123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- /***** COLOR CORRECTION *****/
- // Color Space references:
- // https://www.unravel.com.au/understanding-color-spaces
- // SMPTE 170M - BT.601 (NTSC-M) -> BT.709
- mat3 from_NTSCM = transpose(mat3(
- 0.939497225737661, 0.0502268452914346, 0.0102759289709032,
- 0.0177558637510127, 0.965824605885027, 0.0164195303639603,
- -0.00162163209967010, -0.00437400622653655, 1.00599563832621));
- // ARIB TR-B9 (9300K+27MPCD with chromatic adaptation) (NTSC-J) -> BT.709
- mat3 from_NTSCJ = transpose(mat3(
- 0.823613036967492, -0.0943227111084757, 0.00799341532931119,
- 0.0289258355537324, 1.02310733489462, 0.00243547111576797,
- -0.00569501554980891, 0.0161828357559315, 1.22328453915712));
- // EBU - BT.470BG/BT.601 (PAL) -> BT.709
- mat3 from_PAL = transpose(mat3(
- 1.04408168421813, -0.0440816842181253, 0.000000000000000,
- 0.000000000000000, 1.00000000000000, 0.000000000000000,
- 0.000000000000000, 0.0118044782106489, 0.988195521789351));
- float3 LinearTosRGBGamma(float3 color)
- {
- const float a = 0.055;
- for (int i = 0; i < 3; ++i)
- {
- float x = color[i];
- if (x <= 0.0031308)
- x = x * 12.92;
- else
- x = (1.0 + a) * pow(x, 1.0 / 2.4) - a;
- color[i] = x;
- }
- return color;
- }
- /***** COLOR SAMPLING *****/
- // Non filtered gamma corrected sample (nearest neighbor)
- float4 QuickSample(float3 uvw, float gamma)
- {
- #if 0 // Test sampling range
- const float threshold = 0.00000001;
- float2 xy = uvw.xy * GetResolution();
- // Sampling outside the valid range, draw in yellow
- if (xy.x < (0.0 - threshold) || xy.x > (GetResolution().x + threshold) || xy.y < (0.0 - threshold) || xy.y > (GetResolution().y + threshold))
- return float4(1.0, 1.0, 0.0, 1);
- // Sampling at the edges, draw in purple
- if (xy.x < 1.0 || xy.x > (GetResolution().x - 1.0) || xy.y < 1.0 || xy.y > (GetResolution().y - 1.0))
- return float4(0.5, 0, 0.5, 1);
- #endif
- float4 color = texture(samp1, uvw);
- color.rgb = pow(color.rgb, float3(gamma));
- return color;
- }
- float4 QuickSample(float2 uv, float w, float gamma)
- {
- return QuickSample(float3(uv, w), gamma);
- }
- float4 QuickSampleByPixel(float2 xy, float w, float gamma)
- {
- float3 uvw = float3(xy * GetInvResolution(), w);
- return QuickSample(uvw, gamma);
- }
- /***** Bilinear Interpolation *****/
- float4 BilinearSample(float3 uvw, float gamma)
- {
- // This emulates the (bi)linear filtering done directly from GPUs HW.
- // Note that GPUs might natively filter red green and blue differently, but we don't do it.
- // They might also use different filtering between upscaling and downscaling.
