123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 |
- /*
- * arch/arm/include/asm/pgtable-2level.h
- *
- * Copyright (C) 1995-2002 Russell King
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #ifndef _ASM_PGTABLE_2LEVEL_H
- #define _ASM_PGTABLE_2LEVEL_H
- #define __PAGETABLE_PMD_FOLDED
- /*
- * Hardware-wise, we have a two level page table structure, where the first
- * level has 4096 entries, and the second level has 256 entries. Each entry
- * is one 32-bit word. Most of the bits in the second level entry are used
- * by hardware, and there aren't any "accessed" and "dirty" bits.
- *
- * Linux on the other hand has a three level page table structure, which can
- * be wrapped to fit a two level page table structure easily - using the PGD
- * and PTE only. However, Linux also expects one "PTE" table per page, and
- * at least a "dirty" bit.
- *
- * Therefore, we tweak the implementation slightly - we tell Linux that we
- * have 2048 entries in the first level, each of which is 8 bytes (iow, two
- * hardware pointers to the second level.) The second level contains two
- * hardware PTE tables arranged contiguously, preceded by Linux versions
- * which contain the state information Linux needs. We, therefore, end up
- * with 512 entries in the "PTE" level.
- *
- * This leads to the page tables having the following layout:
- *
- * pgd pte
- * | |
- * +--------+
- * | | +------------+ +0
- * +- - - - + | Linux pt 0 |
- * | | +------------+ +1024
- * +--------+ +0 | Linux pt 1 |
- * | |-----> +------------+ +2048
- * +- - - - + +4 | h/w pt 0 |
- * | |-----> +------------+ +3072
- * +--------+ +8 | h/w pt 1 |
- * | | +------------+ +4096
- *
- * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
- * PTE_xxx for definitions of bits appearing in the "h/w pt".
- *
- * PMD_xxx definitions refer to bits in the first level page table.
- *
- * The "dirty" bit is emulated by only granting hardware write permission
- * iff the page is marked "writable" and "dirty" in the Linux PTE. This
- * means that a write to a clean page will cause a permission fault, and
- * the Linux MM layer will mark the page dirty via handle_pte_fault().
- * For the hardware to notice the permission change, the TLB entry must
- * be flushed, and ptep_set_access_flags() does that for us.
- *
- * The "accessed" or "young" bit is emulated by a similar method; we only
- * allow accesses to the page if the "young" bit is set. Accesses to the
- * page will cause a fault, and handle_pte_fault() will set the young bit
- * for us as long as the page is marked present in the corresponding Linux
- * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
- * up to date.
- *
- * However, when the "young" bit is cleared, we deny access to the page
- * by clearing the hardware PTE. Currently Linux does not flush the TLB
- * for us in this case, which means the TLB will retain the transation
- * until either the TLB entry is evicted under pressure, or a context
- * switch which changes the user space mapping occurs.
- */
- #define PTRS_PER_PTE 512
- #define PTRS_PER_PMD 1
- #define PTRS_PER_PGD 2048
- #define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
- #define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
- #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
- /*
- * PMD_SHIFT determines the size of the area a second-level page table can map
- * PGDIR_SHIFT determines what a third-level page table entry can map
- */
- #define PMD_SHIFT 21
- #define PGDIR_SHIFT 21
- #define PMD_SIZE (1UL << PMD_SHIFT)
- #define PMD_MASK (~(PMD_SIZE-1))
- #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
- #define PGDIR_MASK (~(PGDIR_SIZE-1))
- /*
- * section address mask and size definitions.
- */
- #define SECTION_SHIFT 20
- #define SECTION_SIZE (1UL << SECTION_SHIFT)
- #define SECTION_MASK (~(SECTION_SIZE-1))
- /*
- * ARMv6 supersection address mask and size definitions.
- */
- #define SUPERSECTION_SHIFT 24
- #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
- #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
- #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
- /*
- * "Linux" PTE definitions.
- *
- * We keep two sets of PTEs - the hardware and the linux version.
