poly1305.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. /**
  2. * \file poly1305.c
  3. *
  4. * \brief Poly1305 authentication algorithm.
  5. *
  6. * Copyright The Mbed TLS Contributors
  7. * SPDX-License-Identifier: Apache-2.0
  8. *
  9. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  10. * not use this file except in compliance with the License.
  11. * You may obtain a copy of the License at
  12. *
  13. * http://www.apache.org/licenses/LICENSE-2.0
  14. *
  15. * Unless required by applicable law or agreed to in writing, software
  16. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  17. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  18. * See the License for the specific language governing permissions and
  19. * limitations under the License.
  20. */
  21. #include "common.h"
  22. #if defined(MBEDTLS_POLY1305_C)
  23. #include "mbedtls/poly1305.h"
  24. #include "mbedtls/platform_util.h"
  25. #include "mbedtls/error.h"
  26. #include <string.h>
  27. #if defined(MBEDTLS_SELF_TEST)
  28. #if defined(MBEDTLS_PLATFORM_C)
  29. #include "mbedtls/platform.h"
  30. #else
  31. #include <stdio.h>
  32. #define mbedtls_printf printf
  33. #endif /* MBEDTLS_PLATFORM_C */
  34. #endif /* MBEDTLS_SELF_TEST */
  35. #if !defined(MBEDTLS_POLY1305_ALT)
  36. #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
  37. !defined(inline) && !defined(__cplusplus)
  38. #define inline __inline
  39. #endif
  40. /* Parameter validation macros */
  41. #define POLY1305_VALIDATE_RET( cond ) \
  42. MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_POLY1305_BAD_INPUT_DATA )
  43. #define POLY1305_VALIDATE( cond ) \
  44. MBEDTLS_INTERNAL_VALIDATE( cond )
  45. #define POLY1305_BLOCK_SIZE_BYTES ( 16U )
  46. /*
  47. * Our implementation is tuned for 32-bit platforms with a 64-bit multiplier.
  48. * However we provided an alternative for platforms without such a multiplier.
  49. */
  50. #if defined(MBEDTLS_NO_64BIT_MULTIPLICATION)
  51. static uint64_t mul64( uint32_t a, uint32_t b )
  52. {
  53. /* a = al + 2**16 ah, b = bl + 2**16 bh */
  54. const uint16_t al = (uint16_t) a;
  55. const uint16_t bl = (uint16_t) b;
  56. const uint16_t ah = a >> 16;
  57. const uint16_t bh = b >> 16;
  58. /* ab = al*bl + 2**16 (ah*bl + bl*bh) + 2**32 ah*bh */
  59. const uint32_t lo = (uint32_t) al * bl;
  60. const uint64_t me = (uint64_t)( (uint32_t) ah * bl ) + (uint32_t) al * bh;
  61. const uint32_t hi = (uint32_t) ah * bh;
  62. return( lo + ( me << 16 ) + ( (uint64_t) hi << 32 ) );
  63. }
  64. #else
  65. static inline uint64_t mul64( uint32_t a, uint32_t b )
  66. {
  67. return( (uint64_t) a * b );
  68. }
  69. #endif
  70. /**
  71. * \brief Process blocks with Poly1305.
  72. *
  73. * \param ctx The Poly1305 context.
  74. * \param nblocks Number of blocks to process. Note that this
  75. * function only processes full blocks.
  76. * \param input Buffer containing the input block(s).
  77. * \param needs_padding Set to 0 if the padding bit has already been
  78. * applied to the input data before calling this
  79. * function. Otherwise, set this parameter to 1.