- float2 source_size = GetResolution();
- float2 pixel = (uvw.xy * source_size) - 0.5; // Try to find the matching pixel top left corner
- // Find the integer and floating point parts
- float2 int_pixel = floor(pixel);
- float2 frac_pixel = fract(pixel);
- // Take 4 samples around the original uvw
- float4 c11 = QuickSampleByPixel(int_pixel + float2(0.5, 0.5), uvw.z, gamma);
- float4 c21 = QuickSampleByPixel(int_pixel + float2(1.5, 0.5), uvw.z, gamma);
- float4 c12 = QuickSampleByPixel(int_pixel + float2(0.5, 1.5), uvw.z, gamma);
- float4 c22 = QuickSampleByPixel(int_pixel + float2(1.5, 1.5), uvw.z, gamma);
- // Blend the 4 samples by their weight
- return lerp(lerp(c11, c21, frac_pixel.x), lerp(c12, c22, frac_pixel.x), frac_pixel.y);
- }
- /***** Bicubic Interpolation *****/
- // Formula derived from:
- // https://en.wikipedia.org/wiki/Mitchell%E2%80%93Netravali_filters#Definition
- // Values from:
- // https://guideencodemoe-mkdocs.readthedocs.io/encoding/resampling/#mitchell-netravali-bicubic
- // Other references:
- // https://www.codeproject.com/Articles/236394/Bi-Cubic-and-Bi-Linear-Interpolation-with-GLSL
- // https://github.com/ValveSoftware/gamescope/pull/740
- // https://stackoverflow.com/questions/13501081/efficient-bicubic-filtering-code-in-glsl
- #define CUBIC_COEFF_GEN(B, C) \
- (mat4(/* t^0 */ ((B) / 6.0), (-(B) / 3.0 + 1.0), ((B) / 6.0), (0.0), \
- /* t^1 */ (-(B) / 2.0 - (C)), (0.0), ((B) / 2.0 + (C)), (0.0), \
- /* t^2 */ ((B) / 2.0 + 2.0 * (C)), (2.0 * (B) + (C)-3.0), \
- (-5.0 * (B) / 2.0 - 2.0 * (C) + 3.0), (-(C)), \
- /* t^3 */ (-(B) / 6.0 - (C)), (-3.0 * (B) / 2.0 - (C) + 2.0), \
- (3.0 * (B) / 2.0 + (C)-2.0), ((B) / 6.0 + (C))))
- float4 CubicCoeffs(float t, mat4 coeffs)
- {
- return coeffs * float4(1.0, t, t * t, t * t * t);
- }
- float4 CubicMix(float4 c0, float4 c1, float4 c2, float4 c3, float4 coeffs)
- {
- return c0 * coeffs[0] + c1 * coeffs[1] + c2 * coeffs[2] + c3 * coeffs[3];
- }
- // By Sam Belliveau. Public Domain license.
- // Simple 16 tap, gamma correct, implementation of bicubic filtering.
- float4 BicubicSample(float3 uvw, float gamma, mat4 coeffs)
- {
- float2 pixel = (uvw.xy * GetResolution()) - 0.5;
- float2 int_pixel = floor(pixel);
- float2 frac_pixel = fract(pixel);
- float4 c00 = QuickSampleByPixel(int_pixel + float2(-0.5, -0.5), uvw.z, gamma);
- float4 c10 = QuickSampleByPixel(int_pixel + float2(+0.5, -0.5), uvw.z, gamma);
- float4 c20 = QuickSampleByPixel(int_pixel + float2(+1.5, -0.5), uvw.z, gamma);
- float4 c30 = QuickSampleByPixel(int_pixel + float2(+2.5, -0.5), uvw.z, gamma);
- float4 c01 = QuickSampleByPixel(int_pixel + float2(-0.5, +0.5), uvw.z, gamma);
- float4 c11 = QuickSampleByPixel(int_pixel + float2(+0.5, +0.5), uvw.z, gamma);
- float4 c21 = QuickSampleByPixel(int_pixel + float2(+1.5, +0.5), uvw.z, gamma);
- float4 c31 = QuickSampleByPixel(int_pixel + float2(+2.5, +0.5), uvw.z, gamma);
- float4 c02 = QuickSampleByPixel(int_pixel + float2(-0.5, +1.5), uvw.z, gamma);
- float4 c12 = QuickSampleByPixel(int_pixel + float2(+0.5, +1.5), uvw.z, gamma);
- float4 c22 = QuickSampleByPixel(int_pixel + float2(+1.5, +1.5), uvw.z, gamma);
- float4 c32 = QuickSampleByPixel(int_pixel + float2(+2.5, +1.5), uvw.z, gamma);
- float4 c03 = QuickSampleByPixel(int_pixel + float2(-0.5, +2.5), uvw.z, gamma);
- float4 c13 = QuickSampleByPixel(int_pixel + float2(+0.5, +2.5), uvw.z, gamma);
- float4 c23 = QuickSampleByPixel(int_pixel + float2(+1.5, +2.5), uvw.z, gamma);
- float4 c33 = QuickSampleByPixel(int_pixel + float2(+2.5, +2.5), uvw.z, gamma);
- float4 cx = CubicCoeffs(frac_pixel.x, coeffs);
- float4 cy = CubicCoeffs(frac_pixel.y, coeffs);
- float4 x0 = CubicMix(c00, c10, c20, c30, cx);
- float4 x1 = CubicMix(c01, c11, c21, c31, cx);
- float4 x2 = CubicMix(c02, c12, c22, c32, cx);
- float4 x3 = CubicMix(c03, c13, c23, c33, cx);
- return CubicMix(x0, x1, x2, x3, cy);
- }
- /***** Sharp Bilinear Filtering *****/
- // Based on https://github.com/libretro/slang-shaders/blob/master/interpolation/shaders/sharp-bilinear.slang
- // by Themaister, Public Domain license
- // Does a bilinear stretch, with a preapplied Nx nearest-neighbor scale,
- // giving a sharper image than plain bilinear.