- * This allows greater flexibility in the way we map the Linux bits
- * onto the hardware tables, and allows us to have YOUNG and DIRTY
- * bits.
- *
- * The PTE table pointer refers to the hardware entries; the "Linux"
- * entries are stored 1024 bytes below.
- */
- #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
- #define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
- #define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
- #define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
- #define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
- #define L_PTE_USER (_AT(pteval_t, 1) << 8)
- #define L_PTE_XN (_AT(pteval_t, 1) << 9)
- #define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
- #define L_PTE_NONE (_AT(pteval_t, 1) << 11)
- /*
- * These are the memory types, defined to be compatible with
- * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
- * ARMv6+ without TEX remapping, they are a table index.
- * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
- *
- * MT type Pre-ARMv6 ARMv6+ type / cacheable status
- * UNCACHED Uncached Strongly ordered
- * BUFFERABLE Bufferable Normal memory / non-cacheable
- * WRITETHROUGH Writethrough Normal memory / write through
- * WRITEBACK Writeback Normal memory / write back, read alloc
- * MINICACHE Minicache N/A
- * WRITEALLOC Writeback Normal memory / write back, write alloc
- * DEV_SHARED Uncached Device memory (shared)
- * DEV_NONSHARED Uncached Device memory (non-shared)
- * DEV_WC Bufferable Normal memory / non-cacheable
- * DEV_CACHED Writeback Normal memory / write back, read alloc
- * VECTORS Variable Normal memory / variable
- *
- * All normal memory mappings have the following properties:
- * - reads can be repeated with no side effects
- * - repeated reads return the last value written
- * - reads can fetch additional locations without side effects
- * - writes can be repeated (in certain cases) with no side effects
- * - writes can be merged before accessing the target
- * - unaligned accesses can be supported
- *
- * All device mappings have the following properties:
- * - no access speculation
- * - no repetition (eg, on return from an exception)
- * - number, order and size of accesses are maintained
- * - unaligned accesses are "unpredictable"
- */
- #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
- #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
- #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
- #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
- #define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
- #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
- #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
- #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
- #define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
- #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
- #define L_PTE_MT_VECTORS (_AT(pteval_t, 0x0f) << 2) /* 1111 */
- #define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
- #ifndef __ASSEMBLY__
- /*
- * The "pud_xxx()" functions here are trivial when the pmd is folded into
- * the pud: the pud entry is never bad, always exists, and can't be set or
- * cleared.
- */
- #define pud_none(pud) (0)
- #define pud_bad(pud) (0)
- #define pud_present(pud) (1)
- #define pud_clear(pudp) do { } while (0)
- #define set_pud(pud,pudp) do { } while (0)
- static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
- {
- return (pmd_t *)pud;
- }
- #define pmd_large(pmd) (pmd_val(pmd) & 2)
- #define pmd_bad(pmd) (pmd_val(pmd) & 2)
- #define pmd_present(pmd) (pmd_val(pmd))
- #define copy_pmd(pmdpd,pmdps) \
- do { \
- pmdpd[0] = pmdps[0]; \
- pmdpd[1] = pmdps[1]; \
- flush_pmd_entry(pmdpd); \
- } while (0)
- #define pmd_clear(pmdp) \
- do { \
- pmdp[0] = __pmd(0); \
- pmdp[1] = __pmd(0); \
- clean_pmd_entry(pmdp); \
- } while (0)
- /* we don't need complex calculations here as the pmd is folded into the pgd */
- #define pmd_addr_end(addr,end) (end)
- #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
- #define pte_special(pte) (0)
- static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
- /*
- * We don't have huge page support for short descriptors, for the moment
- * define empty stubs for use by pin_page_for_write.
- */
- #define pmd_hugewillfault(pmd) (0)
- #define pmd_thp_or_huge(pmd) (0)
- #endif /* __ASSEMBLY__ */
- #endif /* _ASM_PGTABLE_2LEVEL_H */
|