1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094 |
- /*
- * Multi-precision integer library
- *
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * The following sources were referenced in the design of this Multi-precision
- * Integer library:
- *
- * [1] Handbook of Applied Cryptography - 1997
- * Menezes, van Oorschot and Vanstone
- *
- * [2] Multi-Precision Math
- * Tom St Denis
- * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
- *
- * [3] GNU Multi-Precision Arithmetic Library
- * https://gmplib.org/manual/index.html
- *
- */
- #include "common.h"
- #if defined(MBEDTLS_BIGNUM_C)
- #include "mbedtls/bignum.h"
- #include "mbedtls/bn_mul.h"
- #include "mbedtls/platform_util.h"
- #include "mbedtls/error.h"
- #include "constant_time_internal.h"
- #include <limits.h>
- #include <string.h>
- #if defined(MBEDTLS_PLATFORM_C)
- #include "mbedtls/platform.h"
- #else
- #include <stdio.h>
- #include <stdlib.h>
- #define mbedtls_printf printf
- #define mbedtls_calloc calloc
- #define mbedtls_free free
- #endif
- #define MPI_VALIDATE_RET( cond ) \
- MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
- #define MPI_VALIDATE( cond ) \
- MBEDTLS_INTERNAL_VALIDATE( cond )
- #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
- #define biL (ciL << 3) /* bits in limb */
- #define biH (ciL << 2) /* half limb size */
- #define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
- /*
- * Convert between bits/chars and number of limbs
- * Divide first in order to avoid potential overflows
- */
- #define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
- #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
- /* Implementation that should never be optimized out by the compiler */
- static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
- {
- mbedtls_platform_zeroize( v, ciL * n );
- }
- /*
- * Initialize one MPI
- */
- void mbedtls_mpi_init( mbedtls_mpi *X )
- {
- MPI_VALIDATE( X != NULL );
- X->s = 1;
- X->n = 0;
- X->p = NULL;
- }
- /*
- * Unallocate one MPI
- */
- void mbedtls_mpi_free( mbedtls_mpi *X )
- {
- if( X == NULL )
- return;
- if( X->p != NULL )
- {
- mbedtls_mpi_zeroize( X->p, X->n );
- mbedtls_free( X->p );
- }
- X->s = 1;
- X->n = 0;
- X->p = NULL;
- }
- /*
- * Enlarge to the specified number of limbs
- */
- int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
- {
- mbedtls_mpi_uint *p;
- MPI_VALIDATE_RET( X != NULL );
- if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
- return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
- if( X->n < nblimbs )
- {
- if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
- return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
- if( X->p != NULL )
- {
- memcpy( p, X->p, X->n * ciL );
- mbedtls_mpi_zeroize( X->p, X->n );
- mbedtls_free( X->p );
- }
- X->n = nblimbs;
- X->p = p;
- }
- return( 0 );
- }
- /*
- * Resize down as much as possible,
- * while keeping at least the specified number of limbs
- */
- int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
- {
- mbedtls_mpi_uint *p;
- size_t i;
- MPI_VALIDATE_RET( X != NULL );
- if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
- return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
- /* Actually resize up if there are currently fewer than nblimbs limbs. */
- if( X->n <= nblimbs )
- return( mbedtls_mpi_grow( X, nblimbs ) );
- /* After this point, then X->n > nblimbs and in particular X->n > 0. */
- for( i = X->n - 1; i > 0; i-- )
- if( X->p[i] != 0 )
- break;
- i++;
- if( i < nblimbs )
- i = nblimbs;
- if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
- return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
- if( X->p != NULL )
- {
- memcpy( p, X->p, i * ciL );
- mbedtls_mpi_zeroize( X->p, X->n );
- mbedtls_free( X->p );
- }
- X->n = i;
- X->p = p;
- return( 0 );
- }
- /* Resize X to have exactly n limbs and set it to 0. */
- static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
- {
- if( limbs == 0 )
- {
- mbedtls_mpi_free( X );
- return( 0 );
- }
- else if( X->n == limbs )
- {
- memset( X->p, 0, limbs * ciL );
- X->s = 1;
- return( 0 );
- }
- else
- {
- mbedtls_mpi_free( X );
- return( mbedtls_mpi_grow( X, limbs ) );
- }
- }
- /*
- * Copy the contents of Y into X.
- *
- * This function is not constant-time. Leading zeros in Y may be removed.
- *
- * Ensure that X does not shrink. This is not guaranteed by the public API,
- * but some code in the bignum module relies on this property, for example
- * in mbedtls_mpi_exp_mod().
- */
- int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
- {
- int ret = 0;
- size_t i;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
- if( X == Y )
- return( 0 );
- if( Y->n == 0 )
- {
- if( X->n != 0 )
- {
- X->s = 1;
- memset( X->p, 0, X->n * ciL );
- }
- return( 0 );
- }
- for( i = Y->n - 1; i > 0; i-- )
- if( Y->p[i] != 0 )
- break;
- i++;
- X->s = Y->s;
- if( X->n < i )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
- }
- else
- {
- memset( X->p + i, 0, ( X->n - i ) * ciL );
- }
- memcpy( X->p, Y->p, i * ciL );
- cleanup:
- return( ret );
- }
- /*
- * Swap the contents of X and Y
- */
- void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
- {
- mbedtls_mpi T;
- MPI_VALIDATE( X != NULL );
- MPI_VALIDATE( Y != NULL );
- memcpy( &T, X, sizeof( mbedtls_mpi ) );
- memcpy( X, Y, sizeof( mbedtls_mpi ) );
- memcpy( Y, &T, sizeof( mbedtls_mpi ) );
- }
- /*
- * Set value from integer
- */
- int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- MPI_VALIDATE_RET( X != NULL );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
- memset( X->p, 0, X->n * ciL );
- X->p[0] = ( z < 0 ) ? -z : z;
- X->s = ( z < 0 ) ? -1 : 1;
- cleanup:
- return( ret );
- }
- /*
- * Get a specific bit
- */
- int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
- {
- MPI_VALIDATE_RET( X != NULL );
- if( X->n * biL <= pos )
- return( 0 );
- return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
- }
- /* Get a specific byte, without range checks. */
- #define GET_BYTE( X, i ) \
- ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
- /*
- * Set a bit to a specific value of 0 or 1
- */
- int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
- {
- int ret = 0;
- size_t off = pos / biL;
- size_t idx = pos % biL;
- MPI_VALIDATE_RET( X != NULL );
- if( val != 0 && val != 1 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- if( X->n * biL <= pos )
- {
- if( val == 0 )
- return( 0 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
- }
- X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
- X->p[off] |= (mbedtls_mpi_uint) val << idx;
- cleanup:
- return( ret );
- }
- /*
- * Return the number of less significant zero-bits
- */
- size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
- {
- size_t i, j, count = 0;
- MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
- for( i = 0; i < X->n; i++ )
- for( j = 0; j < biL; j++, count++ )
- if( ( ( X->p[i] >> j ) & 1 ) != 0 )
- return( count );
- return( 0 );
- }
- /*
- * Count leading zero bits in a given integer
- */
- static size_t mbedtls_clz( const mbedtls_mpi_uint x )
- {
- size_t j;
- mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
- for( j = 0; j < biL; j++ )
- {
- if( x & mask ) break;
- mask >>= 1;
- }
- return j;
- }
- /*
- * Return the number of bits
- */
- size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
- {
- size_t i, j;
- if( X->n == 0 )
- return( 0 );
- for( i = X->n - 1; i > 0; i-- )
- if( X->p[i] != 0 )
- break;
- j = biL - mbedtls_clz( X->p[i] );
- return( ( i * biL ) + j );
- }
- /*
- * Return the total size in bytes
- */
- size_t mbedtls_mpi_size( const mbedtls_mpi *X )
- {
- return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
- }
- /*
- * Convert an ASCII character to digit value
- */
- static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
- {
- *d = 255;
- if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
- if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
- if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
- if( *d >= (mbedtls_mpi_uint) radix )
- return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
- return( 0 );
- }
- /*
- * Import from an ASCII string
- */
- int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j, slen, n;
- int sign = 1;
- mbedtls_mpi_uint d;
- mbedtls_mpi T;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( s != NULL );
- if( radix < 2 || radix > 16 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- mbedtls_mpi_init( &T );
- if( s[0] == 0 )
- {
- mbedtls_mpi_free( X );
- return( 0 );
- }
- if( s[0] == '-' )
- {
- ++s;
- sign = -1;
- }
- slen = strlen( s );
- if( radix == 16 )
- {
- if( slen > MPI_SIZE_T_MAX >> 2 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- n = BITS_TO_LIMBS( slen << 2 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
- for( i = slen, j = 0; i > 0; i--, j++ )
- {
- MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
- X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
- }
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
- for( i = 0; i < slen; i++ )
- {
- MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
- }
- }
- if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
- X->s = -1;
- cleanup:
- mbedtls_mpi_free( &T );
- return( ret );
- }
- /*
- * Helper to write the digits high-order first.
