123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554 |
- /*
- * Calculate the checksum of data that is 16 byte aligned and a multiple of
- * 16 bytes.
- *
- * The first step is to reduce it to 1024 bits. We do this in 8 parallel
- * chunks in order to mask the latency of the vpmsum instructions. If we
- * have more than 32 kB of data to checksum we repeat this step multiple
- * times, passing in the previous 1024 bits.
- *
- * The next step is to reduce the 1024 bits to 64 bits. This step adds
- * 32 bits of 0s to the end - this matches what a CRC does. We just
- * calculate constants that land the data in this 32 bits.
- *
- * We then use fixed point Barrett reduction to compute a mod n over GF(2)
- * for n = CRC using POWER8 instructions. We use x = 32.
- *
- * http://en.wikipedia.org/wiki/Barrett_reduction
- *
- * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #include <asm/ppc_asm.h>
- #include <asm/ppc-opcode.h>
- .section .rodata
- .balign 16
- .byteswap_constant:
- /* byte reverse permute constant */
- .octa 0x0F0E0D0C0B0A09080706050403020100
- #define MAX_SIZE 32768
- .constants:
- /* Reduce 262144 kbits to 1024 bits */
- /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
- .octa 0x00000000b6ca9e20000000009c37c408
- /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
- .octa 0x00000000350249a800000001b51df26c
- /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
- .octa 0x00000001862dac54000000000724b9d0
- /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
- .octa 0x00000001d87fb48c00000001c00532fe
- /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
- .octa 0x00000001f39b699e00000000f05a9362
- /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
- .octa 0x0000000101da11b400000001e1007970
- /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
- .octa 0x00000001cab571e000000000a57366ee
- /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
- .octa 0x00000000c7020cfe0000000192011284
- /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
- .octa 0x00000000cdaed1ae0000000162716d9a
- /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
- .octa 0x00000001e804effc00000000cd97ecde
- /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
- .octa 0x0000000077c3ea3a0000000058812bc0
- /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
- .octa 0x0000000068df31b40000000088b8c12e
- /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
- .octa 0x00000000b059b6c200000001230b234c
- /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
- .octa 0x0000000145fb8ed800000001120b416e
- /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
- .octa 0x00000000cbc0916800000001974aecb0
- /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
- .octa 0x000000005ceeedc2000000008ee3f226
- /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
- .octa 0x0000000047d74e8600000001089aba9a
- /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
- .octa 0x00000001407e9e220000000065113872
- /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
- .octa 0x00000001da967bda000000005c07ec10
- /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
- .octa 0x000000006c8983680000000187590924
- /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
- .octa 0x00000000f2d14c9800000000e35da7c6
- /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
- .octa 0x00000001993c6ad4000000000415855a
- /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
- .octa 0x000000014683d1ac0000000073617758
- /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
- .octa 0x00000001a7c93e6c0000000176021d28
- /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
- .octa 0x000000010211e90a00000001c358fd0a
- /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
- .octa 0x000000001119403e00000001ff7a2c18
- /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
- .octa 0x000000001c3261aa00000000f2d9f7e4
- /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
- .octa 0x000000014e37a634000000016cf1f9c8
- /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
- .octa 0x0000000073786c0c000000010af9279a
- /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
- .octa 0x000000011dc037f80000000004f101e8
- /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
- .octa 0x0000000031433dfc0000000070bcf184
- /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
- .octa 0x000000009cde8348000000000a8de642
- /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
- .octa 0x0000000038d3c2a60000000062ea130c
- /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
- .octa 0x000000011b25f26000000001eb31cbb2
- /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
- .octa 0x000000001629e6f00000000170783448
- /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
- .octa 0x0000000160838b4c00000001a684b4c6
- /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
- .octa 0x000000007a44011c00000000253ca5b4
- /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
- .octa 0x00000000226f417a0000000057b4b1e2
- /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
- .octa 0x0000000045eb2eb400000000b6bd084c
- /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
- .octa 0x000000014459d70c0000000123c2d592
- /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
- .octa 0x00000001d406ed8200000000159dafce
- /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
- .octa 0x0000000160c8e1a80000000127e1a64e
- /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
- .octa 0x0000000027ba80980000000056860754
- /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
- .octa 0x000000006d92d01800000001e661aae8
- /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
- .octa 0x000000012ed7e3f200000000f82c6166
- /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
- .octa 0x000000002dc8778800000000c4f9c7ae
- /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
- .octa 0x0000000018240bb80000000074203d20
- /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
- .octa 0x000000001ad381580000000198173052
- /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
- .octa 0x00000001396b78f200000001ce8aba54
- /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
- .octa 0x000000011a68133400000001850d5d94
- /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
