123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251 |
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file index.c
- /// \brief Handling of .xz Indexes and some other Stream information
- //
- // Author: Lasse Collin
- //
- // This file has been put into the public domain.
- // You can do whatever you want with this file.
- //
- ///////////////////////////////////////////////////////////////////////////////
- #include "index.h"
- #include "stream_flags_common.h"
- /// \brief How many Records to allocate at once
- ///
- /// This should be big enough to avoid making lots of tiny allocations
- /// but small enough to avoid too much unused memory at once.
- #define INDEX_GROUP_SIZE 512
- /// \brief How many Records can be allocated at once at maximum
- #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
- /// \brief Base structure for index_stream and index_group structures
- typedef struct index_tree_node_s index_tree_node;
- struct index_tree_node_s {
- /// Uncompressed start offset of this Stream (relative to the
- /// beginning of the file) or Block (relative to the beginning
- /// of the Stream)
- lzma_vli uncompressed_base;
- /// Compressed start offset of this Stream or Block
- lzma_vli compressed_base;
- index_tree_node *parent;
- index_tree_node *left;
- index_tree_node *right;
- };
- /// \brief AVL tree to hold index_stream or index_group structures
- typedef struct {
- /// Root node
- index_tree_node *root;
- /// Leftmost node. Since the tree will be filled sequentially,
- /// this won't change after the first node has been added to
- /// the tree.
- index_tree_node *leftmost;
- /// The rightmost node in the tree. Since the tree is filled
- /// sequentially, this is always the node where to add the new data.
- index_tree_node *rightmost;
- /// Number of nodes in the tree
- uint32_t count;
- } index_tree;
- typedef struct {
- lzma_vli uncompressed_sum;
- lzma_vli unpadded_sum;
- } index_record;
- typedef struct {
- /// Every Record group is part of index_stream.groups tree.
- index_tree_node node;
- /// Number of Blocks in this Stream before this group.
- lzma_vli number_base;
- /// Number of Records that can be put in records[].
- size_t allocated;
- /// Index of the last Record in use.
- size_t last;
- /// The sizes in this array are stored as cumulative sums relative
- /// to the beginning of the Stream. This makes it possible to
- /// use binary search in lzma_index_locate().
- ///
- /// Note that the cumulative summing is done specially for
- /// unpadded_sum: The previous value is rounded up to the next
- /// multiple of four before adding the Unpadded Size of the new
- /// Block. The total encoded size of the Blocks in the Stream
- /// is records[last].unpadded_sum in the last Record group of
- /// the Stream.
- ///
- /// For example, if the Unpadded Sizes are 39, 57, and 81, the
- /// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
- /// The total encoded size of these Blocks is 184.
- ///
- /// This is a flexible array, because it makes easy to optimize
- /// memory usage in case someone concatenates many Streams that
- /// have only one or few Blocks.
- index_record records[];
- } index_group;
- typedef struct {
- /// Every index_stream is a node in the tree of Sreams.
- index_tree_node node;
- /// Number of this Stream (first one is 1)
- uint32_t number;
- /// Total number of Blocks before this Stream
- lzma_vli block_number_base;
- /// Record groups of this Stream are stored in a tree.
- /// It's a T-tree with AVL-tree balancing. There are
- /// INDEX_GROUP_SIZE Records per node by default.
- /// This keeps the number of memory allocations reasonable
- /// and finding a Record is fast.
- index_tree groups;
- /// Number of Records in this Stream
- lzma_vli record_count;
- /// Size of the List of Records field in this Stream. This is used
- /// together with record_count to calculate the size of the Index
- /// field and thus the total size of the Stream.
- lzma_vli index_list_size;
- /// Stream Flags of this Stream. This is meaningful only if
- /// the Stream Flags have been told us with lzma_index_stream_flags().
- /// Initially stream_flags.version is set to UINT32_MAX to indicate
- /// that the Stream Flags are unknown.
- lzma_stream_flags stream_flags;
- /// Amount of Stream Padding after this Stream. This defaults to
- /// zero and can be set with lzma_index_stream_padding().
- lzma_vli stream_padding;
- } index_stream;
- struct lzma_index_s {
- /// AVL-tree containing the Stream(s). Often there is just one
- /// Stream, but using a tree keeps lookups fast even when there
- /// are many concatenated Streams.