- */
- static int mpi_write_hlp( mbedtls_mpi *X, int radix,
- char **p, const size_t buflen )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi_uint r;
- size_t length = 0;
- char *p_end = *p + buflen;
- do
- {
- if( length >= buflen )
- {
- return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
- /*
- * Write the residue in the current position, as an ASCII character.
- */
- if( r < 0xA )
- *(--p_end) = (char)( '0' + r );
- else
- *(--p_end) = (char)( 'A' + ( r - 0xA ) );
- length++;
- } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
- memmove( *p, p_end, length );
- *p += length;
- cleanup:
- return( ret );
- }
- /*
- * Export into an ASCII string
- */
- int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
- char *buf, size_t buflen, size_t *olen )
- {
- int ret = 0;
- size_t n;
- char *p;
- mbedtls_mpi T;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( olen != NULL );
- MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
- if( radix < 2 || radix > 16 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
- if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
- * `n`. If radix > 4, this might be a strict
- * overapproximation of the number of
- * radix-adic digits needed to present `n`. */
- if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
- * present `n`. */
- n += 1; /* Terminating null byte */
- n += 1; /* Compensate for the divisions above, which round down `n`
- * in case it's not even. */
- n += 1; /* Potential '-'-sign. */
- n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
- * which always uses an even number of hex-digits. */
- if( buflen < n )
- {
- *olen = n;
- return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
- }
- p = buf;
- mbedtls_mpi_init( &T );
- if( X->s == -1 )
- {
- *p++ = '-';
- buflen--;
- }
- if( radix == 16 )
- {
- int c;
- size_t i, j, k;
- for( i = X->n, k = 0; i > 0; i-- )
- {
- for( j = ciL; j > 0; j-- )
- {
- c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
- if( c == 0 && k == 0 && ( i + j ) != 2 )
- continue;
- *(p++) = "0123456789ABCDEF" [c / 16];
- *(p++) = "0123456789ABCDEF" [c % 16];
- k = 1;
- }
- }
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
- if( T.s == -1 )
- T.s = 1;
- MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
- }
- *p++ = '\0';
- *olen = p - buf;
- cleanup:
- mbedtls_mpi_free( &T );
- return( ret );
- }
- #if defined(MBEDTLS_FS_IO)
- /*
- * Read X from an opened file
- */
- int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
- {
- mbedtls_mpi_uint d;
- size_t slen;
- char *p;
- /*
- * Buffer should have space for (short) label and decimal formatted MPI,
- * newline characters and '\0'
- */
- char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( fin != NULL );
- if( radix < 2 || radix > 16 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- memset( s, 0, sizeof( s ) );
- if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
- return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
- slen = strlen( s );
- if( slen == sizeof( s ) - 2 )
- return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
- if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
- if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
- p = s + slen;
- while( p-- > s )
- if( mpi_get_digit( &d, radix, *p ) != 0 )
- break;
- return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
- }
- /*
- * Write X into an opened file (or stdout if fout == NULL)
- */
- int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t n, slen, plen;
- /*
- * Buffer should have space for (short) label and decimal formatted MPI,
- * newline characters and '\0'
- */
- char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
- MPI_VALIDATE_RET( X != NULL );
- if( radix < 2 || radix > 16 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- memset( s, 0, sizeof( s ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
- if( p == NULL ) p = "";
- plen = strlen( p );
- slen = strlen( s );
- s[slen++] = '\r';
- s[slen++] = '\n';
- if( fout != NULL )
- {
- if( fwrite( p, 1, plen, fout ) != plen ||
- fwrite( s, 1, slen, fout ) != slen )
- return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
- }
- else
- mbedtls_printf( "%s%s", p, s );
- cleanup:
- return( ret );
- }
- #endif /* MBEDTLS_FS_IO */
- /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
- * into the storage form used by mbedtls_mpi. */
- static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
- {
- uint8_t i;
- unsigned char *x_ptr;
- mbedtls_mpi_uint tmp = 0;
- for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
- {
- tmp <<= CHAR_BIT;
- tmp |= (mbedtls_mpi_uint) *x_ptr;
- }
- return( tmp );
- }
- static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
- {
- #if defined(__BYTE_ORDER__)
- /* Nothing to do on bigendian systems. */
- #if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
- return( x );
- #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
- #if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
- /* For GCC and Clang, have builtins for byte swapping. */
- #if defined(__GNUC__) && defined(__GNUC_PREREQ)
- #if __GNUC_PREREQ(4,3)
- #define have_bswap
- #endif
- #endif
- #if defined(__clang__) && defined(__has_builtin)
- #if __has_builtin(__builtin_bswap32) && \
- __has_builtin(__builtin_bswap64)
- #define have_bswap
- #endif
- #endif
- #if defined(have_bswap)
- /* The compiler is hopefully able to statically evaluate this! */
- switch( sizeof(mbedtls_mpi_uint) )
- {
- case 4:
- return( __builtin_bswap32(x) );
- case 8:
- return( __builtin_bswap64(x) );
- }
- #endif
- #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
- #endif /* __BYTE_ORDER__ */
- /* Fall back to C-based reordering if we don't know the byte order
- * or we couldn't use a compiler-specific builtin. */
- return( mpi_uint_bigendian_to_host_c( x ) );
- }
- static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
- {
- mbedtls_mpi_uint *cur_limb_left;
- mbedtls_mpi_uint *cur_limb_right;
- if( limbs == 0 )
- return;
- /*
- * Traverse limbs and
- * - adapt byte-order in each limb
- * - swap the limbs themselves.