- .octa 0x000000012104732e00000001d609239c
- /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
- .octa 0x00000000a140d90c000000001595f048
- /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
- .octa 0x00000001b7215eda0000000042ccee08
- /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
- .octa 0x00000001aaf1df3c000000010a389d74
- /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
- .octa 0x0000000029d15b8a000000012a840da6
- /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
- .octa 0x00000000f1a96922000000001d181c0c
- /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
- .octa 0x00000001ac80d03c0000000068b7d1f6
- /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
- .octa 0x000000000f11d56a000000005b0f14fc
- /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
- .octa 0x00000001f1c022a20000000179e9e730
- /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
- .octa 0x0000000173d00ae200000001ce1368d6
- /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
- .octa 0x00000001d4ffe4ac0000000112c3a84c
- /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
- .octa 0x000000016edc5ae400000000de940fee
- /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
- .octa 0x00000001f1a0214000000000fe896b7e
- /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
- .octa 0x00000000ca0b28a000000001f797431c
- /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
- .octa 0x00000001928e30a20000000053e989ba
- /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
- .octa 0x0000000097b1b002000000003920cd16
- /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
- .octa 0x00000000b15bf90600000001e6f579b8
- /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
- .octa 0x00000000411c5d52000000007493cb0a
- /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
- .octa 0x00000001c36f330000000001bdd376d8
- /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
- .octa 0x00000001119227e0000000016badfee6
- /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
- .octa 0x00000000114d47020000000071de5c58
- /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
- .octa 0x00000000458b5b9800000000453f317c
- /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
- .octa 0x000000012e31fb8e0000000121675cce
- /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
- .octa 0x000000005cf619d800000001f409ee92
- /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
- .octa 0x0000000063f4d8b200000000f36b9c88
- /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
- .octa 0x000000004138dc8a0000000036b398f4
- /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
- .octa 0x00000001d29ee8e000000001748f9adc
- /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
- .octa 0x000000006a08ace800000001be94ec00
- /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
- .octa 0x0000000127d4201000000000b74370d6
- /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
- .octa 0x0000000019d76b6200000001174d0b98
- /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
- .octa 0x00000001b1471f6e00000000befc06a4
- /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
- .octa 0x00000001f64c19cc00000001ae125288
- /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
- .octa 0x00000000003c0ea00000000095c19b34
- /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
- .octa 0x000000014d73abf600000001a78496f2
- /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
- .octa 0x00000001620eb84400000001ac5390a0
- /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
- .octa 0x0000000147655048000000002a80ed6e
- /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
- .octa 0x0000000067b5077e00000001fa9b0128
- /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
- .octa 0x0000000010ffe20600000001ea94929e
- /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
- .octa 0x000000000fee8f1e0000000125f4305c
- /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
- .octa 0x00000001da26fbae00000001471e2002
- /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
- .octa 0x00000001b3a8bd880000000132d2253a
- /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
- .octa 0x00000000e8f3898e00000000f26b3592
- /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
- .octa 0x00000000b0d0d28c00000000bc8b67b0
- /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
- .octa 0x0000000030f2a798000000013a826ef2
- /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
- .octa 0x000000000fba10020000000081482c84
- /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
- .octa 0x00000000bdb9bd7200000000e77307c2
- /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
- .octa 0x0000000075d3bf5a00000000d4a07ec8
- /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
- .octa 0x00000000ef1f98a00000000017102100
- /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
- .octa 0x00000000689c760200000000db406486
- /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
- .octa 0x000000016d5fa5fe0000000192db7f88
- /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
- .octa 0x00000001d0d2b9ca000000018bf67b1e
- /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
- .octa 0x0000000041e7b470000000007c09163e
- /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
- .octa 0x00000001cbb6495e000000000adac060
- /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
- .octa 0x000000010052a0b000000000bd8316ae
- /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
- .octa 0x00000001d8effb5c000000019f09ab54
- /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
- .octa 0x00000001d969853c0000000125155542
- /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
- .octa 0x00000000523ccce2000000018fdb5882
- /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
- .octa 0x000000001e2436bc00000000e794b3f4
- /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
- .octa 0x00000000ddd1c3a2000000016f9bb022
- /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
- .octa 0x0000000019fcfe3800000000290c9978
- /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
- .octa 0x00000001ce95db640000000083c0f350
- /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
- .octa 0x00000000af5828060000000173ea6628
- /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