- index_tree streams;
- /// Uncompressed size of all the Blocks in the Stream(s)
- lzma_vli uncompressed_size;
- /// Total size of all the Blocks in the Stream(s)
- lzma_vli total_size;
- /// Total number of Records in all Streams in this lzma_index
- lzma_vli record_count;
- /// Size of the List of Records field if all the Streams in this
- /// lzma_index were packed into a single Stream (makes it simpler to
- /// take many .xz files and combine them into a single Stream).
- ///
- /// This value together with record_count is needed to calculate
- /// Backward Size that is stored into Stream Footer.
- lzma_vli index_list_size;
- /// How many Records to allocate at once in lzma_index_append().
- /// This defaults to INDEX_GROUP_SIZE but can be overriden with
- /// lzma_index_prealloc().
- size_t prealloc;
- /// Bitmask indicating what integrity check types have been used
- /// as set by lzma_index_stream_flags(). The bit of the last Stream
- /// is not included here, since it is possible to change it by
- /// calling lzma_index_stream_flags() again.
- uint32_t checks;
- };
- static void
- index_tree_init(index_tree *tree)
- {
- tree->root = NULL;
- tree->leftmost = NULL;
- tree->rightmost = NULL;
- tree->count = 0;
- return;
- }
- /// Helper for index_tree_end()
- static void
- index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
- void (*free_func)(void *node, const lzma_allocator *allocator))
- {
- // The tree won't ever be very huge, so recursion should be fine.
- // 20 levels in the tree is likely quite a lot already in practice.
- if (node->left != NULL)
- index_tree_node_end(node->left, allocator, free_func);
- if (node->right != NULL)
- index_tree_node_end(node->right, allocator, free_func);
- free_func(node, allocator);
- return;
- }
- /// Free the memory allocated for a tree. Each node is freed using the
- /// given free_func which is either &lzma_free or &index_stream_end.
- /// The latter is used to free the Record groups from each index_stream
- /// before freeing the index_stream itself.
- static void
- index_tree_end(index_tree *tree, const lzma_allocator *allocator,
- void (*free_func)(void *node, const lzma_allocator *allocator))
- {
- assert(free_func != NULL);
- if (tree->root != NULL)
- index_tree_node_end(tree->root, allocator, free_func);
- return;
- }
- /// Add a new node to the tree. node->uncompressed_base and
- /// node->compressed_base must have been set by the caller already.
- static void
- index_tree_append(index_tree *tree, index_tree_node *node)
- {
- node->parent = tree->rightmost;
- node->left = NULL;
- node->right = NULL;
- ++tree->count;
- // Handle the special case of adding the first node.
- if (tree->root == NULL) {
- tree->root = node;
- tree->leftmost = node;
- tree->rightmost = node;
- return;
- }
- // The tree is always filled sequentially.
- assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
- assert(tree->rightmost->compressed_base < node->compressed_base);
- // Add the new node after the rightmost node. It's the correct
- // place due to the reason above.
- tree->rightmost->right = node;
- tree->rightmost = node;
- // Balance the AVL-tree if needed. We don't need to keep the balance
- // factors in nodes, because we always fill the tree sequentially,
- // and thus know the state of the tree just by looking at the node
- // count. From the node count we can calculate how many steps to go
- // up in the tree to find the rotation root.
- uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
- if (up != 0) {
- // Locate the root node for the rotation.
- up = ctz32(tree->count) + 2;
- do {
- node = node->parent;
- } while (--up > 0);
- // Rotate left using node as the rotation root.
- index_tree_node *pivot = node->right;
- if (node->parent == NULL) {
- tree->root = pivot;
- } else {
- assert(node->parent->right == node);
- node->parent->right = pivot;
- }
- pivot->parent = node->parent;
- node->right = pivot->left;
- if (node->right != NULL)
- node->right->parent = node;
- pivot->left = node;
- node->parent = pivot;
- }
- return;
- }
- /// Get the next node in the tree. Return NULL if there are no more nodes.
- static void *
- index_tree_next(const index_tree_node *node)
- {
- if (node->right != NULL) {
- node = node->right;
- while (node->left != NULL)
- node = node->left;
- return (void *)(node);
- }
- while (node->parent != NULL && node->parent->right == node)
- node = node->parent;
- return (void *)(node->parent);
- }
- /// Locate a node that contains the given uncompressed offset. It is
- /// caller's job to check that target is not bigger than the uncompressed
- /// size of the tree (the last node would be returned in that case still).
- static void *
- index_tree_locate(const index_tree *tree, lzma_vli target)
- {
- const index_tree_node *result = NULL;
- const index_tree_node *node = tree->root;
- assert(tree->leftmost == NULL
- || tree->leftmost->uncompressed_base == 0);
- // Consecutive nodes may have the same uncompressed_base.