- float4 SharpBilinearSample(float3 uvw, float gamma)
- {
- float2 source_size = GetResolution();
- float2 inverted_source_size = GetInvResolution();
- float2 target_size = GetWindowResolution();
- float2 texel = uvw.xy * source_size;
- float2 texel_floored = floor(texel);
- float2 s = fract(texel);
- float scale = max(floor(max(target_size.x * inverted_source_size.x, target_size.y * inverted_source_size.y)), 1.f);
- float region_range = 0.5 - (0.5 / scale);
- // Figure out where in the texel to sample to get correct pre-scaled bilinear.
- float2 center_dist = s - 0.5;
- float2 f = ((center_dist - clamp(center_dist, -region_range, region_range)) * scale) + 0.5;
- float2 mod_texel = texel_floored + f;
- uvw.xy = mod_texel * inverted_source_size;
- return BilinearSample(uvw, gamma);
- }
- /***** Area Sampling *****/
- // By Sam Belliveau and Filippo Tarpini. Public Domain license.
- // Effectively a more accurate sharp bilinear filter when upscaling,
- // that also works as a mathematically perfect downscale filter.
- // https://entropymine.com/imageworsener/pixelmixing/
- // https://github.com/obsproject/obs-studio/pull/1715
- // https://legacy.imagemagick.org/Usage/filter/
- float4 AreaSampling(float3 uvw, float gamma)
- {
- // Determine the sizes of the source and target images.
- float2 source_size = GetResolution();
- float2 target_size = GetWindowResolution();
- float2 inverted_target_size = GetInvWindowResolution();
- // Compute the top-left and bottom-right corners of the target pixel box.
- float2 t_beg = floor(uvw.xy * target_size);
- float2 t_end = t_beg + float2(1.0, 1.0);
- // Convert the target pixel box to source pixel box.
- float2 beg = t_beg * inverted_target_size * source_size;
- float2 end = t_end * inverted_target_size * source_size;
- // Compute the top-left and bottom-right corners of the pixel box.
- float2 f_beg = floor(beg);
- float2 f_end = floor(end);
- // Compute how much of the start and end pixels are covered horizontally & vertically.
- float area_w = 1.0 - fract(beg.x);
- float area_n = 1.0 - fract(beg.y);
- float area_e = fract(end.x);
- float area_s = fract(end.y);
- // Compute the areas of the corner pixels in the pixel box.
- float area_nw = area_n * area_w;
- float area_ne = area_n * area_e;
- float area_sw = area_s * area_w;
- float area_se = area_s * area_e;
- // Initialize the color accumulator.
- float4 avg_color = float4(0.0, 0.0, 0.0, 0.0);
- // Prevents rounding errors due to the coordinates flooring above
- const float2 offset = float2(0.5, 0.5);
- // Accumulate corner pixels.
- avg_color += area_nw * QuickSampleByPixel(float2(f_beg.x, f_beg.y) + offset, uvw.z, gamma);
- avg_color += area_ne * QuickSampleByPixel(float2(f_end.x, f_beg.y) + offset, uvw.z, gamma);
- avg_color += area_sw * QuickSampleByPixel(float2(f_beg.x, f_end.y) + offset, uvw.z, gamma);
- avg_color += area_se * QuickSampleByPixel(float2(f_end.x, f_end.y) + offset, uvw.z, gamma);
- // Determine the size of the pixel box.
- int x_range = int(f_end.x - f_beg.x - 0.5);
- int y_range = int(f_end.y - f_beg.y - 0.5);
- // Workaround to compile the shader with DX11/12.
- // If this isn't done, it will complain that the loop could have too many iterations.
- // This number should be enough to guarantee downscaling from very high to very small resolutions.
- // Note that this number might be referenced in the UI.
- const int max_iterations = 16;
- // Fix up the average calculations in case we reached the upper limit
- x_range = min(x_range, max_iterations);
- y_range = min(y_range, max_iterations);
- // Accumulate top and bottom edge pixels.
- for (int ix = 0; ix < max_iterations; ++ix)
- {
- if (ix < x_range)
- {
- float x = f_beg.x + 1.0 + float(ix);
- avg_color += area_n * QuickSampleByPixel(float2(x, f_beg.y) + offset, uvw.z, gamma);
- avg_color += area_s * QuickSampleByPixel(float2(x, f_end.y) + offset, uvw.z, gamma);
- }
- }
- // Accumulate left and right edge pixels and all the pixels in between.