- .octa 0x00000001006388f600000001c8b4e00a
- /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
- .octa 0x0000000179eca00a00000000de95d6aa
- /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
- .octa 0x0000000122410a6a000000010b7f7248
- /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
- .octa 0x000000004288e87c00000001326e3a06
- /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
- .octa 0x000000016c5490da00000000bb62c2e6
- /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
- .octa 0x00000000d1c71f6e0000000156a4b2c2
- /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
- .octa 0x00000001b4ce08a6000000011dfe763a
- /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
- .octa 0x00000001466ba60c000000007bcca8e2
- /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
- .octa 0x00000001f6c488a40000000186118faa
- /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
- .octa 0x000000013bfb06820000000111a65a88
- /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
- .octa 0x00000000690e9e54000000003565e1c4
- /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
- .octa 0x00000000281346b6000000012ed02a82
- /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
- .octa 0x000000015646402400000000c486ecfc
- /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
- .octa 0x000000016063a8dc0000000001b951b2
- /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
- .octa 0x0000000116a663620000000048143916
- /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
- .octa 0x000000017e8aa4d200000001dc2ae124
- /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
- .octa 0x00000001728eb10c00000001416c58d6
- /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
- .octa 0x00000001b08fd7fa00000000a479744a
- /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
- .octa 0x00000001092a16e80000000096ca3a26
- /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
- .octa 0x00000000a505637c00000000ff223d4e
- /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
- .octa 0x00000000d94869b2000000010e84da42
- /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
- .octa 0x00000001c8b203ae00000001b61ba3d0
- /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
- .octa 0x000000005704aea000000000680f2de8
- /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
- .octa 0x000000012e295fa2000000008772a9a8
- /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
- .octa 0x000000011d0908bc0000000155f295bc
- /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
- .octa 0x0000000193ed97ea00000000595f9282
- /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
- .octa 0x000000013a0f1c520000000164b1c25a
- /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
- .octa 0x000000010c2c40c000000000fbd67c50
- /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
- .octa 0x00000000ff6fac3e0000000096076268
- /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
- .octa 0x000000017b3609c000000001d288e4cc
- /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
- .octa 0x0000000088c8c92200000001eaac1bdc
- /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
- .octa 0x00000001751baae600000001f1ea39e2
- /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
- .octa 0x000000010795297200000001eb6506fc
- /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
- .octa 0x0000000162b00abe000000010f806ffe
- /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
- .octa 0x000000000d7b404c000000010408481e
- /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
- .octa 0x00000000763b13d40000000188260534
- /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
- .octa 0x00000000f6dc22d80000000058fc73e0
- /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
- .octa 0x000000007daae06000000000391c59b8
- /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
- .octa 0x000000013359ab7c000000018b638400
- /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
- .octa 0x000000008add438a000000011738f5c4
- /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
- .octa 0x00000001edbefdea000000008cf7c6da
- /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
- .octa 0x000000004104e0f800000001ef97fb16
- /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
- .octa 0x00000000b48a82220000000102130e20
- /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
- .octa 0x00000001bcb4684400000000db968898
- /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
- .octa 0x000000013293ce0a00000000b5047b5e
- /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
- .octa 0x00000001710d0844000000010b90fdb2
- /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
- .octa 0x0000000117907f6e000000004834a32e
- /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
- .octa 0x0000000087ddf93e0000000059c8f2b0
- /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
- .octa 0x000000005970e9b00000000122cec508
- /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
- .octa 0x0000000185b2b7d0000000000a330cda
- /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
- .octa 0x00000001dcee0efc000000014a47148c
- /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
- .octa 0x0000000030da27220000000042c61cb8
- /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
- .octa 0x000000012f925a180000000012fe6960
- /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
- .octa 0x00000000dd2e357c00000000dbda2c20
- /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
- .octa 0x00000000071c80de000000011122410c
- /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
- .octa 0x000000011513140a00000000977b2070
- /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
- .octa 0x00000001df876e8e000000014050438e
- /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
- .octa 0x000000015f81d6ce0000000147c840e8
- /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
- .octa 0x000000019dd94dbe00000001cc7c88ce
- /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
- .octa 0x00000001373d206e00000001476b35a4
- /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
- .octa 0x00000000668ccade000000013d52d508
- /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
- .octa 0x00000001b192d268000000008e4be32e
- /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
- .octa 0x00000000e30f3a7800000000024120fe