- // We must pick the rightmost one.
- while (node != NULL) {
- if (node->uncompressed_base > target) {
- node = node->left;
- } else {
- result = node;
- node = node->right;
- }
- }
- return (void *)(result);
- }
- /// Allocate and initialize a new Stream using the given base offsets.
- static index_stream *
- index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
- uint32_t stream_number, lzma_vli block_number_base,
- const lzma_allocator *allocator)
- {
- index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
- if (s == NULL)
- return NULL;
- s->node.uncompressed_base = uncompressed_base;
- s->node.compressed_base = compressed_base;
- s->node.parent = NULL;
- s->node.left = NULL;
- s->node.right = NULL;
- s->number = stream_number;
- s->block_number_base = block_number_base;
- index_tree_init(&s->groups);
- s->record_count = 0;
- s->index_list_size = 0;
- s->stream_flags.version = UINT32_MAX;
- s->stream_padding = 0;
- return s;
- }
- /// Free the memory allocated for a Stream and its Record groups.
- static void
- index_stream_end(void *node, const lzma_allocator *allocator)
- {
- index_stream *s = node;
- index_tree_end(&s->groups, allocator, &lzma_free);
- lzma_free(s, allocator);
- return;
- }
- static lzma_index *
- index_init_plain(const lzma_allocator *allocator)
- {
- lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
- if (i != NULL) {
- index_tree_init(&i->streams);
- i->uncompressed_size = 0;
- i->total_size = 0;
- i->record_count = 0;
- i->index_list_size = 0;
- i->prealloc = INDEX_GROUP_SIZE;
- i->checks = 0;
- }
- return i;
- }
- extern LZMA_API(lzma_index *)
- lzma_index_init(const lzma_allocator *allocator)
- {
- lzma_index *i = index_init_plain(allocator);
- if (i == NULL)
- return NULL;
- index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
- if (s == NULL) {
- lzma_free(i, allocator);
- return NULL;
- }
- index_tree_append(&i->streams, &s->node);
- return i;
- }
- extern LZMA_API(void)
- lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
- {
- // NOTE: If you modify this function, check also the bottom
- // of lzma_index_cat().
- if (i != NULL) {
- index_tree_end(&i->streams, allocator, &index_stream_end);
- lzma_free(i, allocator);
- }
- return;
- }
- extern void
- lzma_index_prealloc(lzma_index *i, lzma_vli records)
- {
- if (records > PREALLOC_MAX)
- records = PREALLOC_MAX;
- i->prealloc = (size_t)(records);
- return;
- }
- extern LZMA_API(uint64_t)
- lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
- {
- // This calculates an upper bound that is only a little bit
- // bigger than the exact maximum memory usage with the given
- // parameters.
- // Typical malloc() overhead is 2 * sizeof(void *) but we take
- // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
- // instead would give too inaccurate estimate.
- const size_t alloc_overhead = 4 * sizeof(void *);
- // Amount of memory needed for each Stream base structures.
- // We assume that every Stream has at least one Block and
- // thus at least one group.
- const size_t stream_base = sizeof(index_stream)
- + sizeof(index_group) + 2 * alloc_overhead;
- // Amount of memory needed per group.
- const size_t group_base = sizeof(index_group)
- + INDEX_GROUP_SIZE * sizeof(index_record)
- + alloc_overhead;
- // Number of groups. There may actually be more, but that overhead
- // has been taken into account in stream_base already.
- const lzma_vli groups
- = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
- // Memory used by index_stream and index_group structures.
- const uint64_t streams_mem = streams * stream_base;
- const uint64_t groups_mem = groups * group_base;
- // Memory used by the base structure.
- const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
- // Validate the arguments and catch integer overflows.
- // Maximum number of Streams is "only" UINT32_MAX, because
- // that limit is used by the tree containing the Streams.