  80. */
  81. static void poly1305_process( mbedtls_poly1305_context *ctx,
  82. size_t nblocks,
  83. const unsigned char *input,
  84. uint32_t needs_padding )
  85. {
  86. uint64_t d0, d1, d2, d3;
  87. uint32_t acc0, acc1, acc2, acc3, acc4;
  88. uint32_t r0, r1, r2, r3;
  89. uint32_t rs1, rs2, rs3;
  90. size_t offset = 0U;
  91. size_t i;
  92. r0 = ctx->r[0];
  93. r1 = ctx->r[1];
  94. r2 = ctx->r[2];
  95. r3 = ctx->r[3];
  96. rs1 = r1 + ( r1 >> 2U );
  97. rs2 = r2 + ( r2 >> 2U );
  98. rs3 = r3 + ( r3 >> 2U );
  99. acc0 = ctx->acc[0];
  100. acc1 = ctx->acc[1];
  101. acc2 = ctx->acc[2];
  102. acc3 = ctx->acc[3];
  103. acc4 = ctx->acc[4];
  104. /* Process full blocks */
  105. for( i = 0U; i < nblocks; i++ )
  106. {
  107. /* The input block is treated as a 128-bit little-endian integer */
  108. d0 = MBEDTLS_GET_UINT32_LE( input, offset + 0 );
  109. d1 = MBEDTLS_GET_UINT32_LE( input, offset + 4 );
  110. d2 = MBEDTLS_GET_UINT32_LE( input, offset + 8 );
  111. d3 = MBEDTLS_GET_UINT32_LE( input, offset + 12 );
  112. /* Compute: acc += (padded) block as a 130-bit integer */
  113. d0 += (uint64_t) acc0;
  114. d1 += (uint64_t) acc1 + ( d0 >> 32U );
  115. d2 += (uint64_t) acc2 + ( d1 >> 32U );
  116. d3 += (uint64_t) acc3 + ( d2 >> 32U );
  117. acc0 = (uint32_t) d0;
  118. acc1 = (uint32_t) d1;
  119. acc2 = (uint32_t) d2;
  120. acc3 = (uint32_t) d3;
  121. acc4 += (uint32_t) ( d3 >> 32U ) + needs_padding;
  122. /* Compute: acc *= r */
  123. d0 = mul64( acc0, r0 ) +
  124. mul64( acc1, rs3 ) +
  125. mul64( acc2, rs2 ) +
  126. mul64( acc3, rs1 );
  127. d1 = mul64( acc0, r1 ) +
  128. mul64( acc1, r0 ) +
  129. mul64( acc2, rs3 ) +
  130. mul64( acc3, rs2 ) +
  131. mul64( acc4, rs1 );
  132. d2 = mul64( acc0, r2 ) +
  133. mul64( acc1, r1 ) +
  134. mul64( acc2, r0 ) +
  135. mul64( acc3, rs3 ) +
  136. mul64( acc4, rs2 );
  137. d3 = mul64( acc0, r3 ) +
  138. mul64( acc1, r2 ) +
  139. mul64( acc2, r1 ) +
  140. mul64( acc3, r0 ) +
  141. mul64( acc4, rs3 );
  142. acc4 *= r0;
  143. /* Compute: acc %= (2^130 - 5) (partial remainder) */
  144. d1 += ( d0 >> 32 );
  145. d2 += ( d1 >> 32 );
  146. d3 += ( d2 >> 32 );
  147. acc0 = (uint32_t) d0;
  148. acc1 = (uint32_t) d1;
  149. acc2 = (uint32_t) d2;
  150. acc3 = (uint32_t) d3;
  151. acc4 = (uint32_t) ( d3 >> 32 ) + acc4;
  152. d0 = (uint64_t) acc0 + ( acc4 >> 2 ) + ( acc4 & 0xFFFFFFFCU );
  153. acc4 &= 3U;
  154. acc0 = (uint32_t) d0;
  155. d0 = (uint64_t) acc1 + ( d0 >> 32U );
  156. acc1 = (uint32_t) d0;
  157. d0 = (uint64_t) acc2 + ( d0 >> 32U );
  158. acc2 = (uint32_t) d0;
  159. d0 = (uint64_t) acc3 + ( d0 >> 32U );
  160. acc3 = (uint32_t) d0;
  161. d0 = (uint64_t) acc4 + ( d0 >> 32U );
  162. acc4 = (uint32_t) d0;
  163. offset += POLY1305_BLOCK_SIZE_BYTES;
  164. }
  165. ctx->acc[0] = acc0;
  166. ctx->acc[1] = acc1;
  167. ctx->acc[2] = acc2;
  168. ctx->acc[3] = acc3;
  169. ctx->acc[4] = acc4;
  170. }
  171. /**
  172. * \brief Compute the Poly1305 MAC
  173. *
  174. * \param ctx The Poly1305 context.
  175. * \param mac The buffer to where the MAC is written. Must be
  176. * big enough to contain the 16-byte MAC.