- /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
- .octa 0x000000010ef1f7bc00000000ddecddb4
- /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
- .octa 0x00000001f5ac738000000000d4d403bc
- /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
- .octa 0x000000011822ea7000000001734b89aa
- /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
- .octa 0x00000000c3a33848000000010e7a58d6
- /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
- .octa 0x00000001bd151c2400000001f9f04e9c
- /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
- .octa 0x0000000056002d7600000000b692225e
- /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
- .octa 0x000000014657c4f4000000019b8d3f3e
- /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
- .octa 0x0000000113742d7c00000001a874f11e
- /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
- .octa 0x000000019c5920ba000000010d5a4254
- /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
- .octa 0x000000005216d2d600000000bbb2f5d6
- /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
- .octa 0x0000000136f5ad8a0000000179cc0e36
- /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
- .octa 0x000000018b07beb600000001dca1da4a
- /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
- .octa 0x00000000db1e93b000000000feb1a192
- /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
- .octa 0x000000000b96fa3a00000000d1eeedd6
- /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
- .octa 0x00000001d9968af0000000008fad9bb4
- /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
- .octa 0x000000000e4a77a200000001884938e4
- /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
- .octa 0x00000000508c2ac800000001bc2e9bc0
- /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
- .octa 0x0000000021572a8000000001f9658a68
- /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
- .octa 0x00000001b859daf2000000001b9224fc
- /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
- .octa 0x000000016f7884740000000055b2fb84
- /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
- .octa 0x00000001b438810e000000018b090348
- /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
- .octa 0x0000000095ddc6f2000000011ccbd5ea
- /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
- .octa 0x00000001d977c20c0000000007ae47f8
- /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
- .octa 0x00000000ebedb99a0000000172acbec0
- /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
- .octa 0x00000001df9e9e9200000001c6e3ff20
- /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
- .octa 0x00000001a4a3f95200000000e1b38744
- /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
- .octa 0x00000000e2f5122000000000791585b2
- /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
- .octa 0x000000004aa01f3e00000000ac53b894
- /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
- .octa 0x00000000b3e90a5800000001ed5f2cf4
- /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
- .octa 0x000000000c9ca2aa00000001df48b2e0
- /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
- .octa 0x000000015168231600000000049c1c62
- /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
- .octa 0x0000000036fce78c000000017c460c12
- /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
- .octa 0x000000009037dc10000000015be4da7e
- /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
- .octa 0x00000000d3298582000000010f38f668
- /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
- .octa 0x00000001b42e8ad60000000039f40a00
- /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
- .octa 0x00000000142a983800000000bd4c10c4
- /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
- .octa 0x0000000109c7f1900000000042db1d98
- /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
- .octa 0x0000000056ff931000000001c905bae6
- /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
- .octa 0x00000001594513aa00000000069d40ea
- /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
- .octa 0x00000001e3b5b1e8000000008e4fbad0
- /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
- .octa 0x000000011dd5fc080000000047bedd46
- /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
- .octa 0x00000001675f0cc20000000026396bf8
- /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
- .octa 0x00000000d1c8dd4400000000379beb92
- /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
- .octa 0x0000000115ebd3d8000000000abae54a
- /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
- .octa 0x00000001ecbd0dac0000000007e6a128
- /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
- .octa 0x00000000cdf67af2000000000ade29d2
- /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
- .octa 0x000000004c01ff4c00000000f974c45c
- /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
- .octa 0x00000000f2d8657e00000000e77ac60a
- /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
- .octa 0x000000006bae74c40000000145895816
- /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
- .octa 0x0000000152af8aa00000000038e362be
- /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
- .octa 0x0000000004663802000000007f991a64
- /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
- .octa 0x00000001ab2f5afc00000000fa366d3a
- /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
- .octa 0x0000000074a4ebd400000001a2bb34f0
- /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
- .octa 0x00000001d7ab3a4c0000000028a9981e
- /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
- .octa 0x00000001a8da60c600000001dbc672be
- /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
- .octa 0x000000013cf6382000000000b04d77f6
- /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
- .octa 0x00000000bec12e1e0000000124400d96
- /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
- .octa 0x00000001c6368010000000014ca4b414
- /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
- .octa 0x00000001e6e78758000000012fe2c938
- /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
- .octa 0x000000008d7f2b3c00000001faed01e6
- /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
- .octa 0x000000016b4a156e000000007e80ecfe
- /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
- .octa 0x00000001c63cfeb60000000098daee94