- const uint64_t limit = UINT64_MAX - index_base;
- if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
- || streams > limit / stream_base
- || groups > limit / group_base
- || limit - streams_mem < groups_mem)
- return UINT64_MAX;
- return index_base + streams_mem + groups_mem;
- }
- extern LZMA_API(uint64_t)
- lzma_index_memused(const lzma_index *i)
- {
- return lzma_index_memusage(i->streams.count, i->record_count);
- }
- extern LZMA_API(lzma_vli)
- lzma_index_block_count(const lzma_index *i)
- {
- return i->record_count;
- }
- extern LZMA_API(lzma_vli)
- lzma_index_stream_count(const lzma_index *i)
- {
- return i->streams.count;
- }
- extern LZMA_API(lzma_vli)
- lzma_index_size(const lzma_index *i)
- {
- return index_size(i->record_count, i->index_list_size);
- }
- extern LZMA_API(lzma_vli)
- lzma_index_total_size(const lzma_index *i)
- {
- return i->total_size;
- }
- extern LZMA_API(lzma_vli)
- lzma_index_stream_size(const lzma_index *i)
- {
- // Stream Header + Blocks + Index + Stream Footer
- return LZMA_STREAM_HEADER_SIZE + i->total_size
- + index_size(i->record_count, i->index_list_size)
- + LZMA_STREAM_HEADER_SIZE;
- }
- static lzma_vli
- index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
- lzma_vli record_count, lzma_vli index_list_size,
- lzma_vli stream_padding)
- {
- // Earlier Streams and Stream Paddings + Stream Header
- // + Blocks + Index + Stream Footer + Stream Padding
- //
- // This might go over LZMA_VLI_MAX due to too big unpadded_sum
- // when this function is used in lzma_index_append().
- lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
- + stream_padding + vli_ceil4(unpadded_sum);
- if (file_size > LZMA_VLI_MAX)
- return LZMA_VLI_UNKNOWN;
- // The same applies here.
- file_size += index_size(record_count, index_list_size);
- if (file_size > LZMA_VLI_MAX)
- return LZMA_VLI_UNKNOWN;
- return file_size;
- }
- extern LZMA_API(lzma_vli)
- lzma_index_file_size(const lzma_index *i)
- {
- const index_stream *s = (const index_stream *)(i->streams.rightmost);
- const index_group *g = (const index_group *)(s->groups.rightmost);
- return index_file_size(s->node.compressed_base,
- g == NULL ? 0 : g->records[g->last].unpadded_sum,
- s->record_count, s->index_list_size,
- s->stream_padding);
- }
- extern LZMA_API(lzma_vli)
- lzma_index_uncompressed_size(const lzma_index *i)
- {
- return i->uncompressed_size;
- }
- extern LZMA_API(uint32_t)
- lzma_index_checks(const lzma_index *i)
- {
- uint32_t checks = i->checks;
- // Get the type of the Check of the last Stream too.
- const index_stream *s = (const index_stream *)(i->streams.rightmost);
- if (s->stream_flags.version != UINT32_MAX)
- checks |= UINT32_C(1) << s->stream_flags.check;
- return checks;
- }
- extern uint32_t
- lzma_index_padding_size(const lzma_index *i)
- {
- return (LZMA_VLI_C(4) - index_size_unpadded(
- i->record_count, i->index_list_size)) & 3;
- }
- extern LZMA_API(lzma_ret)
- lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
- {
- if (i == NULL || stream_flags == NULL)
- return LZMA_PROG_ERROR;
- // Validate the Stream Flags.
- return_if_error(lzma_stream_flags_compare(
- stream_flags, stream_flags));
- index_stream *s = (index_stream *)(i->streams.rightmost);
- s->stream_flags = *stream_flags;
- return LZMA_OK;
- }
- extern LZMA_API(lzma_ret)
- lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
- {
- if (i == NULL || stream_padding > LZMA_VLI_MAX
- || (stream_padding & 3) != 0)
- return LZMA_PROG_ERROR;
- index_stream *s = (index_stream *)(i->streams.rightmost);
- // Check that the new value won't make the file grow too big.
- const lzma_vli old_stream_padding = s->stream_padding;
- s->stream_padding = 0;
- if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
- s->stream_padding = old_stream_padding;
- return LZMA_DATA_ERROR;
- }
- s->stream_padding = stream_padding;
- return LZMA_OK;
- }
- extern LZMA_API(lzma_ret)
- lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
- lzma_vli unpadded_size, lzma_vli uncompressed_size)
- {
- // Validate.
- if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
- || unpadded_size > UNPADDED_SIZE_MAX
- || uncompressed_size > LZMA_VLI_MAX)
- return LZMA_PROG_ERROR;
- index_stream *s = (index_stream *)(i->streams.rightmost);
- index_group *g = (index_group *)(s->groups.rightmost);
- const lzma_vli compressed_base = g == NULL ? 0
- : vli_ceil4(g->records[g->last].unpadded_sum);
- const lzma_vli uncompressed_base = g == NULL ? 0
- : g->records[g->last].uncompressed_sum;
- const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
- + lzma_vli_size(uncompressed_size);
- // Check that the file size will stay within limits.