  177. */
  178. static void poly1305_compute_mac( const mbedtls_poly1305_context *ctx,
  179. unsigned char mac[16] )
  180. {
  181. uint64_t d;
  182. uint32_t g0, g1, g2, g3, g4;
  183. uint32_t acc0, acc1, acc2, acc3, acc4;
  184. uint32_t mask;
  185. uint32_t mask_inv;
  186. acc0 = ctx->acc[0];
  187. acc1 = ctx->acc[1];
  188. acc2 = ctx->acc[2];
  189. acc3 = ctx->acc[3];
  190. acc4 = ctx->acc[4];
  191. /* Before adding 's' we ensure that the accumulator is mod 2^130 - 5.
  192. * We do this by calculating acc - (2^130 - 5), then checking if
  193. * the 131st bit is set. If it is, then reduce: acc -= (2^130 - 5)
  194. */
  195. /* Calculate acc + -(2^130 - 5) */
  196. d = ( (uint64_t) acc0 + 5U );
  197. g0 = (uint32_t) d;
  198. d = ( (uint64_t) acc1 + ( d >> 32 ) );
  199. g1 = (uint32_t) d;
  200. d = ( (uint64_t) acc2 + ( d >> 32 ) );
  201. g2 = (uint32_t) d;
  202. d = ( (uint64_t) acc3 + ( d >> 32 ) );
  203. g3 = (uint32_t) d;
  204. g4 = acc4 + (uint32_t) ( d >> 32U );
  205. /* mask == 0xFFFFFFFF if 131st bit is set, otherwise mask == 0 */
  206. mask = (uint32_t) 0U - ( g4 >> 2U );
  207. mask_inv = ~mask;
  208. /* If 131st bit is set then acc=g, otherwise, acc is unmodified */
  209. acc0 = ( acc0 & mask_inv ) | ( g0 & mask );
  210. acc1 = ( acc1 & mask_inv ) | ( g1 & mask );
  211. acc2 = ( acc2 & mask_inv ) | ( g2 & mask );
  212. acc3 = ( acc3 & mask_inv ) | ( g3 & mask );
  213. /* Add 's' */
  214. d = (uint64_t) acc0 + ctx->s[0];
  215. acc0 = (uint32_t) d;
  216. d = (uint64_t) acc1 + ctx->s[1] + ( d >> 32U );
  217. acc1 = (uint32_t) d;
  218. d = (uint64_t) acc2 + ctx->s[2] + ( d >> 32U );
  219. acc2 = (uint32_t) d;
  220. acc3 += ctx->s[3] + (uint32_t) ( d >> 32U );
  221. /* Compute MAC (128 least significant bits of the accumulator) */
  222. MBEDTLS_PUT_UINT32_LE( acc0, mac, 0 );
  223. MBEDTLS_PUT_UINT32_LE( acc1, mac, 4 );
  224. MBEDTLS_PUT_UINT32_LE( acc2, mac, 8 );
  225. MBEDTLS_PUT_UINT32_LE( acc3, mac, 12 );
  226. }
  227. void mbedtls_poly1305_init( mbedtls_poly1305_context *ctx )
  228. {
  229. POLY1305_VALIDATE( ctx != NULL );
  230. mbedtls_platform_zeroize( ctx, sizeof( mbedtls_poly1305_context ) );
  231. }
  232. void mbedtls_poly1305_free( mbedtls_poly1305_context *ctx )
  233. {
  234. if( ctx == NULL )
  235. return;
  236. mbedtls_platform_zeroize( ctx, sizeof( mbedtls_poly1305_context ) );
  237. }
  238. int mbedtls_poly1305_starts( mbedtls_poly1305_context *ctx,
  239. const unsigned char key[32] )
  240. {
  241. POLY1305_VALIDATE_RET( ctx != NULL );
  242. POLY1305_VALIDATE_RET( key != NULL );
  243. /* r &= 0x0ffffffc0ffffffc0ffffffc0fffffff */
  244. ctx->r[0] = MBEDTLS_GET_UINT32_LE( key, 0 ) & 0x0FFFFFFFU;
  245. ctx->r[1] = MBEDTLS_GET_UINT32_LE( key, 4 ) & 0x0FFFFFFCU;
  246. ctx->r[2] = MBEDTLS_GET_UINT32_LE( key, 8 ) & 0x0FFFFFFCU;
  247. ctx->r[3] = MBEDTLS_GET_UINT32_LE( key, 12 ) & 0x0FFFFFFCU;
  248. ctx->s[0] = MBEDTLS_GET_UINT32_LE( key, 16 );
  249. ctx->s[1] = MBEDTLS_GET_UINT32_LE( key, 20 );
  250. ctx->s[2] = MBEDTLS_GET_UINT32_LE( key, 24 );
  251. ctx->s[3] = MBEDTLS_GET_UINT32_LE( key, 28 );
  252. /* Initial accumulator state */
  253. ctx->acc[0] = 0U;
  254. ctx->acc[1] = 0U;
  255. ctx->acc[2] = 0U;
  256. ctx->acc[3] = 0U;
  257. ctx->acc[4] = 0U;
  258. /* Queue initially empty */
  259. mbedtls_platform_zeroize( ctx->queue, sizeof( ctx->queue ) );