- * For that, simultaneously traverse the limbs from left to right
- * and from right to left, as long as the left index is not bigger
- * than the right index (it's not a problem if limbs is odd and the
- * indices coincide in the last iteration).
- */
- for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
- cur_limb_left <= cur_limb_right;
- cur_limb_left++, cur_limb_right-- )
- {
- mbedtls_mpi_uint tmp;
- /* Note that if cur_limb_left == cur_limb_right,
- * this code effectively swaps the bytes only once. */
- tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
- *cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
- *cur_limb_right = tmp;
- }
- }
- /*
- * Import X from unsigned binary data, little endian
- */
- int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
- const unsigned char *buf, size_t buflen )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i;
- size_t const limbs = CHARS_TO_LIMBS( buflen );
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
- for( i = 0; i < buflen; i++ )
- X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
- cleanup:
- /*
- * This function is also used to import keys. However, wiping the buffers
- * upon failure is not necessary because failure only can happen before any
- * input is copied.
- */
- return( ret );
- }
- /*
- * Import X from unsigned binary data, big endian
- */
- int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t const limbs = CHARS_TO_LIMBS( buflen );
- size_t const overhead = ( limbs * ciL ) - buflen;
- unsigned char *Xp;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
- /* Avoid calling `memcpy` with NULL source or destination argument,
- * even if buflen is 0. */
- if( buflen != 0 )
- {
- Xp = (unsigned char*) X->p;
- memcpy( Xp + overhead, buf, buflen );
- mpi_bigendian_to_host( X->p, limbs );
- }
- cleanup:
- /*
- * This function is also used to import keys. However, wiping the buffers
- * upon failure is not necessary because failure only can happen before any
- * input is copied.
- */
- return( ret );
- }
- /*
- * Export X into unsigned binary data, little endian
- */
- int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
- unsigned char *buf, size_t buflen )
- {
- size_t stored_bytes = X->n * ciL;
- size_t bytes_to_copy;
- size_t i;
- if( stored_bytes < buflen )
- {
- bytes_to_copy = stored_bytes;
- }
- else
- {
- bytes_to_copy = buflen;
- /* The output buffer is smaller than the allocated size of X.
- * However X may fit if its leading bytes are zero. */
- for( i = bytes_to_copy; i < stored_bytes; i++ )
- {
- if( GET_BYTE( X, i ) != 0 )
- return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
- }
- }
- for( i = 0; i < bytes_to_copy; i++ )
- buf[i] = GET_BYTE( X, i );
- if( stored_bytes < buflen )
- {
- /* Write trailing 0 bytes */
- memset( buf + stored_bytes, 0, buflen - stored_bytes );
- }
- return( 0 );
- }
- /*
- * Export X into unsigned binary data, big endian
- */
- int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
- unsigned char *buf, size_t buflen )
- {
- size_t stored_bytes;
- size_t bytes_to_copy;
- unsigned char *p;
- size_t i;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
- stored_bytes = X->n * ciL;
- if( stored_bytes < buflen )
- {
- /* There is enough space in the output buffer. Write initial
- * null bytes and record the position at which to start
- * writing the significant bytes. In this case, the execution
- * trace of this function does not depend on the value of the
- * number. */
- bytes_to_copy = stored_bytes;
- p = buf + buflen - stored_bytes;
- memset( buf, 0, buflen - stored_bytes );
- }
- else
- {
- /* The output buffer is smaller than the allocated size of X.
- * However X may fit if its leading bytes are zero. */
- bytes_to_copy = buflen;
- p = buf;
- for( i = bytes_to_copy; i < stored_bytes; i++ )
- {
- if( GET_BYTE( X, i ) != 0 )
- return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
- }
- }
- for( i = 0; i < bytes_to_copy; i++ )
- p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
- return( 0 );
- }
- /*
- * Left-shift: X <<= count
- */
- int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, v0, t1;
- mbedtls_mpi_uint r0 = 0, r1;
- MPI_VALIDATE_RET( X != NULL );
- v0 = count / (biL );
- t1 = count & (biL - 1);
- i = mbedtls_mpi_bitlen( X ) + count;
- if( X->n * biL < i )
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
- ret = 0;
- /*
- * shift by count / limb_size
- */
- if( v0 > 0 )
- {
- for( i = X->n; i > v0; i-- )
- X->p[i - 1] = X->p[i - v0 - 1];
- for( ; i > 0; i-- )
- X->p[i - 1] = 0;
- }
- /*
- * shift by count % limb_size
- */
- if( t1 > 0 )
- {
- for( i = v0; i < X->n; i++ )
- {
- r1 = X->p[i] >> (biL - t1);
- X->p[i] <<= t1;
- X->p[i] |= r0;
- r0 = r1;
- }
- }
- cleanup:
- return( ret );
- }
- /*
- * Right-shift: X >>= count
- */
- int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
- {
- size_t i, v0, v1;
- mbedtls_mpi_uint r0 = 0, r1;
- MPI_VALIDATE_RET( X != NULL );
- v0 = count / biL;
- v1 = count & (biL - 1);
- if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
- return mbedtls_mpi_lset( X, 0 );
- /*
- * shift by count / limb_size
- */
- if( v0 > 0 )
- {
- for( i = 0; i < X->n - v0; i++ )
- X->p[i] = X->p[i + v0];
- for( ; i < X->n; i++ )
- X->p[i] = 0;
- }
- /*
- * shift by count % limb_size
- */
- if( v1 > 0 )
- {
- for( i = X->n; i > 0; i-- )
- {
- r1 = X->p[i - 1] << (biL - v1);
- X->p[i - 1] >>= v1;
- X->p[i - 1] |= r0;
- r0 = r1;
- }
- }
- return( 0 );
- }
- /*
- * Compare unsigned values
- */
- int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
- {
- size_t i, j;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
- for( i = X->n; i > 0; i-- )
- if( X->p[i - 1] != 0 )
- break;
- for( j = Y->n; j > 0; j-- )
- if( Y->p[j - 1] != 0 )
- break;
- if( i == 0 && j == 0 )
- return( 0 );
- if( i > j ) return( 1 );
- if( j > i ) return( -1 );
- for( ; i > 0; i-- )
- {
- if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
- if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
- }
- return( 0 );
- }
- /*
- * Compare signed values
- */
- int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
- {
- size_t i, j;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
- for( i = X->n; i > 0; i-- )
- if( X->p[i - 1] != 0 )
- break;
- for( j = Y->n; j > 0; j-- )
- if( Y->p[j - 1] != 0 )
- break;
- if( i == 0 && j == 0 )
- return( 0 );
- if( i > j ) return( X->s );
- if( j > i ) return( -Y->s );
- if( X->s > 0 && Y->s < 0 ) return( 1 );
- if( Y->s > 0 && X->s < 0 ) return( -1 );
- for( ; i > 0; i-- )
- {
- if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
- if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
- }
- return( 0 );
- }
- /*
- * Compare signed values
- */
- int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
- {
- mbedtls_mpi Y;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET( X != NULL );
- *p = ( z < 0 ) ? -z : z;
- Y.s = ( z < 0 ) ? -1 : 1;
- Y.n = 1;
- Y.p = p;
- return( mbedtls_mpi_cmp_mpi( X, &Y ) );
- }
- /*
- * Unsigned addition: X = |A| + |B| (HAC 14.7)
- */
- int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j;
- mbedtls_mpi_uint *o, *p, c, tmp;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- if( X == B )
- {
- const mbedtls_mpi *T = A; A = X; B = T;
- }
- if( X != A )
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
- /*
- * X should always be positive as a result of unsigned additions.