- if (index_file_size(s->node.compressed_base,
- compressed_base + unpadded_size, s->record_count + 1,
- s->index_list_size + index_list_size_add,
- s->stream_padding) == LZMA_VLI_UNKNOWN)
- return LZMA_DATA_ERROR;
- // The size of the Index field must not exceed the maximum value
- // that can be stored in the Backward Size field.
- if (index_size(i->record_count + 1,
- i->index_list_size + index_list_size_add)
- > LZMA_BACKWARD_SIZE_MAX)
- return LZMA_DATA_ERROR;
- if (g != NULL && g->last + 1 < g->allocated) {
- // There is space in the last group at least for one Record.
- ++g->last;
- } else {
- // We need to allocate a new group.
- g = lzma_alloc(sizeof(index_group)
- + i->prealloc * sizeof(index_record),
- allocator);
- if (g == NULL)
- return LZMA_MEM_ERROR;
- g->last = 0;
- g->allocated = i->prealloc;
- // Reset prealloc so that if the application happens to
- // add new Records, the allocation size will be sane.
- i->prealloc = INDEX_GROUP_SIZE;
- // Set the start offsets of this group.
- g->node.uncompressed_base = uncompressed_base;
- g->node.compressed_base = compressed_base;
- g->number_base = s->record_count + 1;
- // Add the new group to the Stream.
- index_tree_append(&s->groups, &g->node);
- }
- // Add the new Record to the group.
- g->records[g->last].uncompressed_sum
- = uncompressed_base + uncompressed_size;
- g->records[g->last].unpadded_sum
- = compressed_base + unpadded_size;
- // Update the totals.
- ++s->record_count;
- s->index_list_size += index_list_size_add;
- i->total_size += vli_ceil4(unpadded_size);
- i->uncompressed_size += uncompressed_size;
- ++i->record_count;
- i->index_list_size += index_list_size_add;
- return LZMA_OK;
- }
- /// Structure to pass info to index_cat_helper()
- typedef struct {
- /// Uncompressed size of the destination
- lzma_vli uncompressed_size;
- /// Compressed file size of the destination
- lzma_vli file_size;
- /// Same as above but for Block numbers
- lzma_vli block_number_add;
- /// Number of Streams that were in the destination index before we
- /// started appending new Streams from the source index. This is
- /// used to fix the Stream numbering.
- uint32_t stream_number_add;
- /// Destination index' Stream tree
- index_tree *streams;
- } index_cat_info;
- /// Add the Stream nodes from the source index to dest using recursion.
- /// Simplest iterative traversal of the source tree wouldn't work, because
- /// we update the pointers in nodes when moving them to the destination tree.
- static void
- index_cat_helper(const index_cat_info *info, index_stream *this)
- {
- index_stream *left = (index_stream *)(this->node.left);
- index_stream *right = (index_stream *)(this->node.right);
- if (left != NULL)
- index_cat_helper(info, left);
- this->node.uncompressed_base += info->uncompressed_size;
- this->node.compressed_base += info->file_size;
- this->number += info->stream_number_add;
- this->block_number_base += info->block_number_add;
- index_tree_append(info->streams, &this->node);
- if (right != NULL)
- index_cat_helper(info, right);
- return;
- }
- extern LZMA_API(lzma_ret)
- lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
- const lzma_allocator *allocator)
- {
- const lzma_vli dest_file_size = lzma_index_file_size(dest);
- // Check that we don't exceed the file size limits.
- if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
- || dest->uncompressed_size + src->uncompressed_size
- > LZMA_VLI_MAX)
- return LZMA_DATA_ERROR;
- // Check that the encoded size of the combined lzma_indexes stays
- // within limits. In theory, this should be done only if we know
- // that the user plans to actually combine the Streams and thus
- // construct a single Index (probably rare). However, exceeding
- // this limit is quite theoretical, so we do this check always
- // to simplify things elsewhere.
- {
- const lzma_vli dest_size = index_size_unpadded(
- dest->record_count, dest->index_list_size);
- const lzma_vli src_size = index_size_unpadded(
- src->record_count, src->index_list_size);
- if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
- return LZMA_DATA_ERROR;
- }
- // Optimize the last group to minimize memory usage. Allocation has
- // to be done before modifying dest or src.