  260. ctx->queue_len = 0U;
  261. return( 0 );
  262. }
  263. int mbedtls_poly1305_update( mbedtls_poly1305_context *ctx,
  264. const unsigned char *input,
  265. size_t ilen )
  266. {
  267. size_t offset = 0U;
  268. size_t remaining = ilen;
  269. size_t queue_free_len;
  270. size_t nblocks;
  271. POLY1305_VALIDATE_RET( ctx != NULL );
  272. POLY1305_VALIDATE_RET( ilen == 0 || input != NULL );
  273. if( ( remaining > 0U ) && ( ctx->queue_len > 0U ) )
  274. {
  275. queue_free_len = ( POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len );
  276. if( ilen < queue_free_len )
  277. {
  278. /* Not enough data to complete the block.
  279. * Store this data with the other leftovers.
  280. */
  281. memcpy( &ctx->queue[ctx->queue_len],
  282. input,
  283. ilen );
  284. ctx->queue_len += ilen;
  285. remaining = 0U;
  286. }
  287. else
  288. {
  289. /* Enough data to produce a complete block */
  290. memcpy( &ctx->queue[ctx->queue_len],
  291. input,
  292. queue_free_len );
  293. ctx->queue_len = 0U;
  294. poly1305_process( ctx, 1U, ctx->queue, 1U ); /* add padding bit */
  295. offset += queue_free_len;
  296. remaining -= queue_free_len;
  297. }
  298. }
  299. if( remaining >= POLY1305_BLOCK_SIZE_BYTES )
  300. {
  301. nblocks = remaining / POLY1305_BLOCK_SIZE_BYTES;
  302. poly1305_process( ctx, nblocks, &input[offset], 1U );
  303. offset += nblocks * POLY1305_BLOCK_SIZE_BYTES;
  304. remaining %= POLY1305_BLOCK_SIZE_BYTES;
  305. }
  306. if( remaining > 0U )
  307. {
  308. /* Store partial block */
  309. ctx->queue_len = remaining;
  310. memcpy( ctx->queue, &input[offset], remaining );
  311. }
  312. return( 0 );
  313. }
  314. int mbedtls_poly1305_finish( mbedtls_poly1305_context *ctx,
  315. unsigned char mac[16] )
  316. {
  317. POLY1305_VALIDATE_RET( ctx != NULL );
  318. POLY1305_VALIDATE_RET( mac != NULL );
  319. /* Process any leftover data */
  320. if( ctx->queue_len > 0U )
  321. {
  322. /* Add padding bit */
  323. ctx->queue[ctx->queue_len] = 1U;
  324. ctx->queue_len++;
  325. /* Pad with zeroes */
  326. memset( &ctx->queue[ctx->queue_len],
  327. 0,
  328. POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len );
  329. poly1305_process( ctx, 1U, /* Process 1 block */
  330. ctx->queue, 0U ); /* Already padded above */
  331. }
  332. poly1305_compute_mac( ctx, mac );
  333. return( 0 );
  334. }
  335. int mbedtls_poly1305_mac( const unsigned char key[32],
  336. const unsigned char *input,
  337. size_t ilen,
  338. unsigned char mac[16] )
  339. {
  340. mbedtls_poly1305_context ctx;
  341. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  342. POLY1305_VALIDATE_RET( key != NULL );
  343. POLY1305_VALIDATE_RET( mac != NULL );
  344. POLY1305_VALIDATE_RET( ilen == 0 || input != NULL );
  345. mbedtls_poly1305_init( &ctx );
  346. ret = mbedtls_poly1305_starts( &ctx, key );
  347. if( ret != 0 )
  348. goto cleanup;
  349. ret = mbedtls_poly1305_update( &ctx, input, ilen );
  350. if( ret != 0 )
  351. goto cleanup;
  352. ret = mbedtls_poly1305_finish( &ctx, mac );
  353. cleanup:
  354. mbedtls_poly1305_free( &ctx );
  355. return( ret );
  356. }
  357. #endif /* MBEDTLS_POLY1305_ALT */
  358. #if defined(MBEDTLS_SELF_TEST)
  359. static const unsigned char test_keys[2][32] =
  360. {
  361. {
  362. 0x85, 0xd6, 0xbe, 0x78, 0x57, 0x55, 0x6d, 0x33,