- */
- X->s = 1;
- for( j = B->n; j > 0; j-- )
- if( B->p[j - 1] != 0 )
- break;
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
- o = B->p; p = X->p; c = 0;
- /*
- * tmp is used because it might happen that p == o
- */
- for( i = 0; i < j; i++, o++, p++ )
- {
- tmp= *o;
- *p += c; c = ( *p < c );
- *p += tmp; c += ( *p < tmp );
- }
- while( c != 0 )
- {
- if( i >= X->n )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
- p = X->p + i;
- }
- *p += c; c = ( *p < c ); i++; p++;
- }
- cleanup:
- return( ret );
- }
- /**
- * Helper for mbedtls_mpi subtraction.
- *
- * Calculate l - r where l and r have the same size.
- * This function operates modulo (2^ciL)^n and returns the carry
- * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
- *
- * d may be aliased to l or r.
- *
- * \param n Number of limbs of \p d, \p l and \p r.
- * \param[out] d The result of the subtraction.
- * \param[in] l The left operand.
- * \param[in] r The right operand.
- *
- * \return 1 if `l < r`.
- * 0 if `l >= r`.
- */
- static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
- mbedtls_mpi_uint *d,
- const mbedtls_mpi_uint *l,
- const mbedtls_mpi_uint *r )
- {
- size_t i;
- mbedtls_mpi_uint c = 0, t, z;
- for( i = 0; i < n; i++ )
- {
- z = ( l[i] < c ); t = l[i] - c;
- c = ( t < r[i] ) + z; d[i] = t - r[i];
- }
- return( c );
- }
- /*
- * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
- */
- int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t n;
- mbedtls_mpi_uint carry;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- for( n = B->n; n > 0; n-- )
- if( B->p[n - 1] != 0 )
- break;
- if( n > A->n )
- {
- /* B >= (2^ciL)^n > A */
- ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
- /* Set the high limbs of X to match A. Don't touch the lower limbs
- * because X might be aliased to B, and we must not overwrite the
- * significant digits of B. */
- if( A->n > n )
- memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
- if( X->n > A->n )
- memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
- carry = mpi_sub_hlp( n, X->p, A->p, B->p );
- if( carry != 0 )
- {
- /* Propagate the carry to the first nonzero limb of X. */
- for( ; n < X->n && X->p[n] == 0; n++ )
- --X->p[n];
- /* If we ran out of space for the carry, it means that the result
- * is negative. */
- if( n == X->n )
- {
- ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- goto cleanup;
- }
- --X->p[n];
- }
- /* X should always be positive as a result of unsigned subtractions. */
- X->s = 1;
- cleanup:
- return( ret );
- }
- /*
- * Signed addition: X = A + B
- */
- int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
- {
- int ret, s;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- s = A->s;
- if( A->s * B->s < 0 )
- {
- if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
- X->s = s;
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
- X->s = -s;
- }
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
- X->s = s;
- }
- cleanup:
- return( ret );
- }
- /*
- * Signed subtraction: X = A - B
- */
- int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
- {
- int ret, s;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- s = A->s;
- if( A->s * B->s > 0 )
- {
- if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
- X->s = s;
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
- X->s = -s;
- }
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
- X->s = s;
- }
- cleanup:
- return( ret );
- }
- /*
- * Signed addition: X = A + b
- */
- int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- p[0] = ( b < 0 ) ? -b : b;
- B.s = ( b < 0 ) ? -1 : 1;
- B.n = 1;
- B.p = p;
- return( mbedtls_mpi_add_mpi( X, A, &B ) );
- }
- /*
- * Signed subtraction: X = A - b
- */
- int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- p[0] = ( b < 0 ) ? -b : b;
- B.s = ( b < 0 ) ? -1 : 1;
- B.n = 1;
- B.p = p;
- return( mbedtls_mpi_sub_mpi( X, A, &B ) );
- }
- /** Helper for mbedtls_mpi multiplication.
- *
- * Add \p b * \p s to \p d.
- *
- * \param i The number of limbs of \p s.
- * \param[in] s A bignum to multiply, of size \p i.
- * It may overlap with \p d, but only if
- * \p d <= \p s.
- * Its leading limb must not be \c 0.
- * \param[in,out] d The bignum to add to.
- * It must be sufficiently large to store the
- * result of the multiplication. This means
- * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
- * is not known a priori.
- * \param b A scalar to multiply.
- */
- static
- #if defined(__APPLE__) && defined(__arm__)
- /*
- * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
- * appears to need this to prevent bad ARM code generation at -O3.
- */
- __attribute__ ((noinline))
- #endif
- void mpi_mul_hlp( size_t i,
- const mbedtls_mpi_uint *s,
- mbedtls_mpi_uint *d,
- mbedtls_mpi_uint b )
- {
- mbedtls_mpi_uint c = 0, t = 0;
- #if defined(MULADDC_HUIT)
- for( ; i >= 8; i -= 8 )
- {
- MULADDC_INIT
- MULADDC_HUIT
- MULADDC_STOP
- }
- for( ; i > 0; i-- )
- {
- MULADDC_INIT
- MULADDC_CORE
- MULADDC_STOP
- }
- #else /* MULADDC_HUIT */
- for( ; i >= 16; i -= 16 )
- {
- MULADDC_INIT
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_STOP
- }
- for( ; i >= 8; i -= 8 )
- {
- MULADDC_INIT
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_STOP
- }
- for( ; i > 0; i-- )
- {
- MULADDC_INIT
- MULADDC_CORE
- MULADDC_STOP
- }
- #endif /* MULADDC_HUIT */
- t++;
- while( c != 0 )
- {
- *d += c; c = ( *d < c ); d++;
- }
- }
- /*
- * Baseline multiplication: X = A * B (HAC 14.12)
- */
- int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j;
- mbedtls_mpi TA, TB;
- int result_is_zero = 0;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
- if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
- if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
- for( i = A->n; i > 0; i-- )
- if( A->p[i - 1] != 0 )
- break;
- if( i == 0 )
- result_is_zero = 1;
- for( j = B->n; j > 0; j-- )
- if( B->p[j - 1] != 0 )
- break;
- if( j == 0 )
- result_is_zero = 1;
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
- for( ; j > 0; j-- )
- mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
- /* If the result is 0, we don't shortcut the operation, which reduces
- * but does not eliminate side channels leaking the zero-ness. We do
- * need to take care to set the sign bit properly since the library does
- * not fully support an MPI object with a value of 0 and s == -1. */
- if( result_is_zero )
- X->s = 1;
- else
- X->s = A->s * B->s;
- cleanup:
- mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
- return( ret );
- }
- /*
- * Baseline multiplication: X = A * b
- */
- int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
- {
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- /* mpi_mul_hlp can't deal with a leading 0. */
- size_t n = A->n;
- while( n > 0 && A->p[n - 1] == 0 )
- --n;
- /* The general method below doesn't work if n==0 or b==0. By chance
- * calculating the result is trivial in those cases. */
- if( b == 0 || n == 0 )
- {
- return( mbedtls_mpi_lset( X, 0 ) );
- }
- /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- /* In general, A * b requires 1 limb more than b. If
- * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
- * number of limbs as A and the call to grow() is not required since
- * copy() will take care of the growth if needed. However, experimentally,
- * making the call to grow() unconditional causes slightly fewer
- * calls to calloc() in ECP code, presumably because it reuses the
- * same mpi for a while and this way the mpi is more likely to directly
- * grow to its final size. */
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
- mpi_mul_hlp( n, A->p, X->p, b - 1 );