- /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
- .octa 0x000000015f902670000000010a04edea
- /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
- .octa 0x00000001cd5de11e00000001c00b4524
- /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
- .octa 0x000000001acaec540000000170296550
- /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
- .octa 0x000000002bd0ca780000000181afaa48
- /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
- .octa 0x0000000032d63d5c0000000185a31ffa
- /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
- .octa 0x000000001c6d4e4c000000002469f608
- /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
- .octa 0x0000000106a60b92000000006980102a
- /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
- .octa 0x00000000d3855e120000000111ea9ca8
- /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
- .octa 0x00000000e312563600000001bd1d29ce
- /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
- .octa 0x000000009e8f7ea400000001b34b9580
- /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
- .octa 0x00000001c82e562c000000003076054e
- /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
- .octa 0x00000000ca9f09ce000000012a608ea4
- /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
- .octa 0x00000000c63764e600000000784d05fe
- /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
- .octa 0x0000000168d2e49e000000016ef0d82a
- /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
- .octa 0x00000000e986c1480000000075bda454
- /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
- .octa 0x00000000cfb65894000000003dc0a1c4
- /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
- .octa 0x0000000111cadee400000000e9a5d8be
- /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
- .octa 0x0000000171fb63ce00000001609bc4b4
- .short_constants:
- /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
- /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
- .octa 0x7fec2963e5bf80485cf015c388e56f72
- /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
- .octa 0x38e888d4844752a9963a18920246e2e6
- /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
- .octa 0x42316c00730206ad419a441956993a31
- /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
- .octa 0x543d5c543e65ddf9924752ba2b830011
- /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
- .octa 0x78e87aaf56767c9255bd7f9518e4a304
- /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
- .octa 0x8f68fcec1903da7f6d76739fe0553f1e
- /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
- .octa 0x3f4840246791d588c133722b1fe0b5c3
- /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
- .octa 0x34c96751b04de25a64b67ee0e55ef1f3
- /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
- .octa 0x156c8e180b4a395b069db049b8fdb1e7
- /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
- .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
- /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
- .octa 0x041d37768cd75659817cdc5119b29a35
- /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
- .octa 0x3a0777818cfaa9651ce9d94b36c41f1c
- /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
- .octa 0x0e148e8252377a554f256efcb82be955
- /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
- .octa 0x9c25531d19e65ddeec1631edb2dea967
- /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
- .octa 0x790606ff9957c0a65d27e147510ac59a
- /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
- .octa 0x82f63b786ea2d55ca66805eb18b8ea18
- .barrett_constants:
- /* 33 bit reflected Barrett constant m - (4^32)/n */
- .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */
- /* 33 bit reflected Barrett constant n */
- .octa 0x00000000000000000000000105ec76f1
- .text
- #if defined(__BIG_ENDIAN__)
- #define BYTESWAP_DATA
- #else
- #undef BYTESWAP_DATA
- #endif
- #define off16 r25
- #define off32 r26
- #define off48 r27
- #define off64 r28
- #define off80 r29
- #define off96 r30
- #define off112 r31
- #define const1 v24
- #define const2 v25
- #define byteswap v26
- #define mask_32bit v27
- #define mask_64bit v28
- #define zeroes v29
- #ifdef BYTESWAP_DATA
- #define VPERM(A, B, C, D) vperm A, B, C, D
- #else
- #define VPERM(A, B, C, D)
- #endif
- /* unsigned int __crc32c_vpmsum(unsigned int crc, void *p, unsigned long len) */
- FUNC_START(__crc32c_vpmsum)
- std r31,-8(r1)
- std r30,-16(r1)
- std r29,-24(r1)
- std r28,-32(r1)
- std r27,-40(r1)
- std r26,-48(r1)
- std r25,-56(r1)
- li off16,16
- li off32,32
- li off48,48
- li off64,64
- li off80,80
- li off96,96
- li off112,112
- li r0,0
- /* Enough room for saving 10 non volatile VMX registers */
- subi r6,r1,56+10*16
- subi r7,r1,56+2*16
- stvx v20,0,r6
- stvx v21,off16,r6
- stvx v22,off32,r6
- stvx v23,off48,r6
- stvx v24,off64,r6
- stvx v25,off80,r6
- stvx v26,off96,r6
- stvx v27,off112,r6
- stvx v28,0,r7
- stvx v29,off16,r7
- mr r10,r3
- vxor zeroes,zeroes,zeroes
- vspltisw v0,-1
- vsldoi mask_32bit,zeroes,v0,4
- vsldoi mask_64bit,zeroes,v0,8
- /* Get the initial value into v8 */
- vxor v8,v8,v8
- MTVRD(v8, R3)
- vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
- #ifdef BYTESWAP_DATA
- addis r3,r2,.byteswap_constant@toc@ha
- addi r3,r3,.byteswap_constant@toc@l
- lvx byteswap,0,r3
- addi r3,r3,16
- #endif
- cmpdi r5,256
- blt .Lshort
- rldicr r6,r5,0,56
- /* Checksum in blocks of MAX_SIZE */
- 1: lis r7,MAX_SIZE@h
- ori r7,r7,MAX_SIZE@l
- mr r9,r7
- cmpd r6,r7
- bgt 2f
- mr r7,r6
- 2: subf r6,r7,r6
- /* our main loop does 128 bytes at a time */
- srdi r7,r7,7
- /*
- * Work out the offset into the constants table to start at. Each
- * constant is 16 bytes, and it is used against 128 bytes of input
- * data - 128 / 16 = 8
- */
- sldi r8,r7,4
- srdi r9,r9,3
- subf r8,r8,r9
- /* We reduce our final 128 bytes in a separate step */
- addi r7,r7,-1
- mtctr r7
- addis r3,r2,.constants@toc@ha
- addi r3,r3,.constants@toc@l
- /* Find the start of our constants */
- add r3,r3,r8
- /* zero v0-v7 which will contain our checksums */
- vxor v0,v0,v0
- vxor v1,v1,v1
- vxor v2,v2,v2
- vxor v3,v3,v3
- vxor v4,v4,v4
- vxor v5,v5,v5
- vxor v6,v6,v6
- vxor v7,v7,v7
- lvx const1,0,r3
- /*
- * If we are looping back to consume more data we use the values
- * already in v16-v23.
