123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382 |
- // Copyright 2019 Dolphin Emulator Project
- // SPDX-License-Identifier: GPL-2.0-or-later
- #include "Common/Matrix.h"
- #include <algorithm>
- #include <cmath>
- #include "Common/MathUtil.h"
- namespace
- {
- // Multiply a NxM matrix by a MxP matrix.
- template <int N, int M, int P, typename T>
- auto MatrixMultiply(const std::array<T, N * M>& a, const std::array<T, M * P>& b)
- -> std::array<T, N * P>
- {
- std::array<T, N * P> result;
- for (int n = 0; n != N; ++n)
- {
- for (int p = 0; p != P; ++p)
- {
- T temp = {};
- for (int m = 0; m != M; ++m)
- {
- temp += a[n * M + m] * b[m * P + p];
- }
- result[n * P + p] = temp;
- }
- }
- return result;
- }
- } // namespace
- namespace Common
- {
- Quaternion Quaternion::Identity()
- {
- return Quaternion(1, 0, 0, 0);
- }
- Quaternion Quaternion::RotateX(float rad)
- {
- return Rotate(rad, Vec3(1, 0, 0));
- }
- Quaternion Quaternion::RotateY(float rad)
- {
- return Rotate(rad, Vec3(0, 1, 0));
- }
- Quaternion Quaternion::RotateZ(float rad)
- {
- return Rotate(rad, Vec3(0, 0, 1));
- }
- Quaternion Quaternion::RotateXYZ(const Vec3& rads)
- {
- const auto length = rads.Length();
- return length ? Common::Quaternion::Rotate(length, rads / length) :
- Common::Quaternion::Identity();
- }
- Quaternion Quaternion::Rotate(float rad, const Vec3& axis)
- {
- const auto sin_angle_2 = std::sin(rad / 2);
- return Quaternion(std::cos(rad / 2), axis.x * sin_angle_2, axis.y * sin_angle_2,
- axis.z * sin_angle_2);
- }
- Quaternion::Quaternion(float w, float x, float y, float z) : data(x, y, z, w)
- {
- }
- float Quaternion::Norm() const
- {
- return std::sqrt(data.Dot(data));
- }
- Quaternion Quaternion::Normalized() const
- {
- Quaternion result(*this);
- result.data /= Norm();
- return result;
- }
- Quaternion Quaternion::Conjugate() const
- {
- return Quaternion(data.w, -1 * data.x, -1 * data.y, -1 * data.z);
- }
- Quaternion Quaternion::Inverted() const
- {
- return Normalized().Conjugate();
- }
- Quaternion& Quaternion::operator*=(const Quaternion& rhs)
- {
- auto& a = data;
- auto& b = rhs.data;
- data = Vec4{a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
- a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x,
- a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w,
- // W
- a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z};
- return *this;
- }
- Quaternion operator*(Quaternion lhs, const Quaternion& rhs)
- {
- return lhs *= rhs;
- }
- Vec3 operator*(const Quaternion& lhs, const Vec3& rhs)
- {
- const auto result = lhs * Quaternion(0, rhs.x, rhs.y, rhs.z) * lhs.Conjugate();
- return Vec3(result.data.x, result.data.y, result.data.z);
- }
- Vec3 FromQuaternionToEuler(const Quaternion& q)
- {
- Vec3 result;
- const float qx = q.data.x;
- const float qy = q.data.y;
- const float qz = q.data.z;
- const float qw = q.data.w;
- const float sinr_cosp = 2 * (qw * qx + qy * qz);
- const float cosr_cosp = 1 - 2 * (qx * qx + qy * qy);
- result.x = std::atan2(sinr_cosp, cosr_cosp);
- const float sinp = 2 * (qw * qy - qz * qx);
- if (std::abs(sinp) >= 1)
- result.y = std::copysign(MathUtil::PI / 2, sinp); // use 90 degrees if out of range
- else
- result.y = std::asin(sinp);
- const float siny_cosp = 2 * (qw * qz + qx * qy);