- cleanup:
- return( ret );
- }
- /*
- * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
- * mbedtls_mpi_uint divisor, d
- */
- static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
- mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
- {
- #if defined(MBEDTLS_HAVE_UDBL)
- mbedtls_t_udbl dividend, quotient;
- #else
- const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
- const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
- mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
- mbedtls_mpi_uint u0_msw, u0_lsw;
- size_t s;
- #endif
- /*
- * Check for overflow
- */
- if( 0 == d || u1 >= d )
- {
- if (r != NULL) *r = ~0;
- return ( ~0 );
- }
- #if defined(MBEDTLS_HAVE_UDBL)
- dividend = (mbedtls_t_udbl) u1 << biL;
- dividend |= (mbedtls_t_udbl) u0;
- quotient = dividend / d;
- if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
- quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
- if( r != NULL )
- *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
- return (mbedtls_mpi_uint) quotient;
- #else
- /*
- * Algorithm D, Section 4.3.1 - The Art of Computer Programming
- * Vol. 2 - Seminumerical Algorithms, Knuth
- */
- /*
- * Normalize the divisor, d, and dividend, u0, u1
- */
- s = mbedtls_clz( d );
- d = d << s;
- u1 = u1 << s;
- u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
- u0 = u0 << s;
- d1 = d >> biH;
- d0 = d & uint_halfword_mask;
- u0_msw = u0 >> biH;
- u0_lsw = u0 & uint_halfword_mask;
- /*
- * Find the first quotient and remainder
- */
- q1 = u1 / d1;
- r0 = u1 - d1 * q1;
- while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
- {
- q1 -= 1;
- r0 += d1;
- if ( r0 >= radix ) break;
- }
- rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
- q0 = rAX / d1;
- r0 = rAX - q0 * d1;
- while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
- {
- q0 -= 1;
- r0 += d1;
- if ( r0 >= radix ) break;
- }
- if (r != NULL)
- *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
- quotient = q1 * radix + q0;
- return quotient;
- #endif
- }
- /*
- * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
- */
- int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
- const mbedtls_mpi *B )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, n, t, k;
- mbedtls_mpi X, Y, Z, T1, T2;
- mbedtls_mpi_uint TP2[3];
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
- return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
- mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
- mbedtls_mpi_init( &T1 );
- /*
- * Avoid dynamic memory allocations for constant-size T2.
- *
- * T2 is used for comparison only and the 3 limbs are assigned explicitly,
- * so nobody increase the size of the MPI and we're safe to use an on-stack
- * buffer.
- */
- T2.s = 1;
- T2.n = sizeof( TP2 ) / sizeof( *TP2 );
- T2.p = TP2;
- if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
- {
- if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
- if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
- return( 0 );
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
- X.s = Y.s = 1;
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
- k = mbedtls_mpi_bitlen( &Y ) % biL;
- if( k < biL - 1 )
- {
- k = biL - 1 - k;
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
- }
- else k = 0;
- n = X.n - 1;
- t = Y.n - 1;
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
- while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
- {
- Z.p[n - t]++;
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
- for( i = n; i > t ; i-- )
- {
- if( X.p[i] >= Y.p[t] )
- Z.p[i - t - 1] = ~0;
- else
- {
- Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
- Y.p[t], NULL);
- }
- T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
- T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
- T2.p[2] = X.p[i];
- Z.p[i - t - 1]++;
- do
- {
- Z.p[i - t - 1]--;
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
- T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
- T1.p[1] = Y.p[t];
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
- }
- while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
- if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
- Z.p[i - t - 1]--;
- }
- }
- if( Q != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
- Q->s = A->s * B->s;
- }
- if( R != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
- X.s = A->s;
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
- if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
- R->s = 1;
- }
- cleanup:
- mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
- mbedtls_mpi_free( &T1 );
- mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
- return( ret );
- }
- /*
- * Division by int: A = Q * b + R
- */
- int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
- const mbedtls_mpi *A,
- mbedtls_mpi_sint b )
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET( A != NULL );
- p[0] = ( b < 0 ) ? -b : b;
- B.s = ( b < 0 ) ? -1 : 1;
- B.n = 1;
- B.p = p;
- return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
- }
- /*
- * Modulo: R = A mod B
- */
- int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- MPI_VALIDATE_RET( R != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
- return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
- MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
- while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
- while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
- cleanup:
- return( ret );
- }
- /*
- * Modulo: r = A mod b
- */
- int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
- {
- size_t i;
- mbedtls_mpi_uint x, y, z;
- MPI_VALIDATE_RET( r != NULL );
- MPI_VALIDATE_RET( A != NULL );
- if( b == 0 )
- return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
- if( b < 0 )
- return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
- /*
- * handle trivial cases
- */
- if( b == 1 )
- {
- *r = 0;
- return( 0 );
- }
- if( b == 2 )
- {
- *r = A->p[0] & 1;
- return( 0 );
- }
- /*
- * general case
- */
- for( i = A->n, y = 0; i > 0; i-- )
- {
- x = A->p[i - 1];
- y = ( y << biH ) | ( x >> biH );
- z = y / b;
- y -= z * b;
- x <<= biH;
- y = ( y << biH ) | ( x >> biH );
- z = y / b;
- y -= z * b;
- }
- /*
- * If A is negative, then the current y represents a negative value.
- * Flipping it to the positive side.
- */
- if( A->s < 0 && y != 0 )
- y = b - y;
- *r = y;
- return( 0 );
- }
- /*
- * Fast Montgomery initialization (thanks to Tom St Denis)
- */
- static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
- {
- mbedtls_mpi_uint x, m0 = N->p[0];
- unsigned int i;
- x = m0;
- x += ( ( m0 + 2 ) & 4 ) << 1;
- for( i = biL; i >= 8; i /= 2 )
- x *= ( 2 - ( m0 * x ) );
- *mm = ~x + 1;
- }
- /** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
- *
- * \param[in,out] A One of the numbers to multiply.
- * It must have at least as many limbs as N
- * (A->n >= N->n), and any limbs beyond n are ignored.
- * On successful completion, A contains the result of
- * the multiplication A * B * R^-1 mod N where
- * R = (2^ciL)^n.
- * \param[in] B One of the numbers to multiply.
- * It must be nonzero and must not have more limbs than N
- * (B->n <= N->n).
- * \param[in] N The modulo. N must be odd.
- * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
- * This is -N^-1 mod 2^ciL.
- * \param[in,out] T A bignum for temporary storage.
- * It must be at least twice the limb size of N plus 2
- * (T->n >= 2 * (N->n + 1)).
- * Its initial content is unused and
- * its final content is indeterminate.
- * Note that unlike the usual convention in the library
- * for `const mbedtls_mpi*`, the content of T can change.