- for (int iy = 0; iy < max_iterations; ++iy)
- {
- if (iy < y_range)
- {
- float y = f_beg.y + 1.0 + float(iy);
- avg_color += area_w * QuickSampleByPixel(float2(f_beg.x, y) + offset, uvw.z, gamma);
- avg_color += area_e * QuickSampleByPixel(float2(f_end.x, y) + offset, uvw.z, gamma);
- for (int ix = 0; ix < max_iterations; ++ix)
- {
- if (ix < x_range)
- {
- float x = f_beg.x + 1.0 + float(ix);
- avg_color += QuickSampleByPixel(float2(x, y) + offset, uvw.z, gamma);
- }
- }
- }
- }
- // Compute the area of the pixel box that was sampled.
- float area_corners = area_nw + area_ne + area_sw + area_se;
- float area_edges = float(x_range) * (area_n + area_s) + float(y_range) * (area_w + area_e);
- float area_center = float(x_range) * float(y_range);
- // Return the normalized average color.
- return avg_color / (area_corners + area_edges + area_center);
- }
- /***** Main Functions *****/
- // Returns an accurate (gamma corrected) sample of a gamma space space texture.
- // Outputs in linear space for simplicity.
- float4 LinearGammaCorrectedSample(float gamma)
- {
- float3 uvw = v_tex0;
- float4 color = float4(0, 0, 0, 1);
- if (resampling_method <= 1) // Bilinear
- {
- color = BilinearSample(uvw, gamma);
- }
- else if (resampling_method == 2) // Bicubic: B-Spline
- {
- color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(1.0, 0.0));
- }
- else if (resampling_method == 3) // Bicubic: Mitchell-Netravali
- {
- color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(1.0 / 3.0, 1.0 / 3.0));
- }
- else if (resampling_method == 4) // Bicubic: Catmull-Rom
- {
- color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(0.0, 0.5));
- }
- else if (resampling_method == 5) // Sharp Bilinear
- {
- color = SharpBilinearSample(uvw, gamma);
- }
- else if (resampling_method == 6) // Area Sampling
- {
- color = AreaSampling(uvw, gamma);
- }
- else if (resampling_method == 7) // Nearest Neighbor
- {
- color = QuickSample(uvw, gamma);
- }
- else if (resampling_method == 8) // Bicubic: Hermite
- {
- color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(0.0, 0.0));
- }
- return color;
- }
- void main()
- {
- // This tries to fall back on GPU HW sampling if it can (it won't be gamma corrected).
- bool raw_resampling = resampling_method <= 0;
- bool needs_rescaling = GetResolution() != GetWindowResolution();
- bool needs_resampling = needs_rescaling && (OptionEnabled(hdr_output) || OptionEnabled(correct_gamma) || !raw_resampling);
- float4 color;
- if (needs_resampling)
- {
- // Doing linear sampling in "gamma space" on linear texture formats isn't correct.
- // If the source and target resolutions don't match, the GPU will return a color
- // that is the average of 4 gamma space colors, but gamma space colors can't be blended together,
- // gamma neeeds to be de-applied first. This makes a big difference if colors change
- // drastically between two pixels.
- color = LinearGammaCorrectedSample(game_gamma);
- }
- else
- {
- // Default GPU HW sampling. Bilinear is identical to Nearest Neighbor if the input and output resolutions match.
- if (needs_rescaling)
- color = texture(samp0, v_tex0);
- else
- color = texture(samp1, v_tex0);
- // Convert to linear before doing any other of follow up operations.
- color.rgb = pow(color.rgb, float3(game_gamma));
- }
- if (OptionEnabled(correct_color_space))
- {
- if (game_color_space == 0)
- color.rgb = color.rgb * from_NTSCM;
- else if (game_color_space == 1)
- color.rgb = color.rgb * from_NTSCJ;
- else if (game_color_space == 2)
- color.rgb = color.rgb * from_PAL;
- }
- if (OptionEnabled(hdr_output))
- {
- float hdr_paper_white = hdr_paper_white_nits / hdr_sdr_white_nits;
- color.rgb *= hdr_paper_white;
- }
- if (OptionEnabled(linear_space_output))
- {
- // Nothing to do here
- }
- // Correct the SDR gamma for sRGB (PC/Monitor) or ~2.2 (Common TV gamma)
- else if (OptionEnabled(correct_gamma))
- {
- if (OptionEnabled(sdr_display_gamma_sRGB))
- color.rgb = LinearTosRGBGamma(color.rgb);
- else
- color.rgb = pow(color.rgb, float3(1.0 / sdr_display_custom_gamma));
- }
- // Restore the original gamma without changes
- else
- {
- color.rgb = pow(color.rgb, float3(1.0 / game_gamma));
- }
- SetOutput(color);
- }
|