0) {
  295. /*
  296. * Insert syncs and delay to ensure
  297. * instructions in the dangerous region don't
  298. * leak away from this protected region.
  299. */
  300. asm volatile("sync; isync");
  301. /* dangerous region */
  302. crash_shutdown_handles[i]();
  303. asm volatile("sync; isync");
  304. }
  305. }
  306. crash_shutdown_cpu = -1;
  307. __debugger_fault_handler = old_handler;
  308. if (ppc_md.kexec_cpu_down)
  309. ppc_md.kexec_cpu_down(1, 0);
  310. }