- */
- cmpdi r0,1
- beq 2f
- /* First warm up pass */
- lvx v16,0,r4
- lvx v17,off16,r4
- VPERM(v16,v16,v16,byteswap)
- VPERM(v17,v17,v17,byteswap)
- lvx v18,off32,r4
- lvx v19,off48,r4
- VPERM(v18,v18,v18,byteswap)
- VPERM(v19,v19,v19,byteswap)
- lvx v20,off64,r4
- lvx v21,off80,r4
- VPERM(v20,v20,v20,byteswap)
- VPERM(v21,v21,v21,byteswap)
- lvx v22,off96,r4
- lvx v23,off112,r4
- VPERM(v22,v22,v22,byteswap)
- VPERM(v23,v23,v23,byteswap)
- addi r4,r4,8*16
- /* xor in initial value */
- vxor v16,v16,v8
- 2: bdz .Lfirst_warm_up_done
- addi r3,r3,16
- lvx const2,0,r3
- /* Second warm up pass */
- VPMSUMD(v8,v16,const1)
- lvx v16,0,r4
- VPERM(v16,v16,v16,byteswap)
- ori r2,r2,0
- VPMSUMD(v9,v17,const1)
- lvx v17,off16,r4
- VPERM(v17,v17,v17,byteswap)
- ori r2,r2,0
- VPMSUMD(v10,v18,const1)
- lvx v18,off32,r4
- VPERM(v18,v18,v18,byteswap)
- ori r2,r2,0
- VPMSUMD(v11,v19,const1)
- lvx v19,off48,r4
- VPERM(v19,v19,v19,byteswap)
- ori r2,r2,0
- VPMSUMD(v12,v20,const1)
- lvx v20,off64,r4
- VPERM(v20,v20,v20,byteswap)
- ori r2,r2,0
- VPMSUMD(v13,v21,const1)
- lvx v21,off80,r4
- VPERM(v21,v21,v21,byteswap)
- ori r2,r2,0
- VPMSUMD(v14,v22,const1)
- lvx v22,off96,r4
- VPERM(v22,v22,v22,byteswap)
- ori r2,r2,0
- VPMSUMD(v15,v23,const1)
- lvx v23,off112,r4
- VPERM(v23,v23,v23,byteswap)
- addi r4,r4,8*16
- bdz .Lfirst_cool_down
- /*
- * main loop. We modulo schedule it such that it takes three iterations
- * to complete - first iteration load, second iteration vpmsum, third
- * iteration xor.
- */
- .balign 16
- 4: lvx const1,0,r3
- addi r3,r3,16
- ori r2,r2,0
- vxor v0,v0,v8
- VPMSUMD(v8,v16,const2)
- lvx v16,0,r4
- VPERM(v16,v16,v16,byteswap)
- ori r2,r2,0
- vxor v1,v1,v9
- VPMSUMD(v9,v17,const2)
- lvx v17,off16,r4
- VPERM(v17,v17,v17,byteswap)
- ori r2,r2,0
- vxor v2,v2,v10
- VPMSUMD(v10,v18,const2)
- lvx v18,off32,r4
- VPERM(v18,v18,v18,byteswap)
- ori r2,r2,0
- vxor v3,v3,v11
- VPMSUMD(v11,v19,const2)
- lvx v19,off48,r4
- VPERM(v19,v19,v19,byteswap)
- lvx const2,0,r3
- ori r2,r2,0
- vxor v4,v4,v12
- VPMSUMD(v12,v20,const1)
- lvx v20,off64,r4
- VPERM(v20,v20,v20,byteswap)
- ori r2,r2,0
- vxor v5,v5,v13
- VPMSUMD(v13,v21,const1)
- lvx v21,off80,r4
- VPERM(v21,v21,v21,byteswap)
- ori r2,r2,0
- vxor v6,v6,v14
- VPMSUMD(v14,v22,const1)
- lvx v22,off96,r4
- VPERM(v22,v22,v22,byteswap)
- ori r2,r2,0
- vxor v7,v7,v15
- VPMSUMD(v15,v23,const1)
- lvx v23,off112,r4
- VPERM(v23,v23,v23,byteswap)
- addi r4,r4,8*16
- bdnz 4b
- .Lfirst_cool_down:
- /* First cool down pass */
- lvx const1,0,r3
- addi r3,r3,16
- vxor v0,v0,v8
- VPMSUMD(v8,v16,const1)
- ori r2,r2,0
- vxor v1,v1,v9
- VPMSUMD(v9,v17,const1)
- ori r2,r2,0
- vxor v2,v2,v10
- VPMSUMD(v10,v18,const1)
- ori r2,r2,0
- vxor v3,v3,v11
- VPMSUMD(v11,v19,const1)
- ori r2,r2,0
- vxor v4,v4,v12
- VPMSUMD(v12,v20,const1)
- ori r2,r2,0
- vxor v5,v5,v13
- VPMSUMD(v13,v21,const1)
- ori r2,r2,0
- vxor v6,v6,v14
- VPMSUMD(v14,v22,const1)
- ori r2,r2,0
- vxor v7,v7,v15
- VPMSUMD(v15,v23,const1)
- ori r2,r2,0
- .Lsecond_cool_down:
- /* Second cool down pass */
- vxor v0,v0,v8
- vxor v1,v1,v9
- vxor v2,v2,v10
- vxor v3,v3,v11
- vxor v4,v4,v12
- vxor v5,v5,v13
- vxor v6,v6,v14
- vxor v7,v7,v15
- /*
- * vpmsumd produces a 96 bit result in the least significant bits
- * of the register. Since we are bit reflected we have to shift it
- * left 32 bits so it occupies the least significant bits in the
- * bit reflected domain.
