sha512.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  2. *
  3. * LibTomCrypt is a library that provides various cryptographic
  4. * algorithms in a highly modular and flexible manner.
  5. *
  6. * The library is free for all purposes without any express
  7. * guarantee it works.
  8. *
  9. * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
  10. */
  11. #include "fixedint.h"
  12. #include "sha512.h"
  13. /* the K array */
  14. static const uint64_t K[80] = {
  15. UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
  16. UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
  17. UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
  18. UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
  19. UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
  20. UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
  21. UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
  22. UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
  23. UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
  24. UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
  25. UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
  26. UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
  27. UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
  28. UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
  29. UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
  30. UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
  31. UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
  32. UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
  33. UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
  34. UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
  35. UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
  36. UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
  37. UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
  38. UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
  39. UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
  40. UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
  41. UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
  42. UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
  43. UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
  44. UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
  45. UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
  46. UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
  47. UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
  48. UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
  49. UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
  50. UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
  51. UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
  52. UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
  53. UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
  54. UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
  55. };
  56. /* Various logical functions */
  57. #define ROR64c(x, y) \
  58. ( ((((x)&UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)(y)&UINT64_C(63))) | \
  59. ((x)<<((uint64_t)(64-((y)&UINT64_C(63)))))) & UINT64_C(0xFFFFFFFFFFFFFFFF))
  60. #define STORE64H(x, y) \
  61. { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
  62. (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
  63. (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
  64. (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
  65. #define LOAD64H(x, y) \
  66. { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
  67. (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
  68. (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
  69. (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }
  70. #define Ch(x,y,z) (z ^ (x & (y ^ z)))
  71. #define Maj(x,y,z) (((x | y) & z) | (x & y))
  72. #define S(x, n) ROR64c(x, n)
  73. #define R(x, n) (((x) &UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)n))
  74. #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
  75. #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
  76. #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
  77. #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
  78. #ifndef MIN
  79. #define MIN(x, y) ( ((x)<(y))?(x):(y) )
  80. #endif
  81. /* compress 1024-bits */
  82. static int sha512_compress(sha512_context *md, unsigned char *buf)
  83. {
  84. uint64_t S[8], W[80], t0, t1;
  85. int i;
  86. /* copy state into S */
  87. for (i = 0; i < 8; i++) {
  88. S[i] = md->state[i];
  89. }
  90. /* copy the state into 1024-bits into W[0..15] */
  91. for (i = 0; i < 16; i++) {
  92. LOAD64H(W[i], buf + (8*i));
  93. }
  94. /* fill W[16..79] */
  95. for (i = 16; i < 80; i++) {
  96. W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
  97. }
  98. /* Compress */
  99. #define RND(a,b,c,d,e,f,g,h,i) \
  100. t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
  101. t1 = Sigma0(a) + Maj(a, b, c);\
  102. d += t0; \
  103. h = t0 + t1;
  104. for (i = 0; i < 80; i += 8) {
  105. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0);
  106. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1);
  107. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2);
  108. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3);
  109. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4);
  110. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5);
  111. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6);
  112. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7);
  113. }
  114. #undef RND
  115. /* feedback */
  116. for (i = 0; i < 8; i++) {
  117. md->state[i] = md->state[i] + S[i];
  118. }
  119. return 0;
  120. }
  121. /**
  122. Initialize the hash state
  123. @param md The hash state you wish to initialize
  124. @return 0 if successful
  125. */
  126. int sha512_init(sha512_context * md) {
  127. if (md == NULL) return 1;
  128. md->curlen = 0;
  129. md->length = 0;
  130. md->state[0] = UINT64_C(0x6a09e667f3bcc908);
  131. md->state[1] = UINT64_C(0xbb67ae8584caa73b);
  132. md->state[2] = UINT64_C(0x3c6ef372fe94f82b);
  133. md->state[3] = UINT64_C(0xa54ff53a5f1d36f1);
  134. md->state[4] = UINT64_C(0x510e527fade682d1);
  135. md->state[5] = UINT64_C(0x9b05688c2b3e6c1f);
  136. md->state[6] = UINT64_C(0x1f83d9abfb41bd6b);
  137. md->state[7] = UINT64_C(0x5be0cd19137e2179);
  138. return 0;
  139. }
  140. /**
  141. Process a block of memory though the hash
  142. @param md The hash state
  143. @param in The data to hash
  144. @param inlen The length of the data (octets)
  145. @return 0 if successful
  146. */
  147. int sha512_update (sha512_context * md, const unsigned char *in, size_t inlen)
  148. {
  149. size_t n;
  150. size_t i;
  151. int err;
  152. if (md == NULL) return 1;
  153. if (in == NULL) return 1;
  154. if (md->curlen > sizeof(md->buf)) {
  155. return 1;
  156. }
  157. while (inlen > 0) {
  158. if (md->curlen == 0 && inlen >= 128) {
  159. if ((err = sha512_compress (md, (unsigned char *)in)) != 0) {
  160. return err;
  161. }
  162. md->length += 128 * 8;
  163. in += 128;
  164. inlen -= 128;
  165. } else {
  166. n = MIN(inlen, (128 - md->curlen));
  167. for (i = 0; i < n; i++) {
  168. md->buf[i + md->curlen] = in[i];
  169. }
  170. md->curlen += n;
  171. in += n;
  172. inlen -= n;
  173. if (md->curlen == 128) {
  174. if ((err = sha512_compress (md, md->buf)) != 0) {
  175. return err;
  176. }
  177. md->length += 8*128;
  178. md->curlen = 0;
  179. }
  180. }
  181. }
  182. return 0;
  183. }
  184. /**
  185. Terminate the hash to get the digest
  186. @param md The hash state
  187. @param out [out] The destination of the hash (64 bytes)
  188. @return 0 if successful
  189. */
  190. int sha512_final(sha512_context * md, unsigned char *out)
  191. {
  192. int i;
  193. if (md == NULL) return 1;
  194. if (out == NULL) return 1;
  195. if (md->curlen >= sizeof(md->buf)) {
  196. return 1;
  197. }
  198. /* increase the length of the message */
  199. md->length += md->curlen * UINT64_C(8);
  200. /* append the '1' bit */
  201. md->buf[md->curlen++] = (unsigned char)0x80;
  202. /* if the length is currently above 112 bytes we append zeros
  203. * then compress. Then we can fall back to padding zeros and length
  204. * encoding like normal.
  205. */
  206. if (md->curlen > 112) {
  207. while (md->curlen < 128) {
  208. md->buf[md->curlen++] = (unsigned char)0;
  209. }
  210. sha512_compress(md, md->buf);
  211. md->curlen = 0;
  212. }
  213. /* pad upto 120 bytes of zeroes
  214. * note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash
  215. * > 2^64 bits of data... :-)
  216. */
  217. while (md->curlen < 120) {
  218. md->buf[md->curlen++] = (unsigned char)0;
  219. }
  220. /* store length */
  221. STORE64H(md->length, md->buf+120);
  222. sha512_compress(md, md->buf);
  223. /* copy output */
  224. for (i = 0; i < 8; i++) {
  225. STORE64H(md->state[i], out+(8*i));
  226. }
  227. return 0;
  228. }
  229. int sha512(const unsigned char *message, size_t message_len, unsigned char *out)
  230. {
  231. sha512_context ctx;
  232. int ret;
  233. if ((ret = sha512_init(&ctx))) return ret;
  234. if ((ret = sha512_update(&ctx, message, message_len))) return ret;
  235. if ((ret = sha512_final(&ctx, out))) return ret;
  236. return 0;
  237. }