- {
- index_stream *s = (index_stream *)(dest->streams.rightmost);
- index_group *g = (index_group *)(s->groups.rightmost);
- if (g != NULL && g->last + 1 < g->allocated) {
- assert(g->node.left == NULL);
- assert(g->node.right == NULL);
- index_group *newg = lzma_alloc(sizeof(index_group)
- + (g->last + 1)
- * sizeof(index_record),
- allocator);
- if (newg == NULL)
- return LZMA_MEM_ERROR;
- newg->node = g->node;
- newg->allocated = g->last + 1;
- newg->last = g->last;
- newg->number_base = g->number_base;
- memcpy(newg->records, g->records, newg->allocated
- * sizeof(index_record));
- if (g->node.parent != NULL) {
- assert(g->node.parent->right == &g->node);
- g->node.parent->right = &newg->node;
- }
- if (s->groups.leftmost == &g->node) {
- assert(s->groups.root == &g->node);
- s->groups.leftmost = &newg->node;
- s->groups.root = &newg->node;
- }
- if (s->groups.rightmost == &g->node)
- s->groups.rightmost = &newg->node;
- lzma_free(g, allocator);
- // NOTE: newg isn't leaked here because
- // newg == (void *)&newg->node.
- }
- }
- // Add all the Streams from src to dest. Update the base offsets
- // of each Stream from src.
- const index_cat_info info = {
- .uncompressed_size = dest->uncompressed_size,
- .file_size = dest_file_size,
- .stream_number_add = dest->streams.count,
- .block_number_add = dest->record_count,
- .streams = &dest->streams,
- };
- index_cat_helper(&info, (index_stream *)(src->streams.root));
- // Update info about all the combined Streams.
- dest->uncompressed_size += src->uncompressed_size;
- dest->total_size += src->total_size;
- dest->record_count += src->record_count;
- dest->index_list_size += src->index_list_size;
- dest->checks = lzma_index_checks(dest) | src->checks;
- // There's nothing else left in src than the base structure.
- lzma_free(src, allocator);
- return LZMA_OK;
- }
- /// Duplicate an index_stream.
- static index_stream *
- index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
- {
- // Catch a somewhat theoretical integer overflow.
- if (src->record_count > PREALLOC_MAX)
- return NULL;
- // Allocate and initialize a new Stream.
- index_stream *dest = index_stream_init(src->node.compressed_base,
- src->node.uncompressed_base, src->number,
- src->block_number_base, allocator);
- if (dest == NULL)
- return NULL;
- // Copy the overall information.
- dest->record_count = src->record_count;
- dest->index_list_size = src->index_list_size;
- dest->stream_flags = src->stream_flags;
- dest->stream_padding = src->stream_padding;
- // Return if there are no groups to duplicate.
- if (src->groups.leftmost == NULL)
- return dest;
- // Allocate memory for the Records. We put all the Records into
- // a single group. It's simplest and also tends to make
- // lzma_index_locate() a little bit faster with very big Indexes.
- index_group *destg = lzma_alloc(sizeof(index_group)
- + src->record_count * sizeof(index_record),
- allocator);
- if (destg == NULL) {
- index_stream_end(dest, allocator);
- return NULL;
- }
- // Initialize destg.
- destg->node.uncompressed_base = 0;
- destg->node.compressed_base = 0;
- destg->number_base = 1;
- destg->allocated = src->record_count;
- destg->last = src->record_count - 1;
- // Go through all the groups in src and copy the Records into destg.
- const index_group *srcg = (const index_group *)(src->groups.leftmost);
- size_t i = 0;
- do {
- memcpy(destg->records + i, srcg->records,
- (srcg->last + 1) * sizeof(index_record));
- i += srcg->last + 1;
- srcg = index_tree_next(&srcg->node);
- } while (srcg != NULL);
- assert(i == destg->allocated);
- // Add the group to the new Stream.
- index_tree_append(&dest->groups, &destg->node);
- return dest;
- }
- extern LZMA_API(lzma_index *)
- lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
- {
- // Allocate the base structure (no initial Stream).
- lzma_index *dest = index_init_plain(allocator);
- if (dest == NULL)
- return NULL;
- // Copy the totals.
- dest->uncompressed_size = src->uncompressed_size;
- dest->total_size = src->total_size;
- dest->record_count = src->record_count;
- dest->index_list_size = src->index_list_size;
- // Copy the Streams and the groups in them.