- */
- vsldoi v0,v0,zeroes,4
- vsldoi v1,v1,zeroes,4
- vsldoi v2,v2,zeroes,4
- vsldoi v3,v3,zeroes,4
- vsldoi v4,v4,zeroes,4
- vsldoi v5,v5,zeroes,4
- vsldoi v6,v6,zeroes,4
- vsldoi v7,v7,zeroes,4
- /* xor with last 1024 bits */
- lvx v8,0,r4
- lvx v9,off16,r4
- VPERM(v8,v8,v8,byteswap)
- VPERM(v9,v9,v9,byteswap)
- lvx v10,off32,r4
- lvx v11,off48,r4
- VPERM(v10,v10,v10,byteswap)
- VPERM(v11,v11,v11,byteswap)
- lvx v12,off64,r4
- lvx v13,off80,r4
- VPERM(v12,v12,v12,byteswap)
- VPERM(v13,v13,v13,byteswap)
- lvx v14,off96,r4
- lvx v15,off112,r4
- VPERM(v14,v14,v14,byteswap)
- VPERM(v15,v15,v15,byteswap)
- addi r4,r4,8*16
- vxor v16,v0,v8
- vxor v17,v1,v9
- vxor v18,v2,v10
- vxor v19,v3,v11
- vxor v20,v4,v12
- vxor v21,v5,v13
- vxor v22,v6,v14
- vxor v23,v7,v15
- li r0,1
- cmpdi r6,0
- addi r6,r6,128
- bne 1b
- /* Work out how many bytes we have left */
- andi. r5,r5,127
- /* Calculate where in the constant table we need to start */
- subfic r6,r5,128
- add r3,r3,r6
- /* How many 16 byte chunks are in the tail */
- srdi r7,r5,4
- mtctr r7
- /*
- * Reduce the previously calculated 1024 bits to 64 bits, shifting
- * 32 bits to include the trailing 32 bits of zeros
- */
- lvx v0,0,r3
- lvx v1,off16,r3
- lvx v2,off32,r3
- lvx v3,off48,r3
- lvx v4,off64,r3
- lvx v5,off80,r3
- lvx v6,off96,r3
- lvx v7,off112,r3
- addi r3,r3,8*16
- VPMSUMW(v0,v16,v0)
- VPMSUMW(v1,v17,v1)
- VPMSUMW(v2,v18,v2)
- VPMSUMW(v3,v19,v3)
- VPMSUMW(v4,v20,v4)
- VPMSUMW(v5,v21,v5)
- VPMSUMW(v6,v22,v6)
- VPMSUMW(v7,v23,v7)
- /* Now reduce the tail (0 - 112 bytes) */
- cmpdi r7,0
- beq 1f
- lvx v16,0,r4
- lvx v17,0,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
- lvx v16,off16,r4
- lvx v17,off16,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
- lvx v16,off32,r4
- lvx v17,off32,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
- lvx v16,off48,r4
- lvx v17,off48,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
- lvx v16,off64,r4
- lvx v17,off64,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
- lvx v16,off80,r4
- lvx v17,off80,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
- lvx v16,off96,r4
- lvx v17,off96,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- /* Now xor all the parallel chunks together */
- 1: vxor v0,v0,v1
- vxor v2,v2,v3
- vxor v4,v4,v5
- vxor v6,v6,v7
- vxor v0,v0,v2
- vxor v4,v4,v6
- vxor v0,v0,v4
- .Lbarrett_reduction:
- /* Barrett constants */
- addis r3,r2,.barrett_constants@toc@ha
- addi r3,r3,.barrett_constants@toc@l
- lvx const1,0,r3
- lvx const2,off16,r3
- vsldoi v1,v0,v0,8
- vxor v0,v0,v1 /* xor two 64 bit results together */
- /* shift left one bit */
- vspltisb v1,1
- vsl v0,v0,v1
- vand v0,v0,mask_64bit
- /*
- * The reflected version of Barrett reduction. Instead of bit
- * reflecting our data (which is expensive to do), we bit reflect our
- * constants and our algorithm, which means the intermediate data in
- * our vector registers goes from 0-63 instead of 63-0. We can reflect
- * the algorithm because we don't carry in mod 2 arithmetic.