- */
- static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
- const mbedtls_mpi *T )
- {
- size_t i, n, m;
- mbedtls_mpi_uint u0, u1, *d;
- memset( T->p, 0, T->n * ciL );
- d = T->p;
- n = N->n;
- m = ( B->n < n ) ? B->n : n;
- for( i = 0; i < n; i++ )
- {
- /*
- * T = (T + u0*B + u1*N) / 2^biL
- */
- u0 = A->p[i];
- u1 = ( d[0] + u0 * B->p[0] ) * mm;
- mpi_mul_hlp( m, B->p, d, u0 );
- mpi_mul_hlp( n, N->p, d, u1 );
- *d++ = u0; d[n + 1] = 0;
- }
- /* At this point, d is either the desired result or the desired result
- * plus N. We now potentially subtract N, avoiding leaking whether the
- * subtraction is performed through side channels. */
- /* Copy the n least significant limbs of d to A, so that
- * A = d if d < N (recall that N has n limbs). */
- memcpy( A->p, d, n * ciL );
- /* If d >= N then we want to set A to d - N. To prevent timing attacks,
- * do the calculation without using conditional tests. */
- /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
- d[n] += 1;
- d[n] -= mpi_sub_hlp( n, d, d, N->p );
- /* If d0 < N then d < (2^biL)^n
- * so d[n] == 0 and we want to keep A as it is.
- * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
- * so d[n] == 1 and we want to set A to the result of the subtraction
- * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
- * This exactly corresponds to a conditional assignment. */
- mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
- }
- /*
- * Montgomery reduction: A = A * R^-1 mod N
- *
- * See mpi_montmul() regarding constraints and guarantees on the parameters.
- */
- static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
- mbedtls_mpi_uint mm, const mbedtls_mpi *T )
- {
- mbedtls_mpi_uint z = 1;
- mbedtls_mpi U;
- U.n = U.s = (int) z;
- U.p = &z;
- mpi_montmul( A, &U, N, mm, T );
- }
- /**
- * Select an MPI from a table without leaking the index.
- *
- * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
- * reads the entire table in order to avoid leaking the value of idx to an
- * attacker able to observe memory access patterns.
- *
- * \param[out] R Where to write the selected MPI.
- * \param[in] T The table to read from.
- * \param[in] T_size The number of elements in the table.
- * \param[in] idx The index of the element to select;
- * this must satisfy 0 <= idx < T_size.
- *
- * \return \c 0 on success, or a negative error code.
- */
- static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- for( size_t i = 0; i < T_size; i++ )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
- (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
- }
- cleanup:
- return( ret );
- }
- /*
- * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
- */
- int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
- const mbedtls_mpi *E, const mbedtls_mpi *N,
- mbedtls_mpi *prec_RR )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t wbits, wsize, one = 1;
- size_t i, j, nblimbs;
- size_t bufsize, nbits;
- mbedtls_mpi_uint ei, mm, state;
- mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
- int neg;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( E != NULL );
- MPI_VALIDATE_RET( N != NULL );
- if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
- mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
- return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- /*
- * Init temps and window size
- */
- mpi_montg_init( &mm, N );
- mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
- mbedtls_mpi_init( &Apos );
- mbedtls_mpi_init( &WW );
- memset( W, 0, sizeof( W ) );
- i = mbedtls_mpi_bitlen( E );
- wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
- ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
- #if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
- if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
- wsize = MBEDTLS_MPI_WINDOW_SIZE;
- #endif
- j = N->n + 1;
- /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
- * and mpi_montred() calls later. Here we ensure that W[1] and X are
- * large enough, and later we'll grow other W[i] to the same length.
- * They must not be shrunk midway through this function!
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
- /*
- * Compensate for negative A (and correct at the end)
- */
- neg = ( A->s == -1 );
- if( neg )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
- Apos.s = 1;
- A = &Apos;
- }
- /*
- * If 1st call, pre-compute R^2 mod N
- */
- if( prec_RR == NULL || prec_RR->p == NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
- if( prec_RR != NULL )
- memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
- }
- else
- memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
- /*
- * W[1] = A * R^2 * R^-1 mod N = A * R mod N
- */
- if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
- /* This should be a no-op because W[1] is already that large before
- * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
- * in mpi_montmul() below, so let's make sure. */
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
- }
- else
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
- /* Note that this is safe because W[1] always has at least N->n limbs
- * (it grew above and was preserved by mbedtls_mpi_copy()). */
- mpi_montmul( &W[1], &RR, N, mm, &T );
- /*
- * X = R^2 * R^-1 mod N = R mod N
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
- mpi_montred( X, N, mm, &T );
- if( wsize > 1 )
- {
- /*
- * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
- */
- j = one << ( wsize - 1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
- for( i = 0; i < wsize - 1; i++ )
- mpi_montmul( &W[j], &W[j], N, mm, &T );
- /*
- * W[i] = W[i - 1] * W[1]
- */
- for( i = j + 1; i < ( one << wsize ); i++ )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
- mpi_montmul( &W[i], &W[1], N, mm, &T );
- }
- }
- nblimbs = E->n;
- bufsize = 0;
- nbits = 0;
- wbits = 0;
- state = 0;
- while( 1 )
- {
- if( bufsize == 0 )
- {
- if( nblimbs == 0 )
- break;
- nblimbs--;
- bufsize = sizeof( mbedtls_mpi_uint ) << 3;
- }
- bufsize--;
- ei = (E->p[nblimbs] >> bufsize) & 1;
- /*
- * skip leading 0s
- */
- if( ei == 0 && state == 0 )
- continue;
- if( ei == 0 && state == 1 )
- {
- /*
- * out of window, square X
- */
- mpi_montmul( X, X, N, mm, &T );
- continue;
- }
- /*
- * add ei to current window
- */
- state = 2;
- nbits++;
- wbits |= ( ei << ( wsize - nbits ) );
- if( nbits == wsize )
- {
- /*
- * X = X^wsize R^-1 mod N
- */
- for( i = 0; i < wsize; i++ )
- mpi_montmul( X, X, N, mm, &T );
- /*
- * X = X * W[wbits] R^-1 mod N
- */
- MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
- mpi_montmul( X, &WW, N, mm, &T );
- state--;
- nbits = 0;
- wbits = 0;
- }
- }
- /*
- * process the remaining bits
- */
- for( i = 0; i < nbits; i++ )
- {
- mpi_montmul( X, X, N, mm, &T );
- wbits <<= 1;
- if( ( wbits & ( one << wsize ) ) != 0 )
- mpi_montmul( X, &W[1], N, mm, &T );
- }
- /*
- * X = A^E * R * R^-1 mod N = A^E mod N
- */
- mpi_montred( X, N, mm, &T );
- if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
- {
- X->s = -1;
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
- }
- cleanup:
- for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
- mbedtls_mpi_free( &W[i] );
- mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
- mbedtls_mpi_free( &WW );
- if( prec_RR == NULL || prec_RR->p == NULL )
- mbedtls_mpi_free( &RR );
- return( ret );
- }
- /*
- * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
- */
- int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t lz, lzt;
- mbedtls_mpi TA, TB;
- MPI_VALIDATE_RET( G != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( B != NULL );
- mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
- lz = mbedtls_mpi_lsb( &TA );
- lzt = mbedtls_mpi_lsb( &TB );
- /* The loop below gives the correct result when A==0 but not when B==0.
