uasm-mips.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * A small micro-assembler. It is intentionally kept simple, does only
  7. * support a subset of instructions, and does not try to hide pipeline
  8. * effects like branch delay slots.
  9. *
  10. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  11. * Copyright (C) 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  13. * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/types.h>
  17. #include <asm/inst.h>
  18. #include <asm/elf.h>
  19. #include <asm/bugs.h>
  20. #define UASM_ISA _UASM_ISA_CLASSIC
  21. #include <asm/uasm.h>
  22. #define RS_MASK 0x1f
  23. #define RS_SH 21
  24. #define RT_MASK 0x1f
  25. #define RT_SH 16
  26. #define SCIMM_MASK 0xfffff
  27. #define SCIMM_SH 6
  28. /* This macro sets the non-variable bits of an instruction. */
  29. #define M(a, b, c, d, e, f) \
  30. ((a) << OP_SH \
  31. | (b) << RS_SH \
  32. | (c) << RT_SH \
  33. | (d) << RD_SH \
  34. | (e) << RE_SH \
  35. | (f) << FUNC_SH)
  36. /* This macro sets the non-variable bits of an R6 instruction. */
  37. #define M6(a, b, c, d, e) \
  38. ((a) << OP_SH \
  39. | (b) << RS_SH \
  40. | (c) << RT_SH \
  41. | (d) << SIMM9_SH \
  42. | (e) << FUNC_SH)
  43. #include "uasm.c"
  44. static struct insn insn_table[] = {
  45. { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  46. { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
  47. { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
  48. { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
  49. { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  50. { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  51. { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  52. { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  53. { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
  54. { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
  55. { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
  56. { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
  57. { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  58. #ifndef CONFIG_CPU_MIPSR6
  59. { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  60. #else
  61. { insn_cache, M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9 },
  62. #endif
  63. { insn_cfc1, M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD },
  64. { insn_cfcmsa, M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE },
  65. { insn_ctc1, M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD },
  66. { insn_ctcmsa, M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE },
  67. { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  68. { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
  69. { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
  70. { insn_di, M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT },
  71. { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
  72. { insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT },
  73. { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
  74. { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
  75. { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
  76. { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
  77. { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
  78. { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
  79. { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
  80. { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
  81. { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
  82. { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
  83. { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
  84. { insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
  85. { insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
  86. { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
  87. { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
  88. { insn_jalr, M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD },
  89. { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
  90. #ifndef CONFIG_CPU_MIPSR6
  91. { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
  92. #else
  93. { insn_jr, M(spec_op, 0, 0, 0, 0, jalr_op), RS },
  94. #endif
  95. { insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  96. { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  97. { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
  98. { insn_lh, M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  99. #ifndef CONFIG_CPU_MIPSR6
  100. { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  101. { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  102. #else
  103. { insn_lld, M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9 },
  104. { insn_ll, M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9 },
  105. #endif
  106. { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
  107. { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  108. { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
  109. { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
  110. { insn_mfhc0, M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
  111. { insn_mfhi, M(spec_op, 0, 0, 0, 0, mfhi_op), RD },
  112. { insn_mflo, M(spec_op, 0, 0, 0, 0, mflo_op), RD },
  113. { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
  114. { insn_mthc0, M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
  115. { insn_mthi, M(spec_op, 0, 0, 0, 0, mthi_op), RS },
  116. { insn_mtlo, M(spec_op, 0, 0, 0, 0, mtlo_op), RS },
  117. #ifndef CONFIG_CPU_MIPSR6
  118. { insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
  119. #else
  120. { insn_mul, M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
  121. #endif
  122. { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
  123. { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
  124. #ifndef CONFIG_CPU_MIPSR6
  125. { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  126. #else
  127. { insn_pref, M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9 },
  128. #endif
  129. { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
  130. { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
  131. #ifndef CONFIG_CPU_MIPSR6
  132. { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  133. { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  134. #else
  135. { insn_scd, M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9 },
  136. { insn_sc, M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9 },
  137. #endif
  138. { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  139. { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
  140. { insn_sllv, M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD },
  141. { insn_slt, M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD },
  142. { insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  143. { insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD },
  144. { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
  145. { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
  146. { insn_srlv, M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD },
  147. { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
  148. { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  149. { insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE },
  150. { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
  151. { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
  152. { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
  153. { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
  154. { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
  155. { insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM },
  156. { insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD },
  157. { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
  158. { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
  159. { insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD },
  160. { insn_ldpte, M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD },
  161. { insn_lddir, M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD },
  162. { insn_invalid, 0, 0 }
  163. };
  164. #undef M
  165. static inline u32 build_bimm(s32 arg)
  166. {
  167. WARN(arg > 0x1ffff || arg < -0x20000,
  168. KERN_WARNING "Micro-assembler field overflow\n");
  169. WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
  170. return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
  171. }
  172. static inline u32 build_jimm(u32 arg)
  173. {
  174. WARN(arg & ~(JIMM_MASK << 2),
  175. KERN_WARNING "Micro-assembler field overflow\n");
  176. return (arg >> 2) & JIMM_MASK;
  177. }
  178. /*
  179. * The order of opcode arguments is implicitly left to right,
  180. * starting with RS and ending with FUNC or IMM.
  181. */
  182. static void build_insn(u32 **buf, enum opcode opc, ...)
  183. {
  184. struct insn *ip = NULL;
  185. unsigned int i;
  186. va_list ap;
  187. u32 op;
  188. for (i = 0; insn_table[i].opcode != insn_invalid; i++)
  189. if (insn_table[i].opcode == opc) {
  190. ip = &insn_table[i];
  191. break;
  192. }
  193. if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
  194. panic("Unsupported Micro-assembler instruction %d", opc);
  195. op = ip->match;
  196. va_start(ap, opc);
  197. if (ip->fields & RS)
  198. op |= build_rs(va_arg(ap, u32));
  199. if (ip->fields & RT)
  200. op |= build_rt(va_arg(ap, u32));
  201. if (ip->fields & RD)
  202. op |= build_rd(va_arg(ap, u32));
  203. if (ip->fields & RE)
  204. op |= build_re(va_arg(ap, u32));
  205. if (ip->fields & SIMM)
  206. op |= build_simm(va_arg(ap, s32));
  207. if (ip->fields & UIMM)
  208. op |= build_uimm(va_arg(ap, u32));
  209. if (ip->fields & BIMM)
  210. op |= build_bimm(va_arg(ap, s32));
  211. if (ip->fields & JIMM)
  212. op |= build_jimm(va_arg(ap, u32));
  213. if (ip->fields & FUNC)
  214. op |= build_func(va_arg(ap, u32));
  215. if (ip->fields & SET)
  216. op |= build_set(va_arg(ap, u32));
  217. if (ip->fields & SCIMM)
  218. op |= build_scimm(va_arg(ap, u32));
  219. if (ip->fields & SIMM9)
  220. op |= build_scimm9(va_arg(ap, u32));
  221. va_end(ap);
  222. **buf = op;
  223. (*buf)++;
  224. }
  225. static inline void
  226. __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
  227. {
  228. long laddr = (long)lab->addr;
  229. long raddr = (long)rel->addr;
  230. switch (rel->type) {
  231. case R_MIPS_PC16:
  232. *rel->addr |= build_bimm(laddr - (raddr + 4));
  233. break;
  234. default:
  235. panic("Unsupported Micro-assembler relocation %d",
  236. rel->type);
  237. }
  238. }