- const float cosy_cosp = 1 - 2 * (qy * qy + qz * qz);
- result.z = std::atan2(siny_cosp, cosy_cosp);
- return result;
- }
- Matrix33 Matrix33::Identity()
- {
- Matrix33 mtx = {};
- mtx.data[0] = 1.0f;
- mtx.data[4] = 1.0f;
- mtx.data[8] = 1.0f;
- return mtx;
- }
- Matrix33 Matrix33::FromQuaternion(const Quaternion& q)
- {
- const auto qx = q.data.x;
- const auto qy = q.data.y;
- const auto qz = q.data.z;
- const auto qw = q.data.w;
- return {
- 1 - 2 * qy * qy - 2 * qz * qz, 2 * qx * qy - 2 * qz * qw, 2 * qx * qz + 2 * qy * qw,
- 2 * qx * qy + 2 * qz * qw, 1 - 2 * qx * qx - 2 * qz * qz, 2 * qy * qz - 2 * qx * qw,
- 2 * qx * qz - 2 * qy * qw, 2 * qy * qz + 2 * qx * qw, 1 - 2 * qx * qx - 2 * qy * qy,
- };
- }
- Matrix33 Matrix33::RotateX(float rad)
- {
- const float s = std::sin(rad);
- const float c = std::cos(rad);
- Matrix33 mtx = {};
- mtx.data[0] = 1;
- mtx.data[4] = c;
- mtx.data[5] = -s;
- mtx.data[7] = s;
- mtx.data[8] = c;
- return mtx;
- }
- Matrix33 Matrix33::RotateY(float rad)
- {
- const float s = std::sin(rad);
- const float c = std::cos(rad);
- Matrix33 mtx = {};
- mtx.data[0] = c;
- mtx.data[2] = s;
- mtx.data[4] = 1;
- mtx.data[6] = -s;
- mtx.data[8] = c;
- return mtx;
- }
- Matrix33 Matrix33::RotateZ(float rad)
- {
- const float s = std::sin(rad);
- const float c = std::cos(rad);
- Matrix33 mtx = {};
- mtx.data[0] = c;
- mtx.data[1] = -s;
- mtx.data[3] = s;
- mtx.data[4] = c;
- mtx.data[8] = 1;
- return mtx;
- }
- Matrix33 Matrix33::Rotate(float rad, const Vec3& axis)
- {
- const float s = std::sin(rad);
- const float c = std::cos(rad);
- Matrix33 mtx;
- mtx.data[0] = axis.x * axis.x * (1 - c) + c;
- mtx.data[1] = axis.x * axis.y * (1 - c) - axis.z * s;
- mtx.data[2] = axis.x * axis.z * (1 - c) + axis.y * s;
- mtx.data[3] = axis.y * axis.x * (1 - c) + axis.z * s;
- mtx.data[4] = axis.y * axis.y * (1 - c) + c;
- mtx.data[5] = axis.y * axis.z * (1 - c) - axis.x * s;
- mtx.data[6] = axis.z * axis.x * (1 - c) - axis.y * s;
- mtx.data[7] = axis.z * axis.y * (1 - c) + axis.x * s;
- mtx.data[8] = axis.z * axis.z * (1 - c) + c;
- return mtx;
- }
- Matrix33 Matrix33::Scale(const Vec3& vec)
- {
- Matrix33 mtx = {};
- mtx.data[0] = vec.x;
- mtx.data[4] = vec.y;
- mtx.data[8] = vec.z;
- return mtx;
- }
- void Matrix33::Multiply(const Matrix33& a, const Matrix33& b, Matrix33* result)
- {
- result->data = MatrixMultiply<3, 3, 3>(a.data, b.data);
- }
- void Matrix33::Multiply(const Matrix33& a, const Vec3& vec, Vec3* result)
- {
- result->data = MatrixMultiply<3, 3, 1>(a.data, vec.data);
- }
- Matrix33 Matrix33::Inverted() const
- {
- const auto m = [this](int x, int y) { return data[y + x * 3]; };
- const auto invdet = 1 / Determinant();
- Matrix33 result;
- const auto minv = [&result](int x, int y) -> auto& { return result.data[y + x * 3]; };
- minv(0, 0) = (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) * invdet;
- minv(0, 1) = (m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2)) * invdet;
- minv(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * invdet;
- minv(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) * invdet;
- minv(1, 1) = (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0)) * invdet;
- minv(1, 2) = (m(1, 0) * m(0, 2) - m(0, 0) * m(1, 2)) * invdet;