- * So have a special case for B==0. Leverage the fact that we just
- * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
- * slightly more efficient than cmp_int(). */
- if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
- {
- ret = mbedtls_mpi_copy( G, A );
- goto cleanup;
- }
- if( lzt < lz )
- lz = lzt;
- TA.s = TB.s = 1;
- /* We mostly follow the procedure described in HAC 14.54, but with some
- * minor differences:
- * - Sequences of multiplications or divisions by 2 are grouped into a
- * single shift operation.
- * - The procedure in HAC assumes that 0 < TB <= TA.
- * - The condition TB <= TA is not actually necessary for correctness.
- * TA and TB have symmetric roles except for the loop termination
- * condition, and the shifts at the beginning of the loop body
- * remove any significance from the ordering of TA vs TB before
- * the shifts.
- * - If TA = 0, the loop goes through 0 iterations and the result is
- * correctly TB.
- * - The case TB = 0 was short-circuited above.
- *
- * For the correctness proof below, decompose the original values of
- * A and B as
- * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
- * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
- * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
- * and gcd(A',B') is odd or 0.
- *
- * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
- * The code maintains the following invariant:
- * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
- */
- /* Proof that the loop terminates:
- * At each iteration, either the right-shift by 1 is made on a nonzero
- * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
- * by at least 1, or the right-shift by 1 is made on zero and then
- * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
- * since in that case TB is calculated from TB-TA with the condition TB>TA).
- */
- while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
- {
- /* Divisions by 2 preserve the invariant (I). */
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
- /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
- * TA-TB is even so the division by 2 has an integer result.
- * Invariant (I) is preserved since any odd divisor of both TA and TB
- * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
- * also divides TB, and any odd divisior of both TB and |TA-TB|/2 also
- * divides TA.
- */
- if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
- }
- /* Note that one of TA or TB is still odd. */
- }
- /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
- * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
- * - If there was at least one loop iteration, then one of TA or TB is odd,
- * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
- * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
- * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
- * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
- cleanup:
- mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
- return( ret );
- }
- /* Fill X with n_bytes random bytes.
- * X must already have room for those bytes.
- * The ordering of the bytes returned from the RNG is suitable for
- * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
- * The size and sign of X are unchanged.
- * n_bytes must not be 0.
- */
- static int mpi_fill_random_internal(
- mbedtls_mpi *X, size_t n_bytes,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- const size_t limbs = CHARS_TO_LIMBS( n_bytes );
- const size_t overhead = ( limbs * ciL ) - n_bytes;
- if( X->n < limbs )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- memset( X->p, 0, overhead );
- memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
- MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
- mpi_bigendian_to_host( X->p, limbs );
- cleanup:
- return( ret );
- }
- /*
- * Fill X with size bytes of random.
- *
- * Use a temporary bytes representation to make sure the result is the same
- * regardless of the platform endianness (useful when f_rng is actually
- * deterministic, eg for tests).
- */
- int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t const limbs = CHARS_TO_LIMBS( size );
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( f_rng != NULL );
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
- if( size == 0 )
- return( 0 );
- ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
- cleanup:
- return( ret );
- }
- int mbedtls_mpi_random( mbedtls_mpi *X,
- mbedtls_mpi_sint min,
- const mbedtls_mpi *N,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- int count;
- unsigned lt_lower = 1, lt_upper = 0;
- size_t n_bits = mbedtls_mpi_bitlen( N );
- size_t n_bytes = ( n_bits + 7 ) / 8;
- mbedtls_mpi lower_bound;
- if( min < 0 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- /*
- * When min == 0, each try has at worst a probability 1/2 of failing
- * (the msb has a probability 1/2 of being 0, and then the result will
- * be < N), so after 30 tries failure probability is a most 2**(-30).
- *
- * When N is just below a power of 2, as is the case when generating
- * a random scalar on most elliptic curves, 1 try is enough with
- * overwhelming probability. When N is just above a power of 2,
- * as when generating a random scalar on secp224k1, each try has
- * a probability of failing that is almost 1/2.
- *
- * The probabilities are almost the same if min is nonzero but negligible
- * compared to N. This is always the case when N is crypto-sized, but
- * it's convenient to support small N for testing purposes. When N
- * is small, use a higher repeat count, otherwise the probability of
- * failure is macroscopic.
- */
- count = ( n_bytes > 4 ? 30 : 250 );
- mbedtls_mpi_init( &lower_bound );
- /* Ensure that target MPI has exactly the same number of limbs
- * as the upper bound, even if the upper bound has leading zeros.
- * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
- MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
- /*
- * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
- * when f_rng is a suitably parametrized instance of HMAC_DRBG:
- * - use the same byte ordering;
- * - keep the leftmost n_bits bits of the generated octet string;
- * - try until result is in the desired range.
- * This also avoids any bias, which is especially important for ECDSA.
- */
- do
- {
- MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
- if( --count == 0 )
- {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, <_lower ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, <_upper ) );
- }
- while( lt_lower != 0 || lt_upper == 0 );
- cleanup:
- mbedtls_mpi_free( &lower_bound );
- return( ret );
- }
- /*
- * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
- */
- int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( A != NULL );
- MPI_VALIDATE_RET( N != NULL );
- if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
- mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
- mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
- if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
- {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
- do
- {
- while( ( TU.p[0] & 1 ) == 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
- if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
- }
- while( ( TV.p[0] & 1 ) == 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
- if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
- }
- if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
- }
- }
- while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
- while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
- while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
- cleanup:
- mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
- mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
- mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
- return( ret );
- }
- #if defined(MBEDTLS_GENPRIME)
- static const int small_prime[] =
- {
- 3, 5, 7, 11, 13, 17, 19, 23,
- 29, 31, 37, 41, 43, 47, 53, 59,
- 61, 67, 71, 73, 79, 83, 89, 97,
- 101, 103, 107, 109, 113, 127, 131, 137,
- 139, 149, 151, 157, 163, 167, 173, 179,
- 181, 191, 193, 197, 199, 211, 223, 227,
- 229, 233, 239, 241, 251, 257, 263, 269,
- 271, 277, 281, 283, 293, 307, 311, 313,
- 317, 331, 337, 347, 349, 353, 359, 367,
- 373, 379, 383, 389, 397, 401, 409, 419,
- 421, 431, 433, 439, 443, 449, 457, 461,
- 463, 467, 479, 487, 491, 499, 503, 509,
- 521, 523, 541, 547, 557, 563, 569, 571,
- 577, 587, 593, 599, 601, 607, 613, 617,
- 619, 631, 641, 643, 647, 653, 659, 661,
- 673, 677, 683, 691, 701, 709, 719, 727,
- 733, 739, 743, 751, 757, 761, 769, 773,
- 787, 797, 809, 811, 821, 823, 827, 829,
- 839, 853, 857, 859, 863, 877, 881, 883,
- 887, 907, 911, 919, 929, 937, 941, 947,
- 953, 967, 971, 977, 983, 991, 997, -103
- };
- /*
- * Small divisors test (X must be positive)
- *
- * Return values:
- * 0: no small factor (possible prime, more tests needed)
- * 1: certain prime
- * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
- * other negative: error
- */
- static int mpi_check_small_factors( const mbedtls_mpi *X )
- {
- int ret = 0;
- size_t i;
- mbedtls_mpi_uint r;
- if( ( X->p[0] & 1 ) == 0 )
- return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
- for( i = 0; small_prime[i] > 0; i++ )
- {
- if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
- return( 1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
- if( r == 0 )
- return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
- }
- cleanup:
- return( ret );
- }
- /*
- * Miller-Rabin pseudo-primality test (HAC 4.24)
- */
- static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret, count;
- size_t i, j, k, s;
- mbedtls_mpi W, R, T, A, RR;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( f_rng != NULL );
- mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
- mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
- mbedtls_mpi_init( &RR );
- /*
- * W = |X| - 1
- * R = W >> lsb( W )
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
- s = mbedtls_mpi_lsb( &W );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
- for( i = 0; i < rounds; i++ )
- {
- /*
- * pick a random A, 1 < A < |X| - 1
- */
- count = 0;
- do {
- MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
- j = mbedtls_mpi_bitlen( &A );
- k = mbedtls_mpi_bitlen( &W );
- if (j > k) {
- A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
- }
- if (count++ > 30) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
- mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
- /*
- * A = A^R mod |X|
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
- if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
- mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
- continue;
- j = 1;
- while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
- {
- /*
- * A = A * A mod |X|
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
- if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
- break;
- j++;
- }
- /*
- * not prime if A != |X| - 1 or A == 1
- */
- if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
- mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
- {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- break;
- }
- }
- cleanup:
- mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
- mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
- mbedtls_mpi_free( &RR );
- return( ret );
- }
- /*
- * Pseudo-primality test: small factors, then Miller-Rabin
- */
- int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi XX;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( f_rng != NULL );
- XX.s = 1;
- XX.n = X->n;
- XX.p = X->p;
- if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
- mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
- return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
- if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
- return( 0 );
- if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
- {
- if( ret == 1 )
- return( 0 );
- return( ret );
- }
- return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
- }
- #if !defined(MBEDTLS_DEPRECATED_REMOVED)
- /*
- * Pseudo-primality test, error probability 2^-80
- */
- int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( f_rng != NULL );
- /*
- * In the past our key generation aimed for an error rate of at most
- * 2^-80. Since this function is deprecated, aim for the same certainty
- * here as well.