- */
- vand v1,v0,mask_32bit /* bottom 32 bits of a */
- VPMSUMD(v1,v1,const1) /* ma */
- vand v1,v1,mask_32bit /* bottom 32bits of ma */
- VPMSUMD(v1,v1,const2) /* qn */
- vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
- /*
- * Since we are bit reflected, the result (ie the low 32 bits) is in
- * the high 32 bits. We just need to shift it left 4 bytes
- * V0 [ 0 1 X 3 ]
- * V0 [ 0 X 2 3 ]
- */
- vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
- /* Get it into r3 */
- MFVRD(R3, v0)
- .Lout:
- subi r6,r1,56+10*16
- subi r7,r1,56+2*16
- lvx v20,0,r6
- lvx v21,off16,r6
- lvx v22,off32,r6
- lvx v23,off48,r6
- lvx v24,off64,r6
- lvx v25,off80,r6
- lvx v26,off96,r6
- lvx v27,off112,r6
- lvx v28,0,r7
- lvx v29,off16,r7
- ld r31,-8(r1)
- ld r30,-16(r1)
- ld r29,-24(r1)
- ld r28,-32(r1)
- ld r27,-40(r1)
- ld r26,-48(r1)
- ld r25,-56(r1)
- blr
- .Lfirst_warm_up_done:
- lvx const1,0,r3
- addi r3,r3,16
- VPMSUMD(v8,v16,const1)
- VPMSUMD(v9,v17,const1)
- VPMSUMD(v10,v18,const1)
- VPMSUMD(v11,v19,const1)
- VPMSUMD(v12,v20,const1)
- VPMSUMD(v13,v21,const1)
- VPMSUMD(v14,v22,const1)
- VPMSUMD(v15,v23,const1)
- b .Lsecond_cool_down
- .Lshort:
- cmpdi r5,0
- beq .Lzero
- addis r3,r2,.short_constants@toc@ha
- addi r3,r3,.short_constants@toc@l
- /* Calculate where in the constant table we need to start */
- subfic r6,r5,256
- add r3,r3,r6
- /* How many 16 byte chunks? */
- srdi r7,r5,4
- mtctr r7
- vxor v19,v19,v19
- vxor v20,v20,v20
- lvx v0,0,r4
- lvx v16,0,r3
- VPERM(v0,v0,v16,byteswap)
- vxor v0,v0,v8 /* xor in initial value */
- VPMSUMW(v0,v0,v16)
- bdz .Lv0
- lvx v1,off16,r4
- lvx v17,off16,r3
- VPERM(v1,v1,v17,byteswap)
- VPMSUMW(v1,v1,v17)
- bdz .Lv1
- lvx v2,off32,r4
- lvx v16,off32,r3
- VPERM(v2,v2,v16,byteswap)
- VPMSUMW(v2,v2,v16)
- bdz .Lv2
- lvx v3,off48,r4
- lvx v17,off48,r3
- VPERM(v3,v3,v17,byteswap)
- VPMSUMW(v3,v3,v17)
- bdz .Lv3
- lvx v4,off64,r4
- lvx v16,off64,r3
- VPERM(v4,v4,v16,byteswap)
- VPMSUMW(v4,v4,v16)
- bdz .Lv4
- lvx v5,off80,r4
- lvx v17,off80,r3
- VPERM(v5,v5,v17,byteswap)
- VPMSUMW(v5,v5,v17)
- bdz .Lv5
- lvx v6,off96,r4
- lvx v16,off96,r3
- VPERM(v6,v6,v16,byteswap)
- VPMSUMW(v6,v6,v16)
- bdz .Lv6
- lvx v7,off112,r4
- lvx v17,off112,r3
- VPERM(v7,v7,v17,byteswap)
- VPMSUMW(v7,v7,v17)
- bdz .Lv7
- addi r3,r3,128
- addi r4,r4,128
- lvx v8,0,r4
- lvx v16,0,r3
- VPERM(v8,v8,v16,byteswap)
- VPMSUMW(v8,v8,v16)
- bdz .Lv8
- lvx v9,off16,r4
- lvx v17,off16,r3
- VPERM(v9,v9,v17,byteswap)
- VPMSUMW(v9,v9,v17)
- bdz .Lv9
- lvx v10,off32,r4
- lvx v16,off32,r3
- VPERM(v10,v10,v16,byteswap)
- VPMSUMW(v10,v10,v16)
- bdz .Lv10
- lvx v11,off48,r4
- lvx v17,off48,r3
- VPERM(v11,v11,v17,byteswap)
- VPMSUMW(v11,v11,v17)
- bdz .Lv11
- lvx v12,off64,r4
- lvx v16,off64,r3
- VPERM(v12,v12,v16,byteswap)
- VPMSUMW(v12,v12,v16)
- bdz .Lv12
- lvx v13,off80,r4
- lvx v17,off80,r3
- VPERM(v13,v13,v17,byteswap)
- VPMSUMW(v13,v13,v17)
- bdz .Lv13
- lvx v14,off96,r4
- lvx v16,off96,r3
- VPERM(v14,v14,v16,byteswap)
- VPMSUMW(v14,v14,v16)
- bdz .Lv14
- lvx v15,off112,r4
- lvx v17,off112,r3
- VPERM(v15,v15,v17,byteswap)
- VPMSUMW(v15,v15,v17)
- .Lv15: vxor v19,v19,v15
- .Lv14: vxor v20,v20,v14
- .Lv13: vxor v19,v19,v13
- .Lv12: vxor v20,v20,v12
- .Lv11: vxor v19,v19,v11
- .Lv10: vxor v20,v20,v10
- .Lv9: vxor v19,v19,v9
- .Lv8: vxor v20,v20,v8
- .Lv7: vxor v19,v19,v7
- .Lv6: vxor v20,v20,v6
- .Lv5: vxor v19,v19,v5
- .Lv4: vxor v20,v20,v4
- .Lv3: vxor v19,v19,v3
- .Lv2: vxor v20,v20,v2
- .Lv1: vxor v19,v19,v1
- .Lv0: vxor v20,v20,v0
- vxor v0,v19,v20
- b .Lbarrett_reduction
- .Lzero:
- mr r3,r10
- b .Lout
- FUNC_END(__crc32_vpmsum)
|