- minv(2, 0) = (m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1)) * invdet;
- minv(2, 1) = (m(2, 0) * m(0, 1) - m(0, 0) * m(2, 1)) * invdet;
- minv(2, 2) = (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * invdet;
- return result;
- }
- float Matrix33::Determinant() const
- {
- const auto m = [this](int x, int y) { return data[y + x * 3]; };
- return m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) -
- m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
- m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));
- }
- Matrix44 Matrix44::Identity()
- {
- Matrix44 mtx = {};
- mtx.data[0] = 1.0f;
- mtx.data[5] = 1.0f;
- mtx.data[10] = 1.0f;
- mtx.data[15] = 1.0f;
- return mtx;
- }
- Matrix44 Matrix44::FromMatrix33(const Matrix33& m33)
- {
- Matrix44 mtx;
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- mtx.data[i * 4 + j] = m33.data[i * 3 + j];
- }
- }
- for (int i = 0; i < 3; ++i)
- {
- mtx.data[i * 4 + 3] = 0;
- mtx.data[i + 12] = 0;
- }
- mtx.data[15] = 1.0f;
- return mtx;
- }
- Matrix44 Matrix44::FromQuaternion(const Quaternion& q)
- {
- return FromMatrix33(Matrix33::FromQuaternion(q));
- }
- Matrix44 Matrix44::FromArray(const std::array<float, 16>& arr)
- {
- Matrix44 mtx;
- mtx.data = arr;
- return mtx;
- }
- Matrix44 Matrix44::Translate(const Vec3& vec)
- {
- Matrix44 mtx = Matrix44::Identity();
- mtx.data[3] = vec.x;
- mtx.data[7] = vec.y;
- mtx.data[11] = vec.z;
- return mtx;
- }
- Matrix44 Matrix44::Shear(const float a, const float b)
- {
- Matrix44 mtx = Matrix44::Identity();
- mtx.data[2] = a;
- mtx.data[6] = b;
- return mtx;
- }
- Matrix44 Matrix44::Perspective(float fov_y, float aspect_ratio, float z_near, float z_far)
- {
- Matrix44 mtx{};
- const float tan_half_fov_y = std::tan(fov_y / 2);
- mtx.data[0] = 1 / (aspect_ratio * tan_half_fov_y);
- mtx.data[5] = 1 / tan_half_fov_y;
- mtx.data[10] = -(z_far + z_near) / (z_far - z_near);
- mtx.data[11] = -(2 * z_far * z_near) / (z_far - z_near);
- mtx.data[14] = -1;
- return mtx;
- }
- void Matrix44::Multiply(const Matrix44& a, const Matrix44& b, Matrix44* result)
- {
- result->data = MatrixMultiply<4, 4, 4>(a.data, b.data);
- }
- Vec3 Matrix44::Transform(const Vec3& v, float w) const
- {
- const auto result = MatrixMultiply<4, 4, 1>(data, {v.x, v.y, v.z, w});
- return Vec3{result[0], result[1], result[2]};
- }
- void Matrix44::Multiply(const Matrix44& a, const Vec4& vec, Vec4* result)
- {
- result->data = MatrixMultiply<4, 4, 1>(a.data, vec.data);
- }
- float Matrix44::Determinant() const
- {
- const auto& m = data;
- return m[12] * m[9] * m[6] * m[3] - m[8] * m[13] * m[6] * m[3] - m[12] * m[5] * m[10] * m[3] +
- m[4] * m[13] * m[10] * m[3] + m[8] * m[5] * m[14] * m[3] - m[4] * m[9] * m[14] * m[3] -
- m[12] * m[9] * m[2] * m[7] + m[8] * m[13] * m[2] * m[7] + m[12] * m[1] * m[10] * m[7] -
- m[0] * m[13] * m[10] * m[7] - m[8] * m[1] * m[14] * m[7] + m[0] * m[9] * m[14] * m[7] +
- m[12] * m[5] * m[2] * m[11] - m[4] * m[13] * m[2] * m[11] - m[12] * m[1] * m[6] * m[11] +
- m[0] * m[13] * m[6] * m[11] + m[4] * m[1] * m[14] * m[11] - m[0] * m[5] * m[14] * m[11] -
- m[8] * m[5] * m[2] * m[15] + m[4] * m[9] * m[2] * m[15] + m[8] * m[1] * m[6] * m[15] -
- m[0] * m[9] * m[6] * m[15] - m[4] * m[1] * m[10] * m[15] + m[0] * m[5] * m[10] * m[15];
- }
- } // namespace Common
|