- */
- return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
- }
- #endif
- /*
- * Prime number generation
- *
- * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
- * be either 1024 bits or 1536 bits long, and flags must contain
- * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
- */
- int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- #ifdef MBEDTLS_HAVE_INT64
- // ceil(2^63.5)
- #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
- #else
- // ceil(2^31.5)
- #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
- #endif
- int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- size_t k, n;
- int rounds;
- mbedtls_mpi_uint r;
- mbedtls_mpi Y;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( f_rng != NULL );
- if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- mbedtls_mpi_init( &Y );
- n = BITS_TO_LIMBS( nbits );
- if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
- {
- /*
- * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
- */
- rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
- ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
- ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
- }
- else
- {
- /*
- * 2^-100 error probability, number of rounds computed based on HAC,
- * fact 4.48
- */
- rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
- ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
- ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
- ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
- }
- while( 1 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
- /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
- if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
- k = n * biL;
- if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
- X->p[0] |= 1;
- if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
- {
- ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
- if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
- goto cleanup;
- }
- else
- {
- /*
- * An necessary condition for Y and X = 2Y + 1 to be prime
- * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
- * Make sure it is satisfied, while keeping X = 3 mod 4
- */
- X->p[0] |= 2;
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
- if( r == 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
- else if( r == 1 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
- /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
- while( 1 )
- {
- /*
- * First, check small factors for X and Y
- * before doing Miller-Rabin on any of them
- */
- if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
- ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
- ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
- == 0 &&
- ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
- == 0 )
- goto cleanup;
- if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
- goto cleanup;
- /*
- * Next candidates. We want to preserve Y = (X-1) / 2 and
- * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
- * so up Y by 6 and X by 12.
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
- }
- }
- }
- cleanup:
- mbedtls_mpi_free( &Y );
- return( ret );
- }
- #endif /* MBEDTLS_GENPRIME */
- #if defined(MBEDTLS_SELF_TEST)
- #define GCD_PAIR_COUNT 3
- static const int gcd_pairs[GCD_PAIR_COUNT][3] =
- {
- { 693, 609, 21 },
- { 1764, 868, 28 },
- { 768454923, 542167814, 1 }
- };
- /*
- * Checkup routine
- */
- int mbedtls_mpi_self_test( int verbose )
- {
- int ret, i;
- mbedtls_mpi A, E, N, X, Y, U, V;
- mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
- mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
- "EFE021C2645FD1DC586E69184AF4A31E" \
- "D5F53E93B5F123FA41680867BA110131" \
- "944FE7952E2517337780CB0DB80E61AA" \
- "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
- "B2E7EFD37075B9F03FF989C7C5051C20" \
- "34D2A323810251127E7BF8625A4F49A5" \
- "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
- "5B5C25763222FEFCCFC38B832366C29E" ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
- "0066A198186C18C10B2F5ED9B522752A" \
- "9830B69916E535C8F047518A889A43A5" \
- "94B6BED27A168D31D4A52F88925AA8F5" ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
- "602AB7ECA597A3D6B56FF9829A5E8B85" \
- "9E857EA95A03512E2BAE7391688D264A" \
- "A5663B0341DB9CCFD2C4C5F421FEC814" \
- "8001B72E848A38CAE1C65F78E56ABDEF" \
- "E12D3C039B8A02D6BE593F0BBBDA56F1" \
- "ECF677152EF804370C1A305CAF3B5BF1" \
- "30879B56C61DE584A0F53A2447A51E" ) );
- if( verbose != 0 )
- mbedtls_printf( " MPI test #1 (mul_mpi): " );
- if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed\n" );
- ret = 1;
- goto cleanup;
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
- "256567336059E52CAE22925474705F39A94" ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
- "6613F26162223DF488E9CD48CC132C7A" \
- "0AC93C701B001B092E4E5B9F73BCD27B" \
- "9EE50D0657C77F374E903CDFA4C642" ) );
- if( verbose != 0 )
- mbedtls_printf( " MPI test #2 (div_mpi): " );
- if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
- mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed\n" );
- ret = 1;
- goto cleanup;
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
- "36E139AEA55215609D2816998ED020BB" \
- "BD96C37890F65171D948E9BC7CBAA4D9" \
- "325D24D6A3C12710F10A09FA08AB87" ) );
- if( verbose != 0 )
- mbedtls_printf( " MPI test #3 (exp_mod): " );
- if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed\n" );
- ret = 1;
- goto cleanup;
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
- "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
- "C3DBA76456363A10869622EAC2DD84EC" \
- "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
- if( verbose != 0 )
- mbedtls_printf( " MPI test #4 (inv_mod): " );
- if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed\n" );
- ret = 1;
- goto cleanup;
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- if( verbose != 0 )
- mbedtls_printf( " MPI test #5 (simple gcd): " );
- for( i = 0; i < GCD_PAIR_COUNT; i++ )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
- if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed at %d\n", i );
- ret = 1;
- goto cleanup;
- }
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- cleanup:
- if( ret != 0 && verbose != 0 )
- mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
- mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
- mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
- if( verbose != 0 )
- mbedtls_printf( "\n" );
- return( ret );
- }
- #endif /* MBEDTLS_SELF_TEST */
- #endif /* MBEDTLS_BIGNUM_C */
|