  363. 0x7f, 0x44, 0x52, 0xfe, 0x42, 0xd5, 0x06, 0xa8,
  364. 0x01, 0x03, 0x80, 0x8a, 0xfb, 0x0d, 0xb2, 0xfd,
  365. 0x4a, 0xbf, 0xf6, 0xaf, 0x41, 0x49, 0xf5, 0x1b
  366. },
  367. {
  368. 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a,
  369. 0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0,
  370. 0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09,
  371. 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0
  372. }
  373. };
  374. static const unsigned char test_data[2][127] =
  375. {
  376. {
  377. 0x43, 0x72, 0x79, 0x70, 0x74, 0x6f, 0x67, 0x72,
  378. 0x61, 0x70, 0x68, 0x69, 0x63, 0x20, 0x46, 0x6f,
  379. 0x72, 0x75, 0x6d, 0x20, 0x52, 0x65, 0x73, 0x65,
  380. 0x61, 0x72, 0x63, 0x68, 0x20, 0x47, 0x72, 0x6f,
  381. 0x75, 0x70
  382. },
  383. {
  384. 0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72,
  385. 0x69, 0x6c, 0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61,
  386. 0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73,
  387. 0x6c, 0x69, 0x74, 0x68, 0x79, 0x20, 0x74, 0x6f,
  388. 0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20,
  389. 0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64,
  390. 0x20, 0x67, 0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20,
  391. 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x77,
  392. 0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41, 0x6c, 0x6c,
  393. 0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77,
  394. 0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20,
  395. 0x62, 0x6f, 0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65,
  396. 0x73, 0x2c, 0x0a, 0x41, 0x6e, 0x64, 0x20, 0x74,
  397. 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d, 0x65, 0x20,
  398. 0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75,
  399. 0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e
  400. }
  401. };
  402. static const size_t test_data_len[2] =
  403. {
  404. 34U,
  405. 127U
  406. };
  407. static const unsigned char test_mac[2][16] =
  408. {
  409. {
  410. 0xa8, 0x06, 0x1d, 0xc1, 0x30, 0x51, 0x36, 0xc6,
  411. 0xc2, 0x2b, 0x8b, 0xaf, 0x0c, 0x01, 0x27, 0xa9
  412. },
  413. {
  414. 0x45, 0x41, 0x66, 0x9a, 0x7e, 0xaa, 0xee, 0x61,
  415. 0xe7, 0x08, 0xdc, 0x7c, 0xbc, 0xc5, 0xeb, 0x62
  416. }
  417. };
  418. /* Make sure no other definition is already present. */
  419. #undef ASSERT
  420. #define ASSERT( cond, args ) \
  421. do \
  422. { \
  423. if( ! ( cond ) ) \
  424. { \
  425. if( verbose != 0 ) \
  426. mbedtls_printf args; \
  427. \
  428. return( -1 ); \
  429. } \
  430. } \
  431. while( 0 )
  432. int mbedtls_poly1305_self_test( int verbose )
  433. {
  434. unsigned char mac[16];
  435. unsigned i;
  436. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  437. for( i = 0U; i < 2U; i++ )
  438. {
  439. if( verbose != 0 )
  440. mbedtls_printf( " Poly1305 test %u ", i );
  441. ret = mbedtls_poly1305_mac( test_keys[i],
  442. test_data[i],
  443. test_data_len[i],
  444. mac );
  445. ASSERT( 0 == ret, ( "error code: %i\n", ret ) );
  446. ASSERT( 0 == memcmp( mac, test_mac[i], 16U ), ( "failed (mac)\n" ) );
  447. if( verbose != 0 )
  448. mbedtls_printf( "passed\n" );
  449. }
  450. if( verbose != 0 )
  451. mbedtls_printf( "\n" );
  452. return( 0 );
  453. }
  454. #endif /* MBEDTLS_SELF_TEST */
  455. #endif /* MBEDTLS_POLY1305_C */