- const index_stream *srcstream
- = (const index_stream *)(src->streams.leftmost);
- do {
- index_stream *deststream = index_dup_stream(
- srcstream, allocator);
- if (deststream == NULL) {
- lzma_index_end(dest, allocator);
- return NULL;
- }
- index_tree_append(&dest->streams, &deststream->node);
- srcstream = index_tree_next(&srcstream->node);
- } while (srcstream != NULL);
- return dest;
- }
- /// Indexing for lzma_index_iter.internal[]
- enum {
- ITER_INDEX,
- ITER_STREAM,
- ITER_GROUP,
- ITER_RECORD,
- ITER_METHOD,
- };
- /// Values for lzma_index_iter.internal[ITER_METHOD].s
- enum {
- ITER_METHOD_NORMAL,
- ITER_METHOD_NEXT,
- ITER_METHOD_LEFTMOST,
- };
- static void
- iter_set_info(lzma_index_iter *iter)
- {
- const lzma_index *i = iter->internal[ITER_INDEX].p;
- const index_stream *stream = iter->internal[ITER_STREAM].p;
- const index_group *group = iter->internal[ITER_GROUP].p;
- const size_t record = iter->internal[ITER_RECORD].s;
- // lzma_index_iter.internal must not contain a pointer to the last
- // group in the index, because that may be reallocated by
- // lzma_index_cat().
- if (group == NULL) {
- // There are no groups.
- assert(stream->groups.root == NULL);
- iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
- } else if (i->streams.rightmost != &stream->node
- || stream->groups.rightmost != &group->node) {
- // The group is not not the last group in the index.
- iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
- } else if (stream->groups.leftmost != &group->node) {
- // The group isn't the only group in the Stream, thus we
- // know that it must have a parent group i.e. it's not
- // the root node.
- assert(stream->groups.root != &group->node);
- assert(group->node.parent->right == &group->node);
- iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
- iter->internal[ITER_GROUP].p = group->node.parent;
- } else {
- // The Stream has only one group.
- assert(stream->groups.root == &group->node);
- assert(group->node.parent == NULL);
- iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
- iter->internal[ITER_GROUP].p = NULL;
- }
- // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
- // internally.
- iter->stream.number = stream->number;
- iter->stream.block_count = stream->record_count;
- iter->stream.compressed_offset = stream->node.compressed_base;
- iter->stream.uncompressed_offset = stream->node.uncompressed_base;
- // iter->stream.flags will be NULL if the Stream Flags haven't been
- // set with lzma_index_stream_flags().
- iter->stream.flags = stream->stream_flags.version == UINT32_MAX
- ? NULL : &stream->stream_flags;
- iter->stream.padding = stream->stream_padding;
- if (stream->groups.rightmost == NULL) {
- // Stream has no Blocks.
- iter->stream.compressed_size = index_size(0, 0)
- + 2 * LZMA_STREAM_HEADER_SIZE;
- iter->stream.uncompressed_size = 0;
- } else {
- const index_group *g = (const index_group *)(
- stream->groups.rightmost);
- // Stream Header + Stream Footer + Index + Blocks
- iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
- + index_size(stream->record_count,
- stream->index_list_size)
- + vli_ceil4(g->records[g->last].unpadded_sum);
- iter->stream.uncompressed_size
- = g->records[g->last].uncompressed_sum;
- }
- if (group != NULL) {
- iter->block.number_in_stream = group->number_base + record;
- iter->block.number_in_file = iter->block.number_in_stream
- + stream->block_number_base;
- iter->block.compressed_stream_offset
- = record == 0 ? group->node.compressed_base
- : vli_ceil4(group->records[
- record - 1].unpadded_sum);
- iter->block.uncompressed_stream_offset
- = record == 0 ? group->node.uncompressed_base
- : group->records[record - 1].uncompressed_sum;
- iter->block.uncompressed_size
- = group->records[record].uncompressed_sum
- - iter->block.uncompressed_stream_offset;
- iter->block.unpadded_size
- = group->records[record].unpadded_sum
- - iter->block.compressed_stream_offset;
- iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
- iter->block.compressed_stream_offset
- += LZMA_STREAM_HEADER_SIZE;
- iter->block.compressed_file_offset
- = iter->block.compressed_stream_offset
- + iter->stream.compressed_offset;
- iter->block.uncompressed_file_offset
- = iter->block.uncompressed_stream_offset
- + iter->stream.uncompressed_offset;
- }
- return;
- }
- extern LZMA_API(void)
- lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
- {
- iter->internal[ITER_INDEX].p = i;
- lzma_index_iter_rewind(iter);
- return;
- }
- extern LZMA_API(void)
- lzma_index_iter_rewind(lzma_index_iter *iter)
- {
- iter->internal[ITER_STREAM].p = NULL;
- iter->internal[ITER_GROUP].p = NULL;
- iter->internal[ITER_RECORD].s = 0;
- iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
- return;
- }
- extern LZMA_API(lzma_bool)
- lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
- {
- // Catch unsupported mode values.
- if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
- return true;
- const lzma_index *i = iter->internal[ITER_INDEX].p;
- const index_stream *stream = iter->internal[ITER_STREAM].p;
- const index_group *group = NULL;
- size_t record = iter->internal[ITER_RECORD].s;
- // If we are being asked for the next Stream, leave group to NULL
- // so that the rest of the this function thinks that this Stream
- // has no groups and will thus go to the next Stream.
- if (mode != LZMA_INDEX_ITER_STREAM) {
- // Get the pointer to the current group. See iter_set_inf()
- // for explanation.
- switch (iter->internal[ITER_METHOD].s) {
- case ITER_METHOD_NORMAL:
- group = iter->internal[ITER_GROUP].p;
- break;
- case ITER_METHOD_NEXT:
- group = index_tree_next(iter->internal[ITER_GROUP].p);
- break;
- case ITER_METHOD_LEFTMOST:
- group = (const index_group *)(
- stream->groups.leftmost);
- break;
- }
- }
- again:
- if (stream == NULL) {
- // We at the beginning of the lzma_index.
- // Locate the first Stream.
- stream = (const index_stream *)(i->streams.leftmost);
- if (mode >= LZMA_INDEX_ITER_BLOCK) {
- // Since we are being asked to return information
- // about the first a Block, skip Streams that have
- // no Blocks.
- while (stream->groups.leftmost == NULL) {
- stream = index_tree_next(&stream->node);
- if (stream == NULL)
- return true;
- }
- }
- // Start from the first Record in the Stream.
- group = (const index_group *)(stream->groups.leftmost);
- record = 0;
- } else if (group != NULL && record < group->last) {
- // The next Record is in the same group.
- ++record;
- } else {
- // This group has no more Records or this Stream has
- // no Blocks at all.
- record = 0;
- // If group is not NULL, this Stream has at least one Block
- // and thus at least one group. Find the next group.
- if (group != NULL)
- group = index_tree_next(&group->node);
- if (group == NULL) {
- // This Stream has no more Records. Find the next
- // Stream. If we are being asked to return information
- // about a Block, we skip empty Streams.
- do {
- stream = index_tree_next(&stream->node);
- if (stream == NULL)
- return true;
- } while (mode >= LZMA_INDEX_ITER_BLOCK
- && stream->groups.leftmost == NULL);
- group = (const index_group *)(
- stream->groups.leftmost);
- }
- }
- if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
- // We need to look for the next Block again if this Block
- // is empty.
- if (record == 0) {
- if (group->node.uncompressed_base
- == group->records[0].uncompressed_sum)
- goto again;
- } else if (group->records[record - 1].uncompressed_sum
- == group->records[record].uncompressed_sum) {
- goto again;
- }
- }
- iter->internal[ITER_STREAM].p = stream;
- iter->internal[ITER_GROUP].p = group;
- iter->internal[ITER_RECORD].s = record;
- iter_set_info(iter);
- return false;
- }
- extern LZMA_API(lzma_bool)
- lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
- {
- const lzma_index *i = iter->internal[ITER_INDEX].p;
- // If the target is past the end of the file, return immediately.
- if (i->uncompressed_size <= target)
- return true;
- // Locate the Stream containing the target offset.
- const index_stream *stream = index_tree_locate(&i->streams, target);
- assert(stream != NULL);
- target -= stream->node.uncompressed_base;
- // Locate the group containing the target offset.
- const index_group *group = index_tree_locate(&stream->groups, target);
- assert(group != NULL);
- // Use binary search to locate the exact Record. It is the first
- // Record whose uncompressed_sum is greater than target.
- // This is because we want the rightmost Record that fullfills the
- // search criterion. It is possible that there are empty Blocks;
- // we don't want to return them.
- size_t left = 0;
- size_t right = group->last;
- while (left < right) {
- const size_t pos = left + (right - left) / 2;
- if (group->records[pos].uncompressed_sum <= target)
- left = pos + 1;
- else
- right = pos;
- }
- iter->internal[ITER_STREAM].p = stream;
- iter->internal[ITER_GROUP].p = group;
- iter->internal[ITER_RECORD].s = left;
- iter_set_info(iter);
- return false;
- }
|