123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867 |
- ////////////////////////////////////////////////////////////////////////////////
- ///
- /// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
- /// while maintaining the original pitch by using a time domain WSOLA-like
- /// method with several performance-increasing tweaks.
- ///
- /// Note : MMX optimized functions reside in a separate, platform-specific
- /// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
- ///
- /// Author : Copyright (c) Olli Parviainen
- /// Author e-mail : oparviai 'at' iki.fi
- /// SoundTouch WWW: http://www.surina.net/soundtouch
- ///
- ////////////////////////////////////////////////////////////////////////////////
- //
- // Last changed : $Date: 2013-06-14 17:34:33 +0000 (Fri, 14 Jun 2013) $
- // File revision : $Revision: 1.12 $
- //
- // $Id: TDStretch.cpp 172 2013-06-14 17:34:33Z oparviai $
- //
- ////////////////////////////////////////////////////////////////////////////////
- //
- // License :
- //
- // SoundTouch audio processing library
- // Copyright (c) Olli Parviainen
- //
- // This library is free software; you can redistribute it and/or
- // modify it under the terms of the GNU Lesser General Public
- // License as published by the Free Software Foundation; either
- // version 2.1 of the License, or (at your option) any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- // Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public
- // License along with this library; if not, write to the Free Software
- // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- //
- ////////////////////////////////////////////////////////////////////////////////
- #include <string.h>
- #include <limits.h>
- #include <assert.h>
- #include <math.h>
- #include <float.h>
- #include "STTypes.h"
- #include "cpu_detect.h"
- #include "TDStretch.h"
- using namespace soundtouch;
- #define max(x, y) (((x) > (y)) ? (x) : (y))
- /*****************************************************************************
- *
- * Constant definitions
- *
- *****************************************************************************/
- // Table for the hierarchical mixing position seeking algorithm
- static const short _scanOffsets[5][24]={
- { 124, 186, 248, 310, 372, 434, 496, 558, 620, 682, 744, 806,
- 868, 930, 992, 1054, 1116, 1178, 1240, 1302, 1364, 1426, 1488, 0},
- {-100, -75, -50, -25, 25, 50, 75, 100, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- { -20, -15, -10, -5, 5, 10, 15, 20, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- { -4, -3, -2, -1, 1, 2, 3, 4, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- { 121, 114, 97, 114, 98, 105, 108, 32, 104, 99, 117, 111,
- 116, 100, 110, 117, 111, 115, 0, 0, 0, 0, 0, 0}};
- /*****************************************************************************
- *
- * Implementation of the class 'TDStretch'
- *
- *****************************************************************************/
- TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
- {
- bQuickSeek = FALSE;
- channels = 2;
- pMidBuffer = NULL;
- pMidBufferUnaligned = NULL;
- overlapLength = 0;
- bAutoSeqSetting = TRUE;
- bAutoSeekSetting = TRUE;
- // outDebt = 0;
- skipFract = 0;
- tempo = 1.0f;
- setParameters(44100, DEFAULT_SEQUENCE_MS, DEFAULT_SEEKWINDOW_MS, DEFAULT_OVERLAP_MS);
- setTempo(1.0f);
- clear();
- }
- TDStretch::~TDStretch()
- {
- delete[] pMidBufferUnaligned;
- }
- // Sets routine control parameters. These control are certain time constants
- // defining how the sound is stretched to the desired duration.
- //
- // 'sampleRate' = sample rate of the sound
- // 'sequenceMS' = one processing sequence length in milliseconds (default = 82 ms)
- // 'seekwindowMS' = seeking window length for scanning the best overlapping
- // position (default = 28 ms)
- // 'overlapMS' = overlapping length (default = 12 ms)
- void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
- int aSeekWindowMS, int aOverlapMS)
- {
- // accept only positive parameter values - if zero or negative, use old values instead
- if (aSampleRate > 0) this->sampleRate = aSampleRate;
- if (aOverlapMS > 0) this->overlapMs = aOverlapMS;
- if (aSequenceMS > 0)
- {
- this->sequenceMs = aSequenceMS;
- bAutoSeqSetting = FALSE;
- }
- else if (aSequenceMS == 0)
- {
- // if zero, use automatic setting
- bAutoSeqSetting = TRUE;
- }
- if (aSeekWindowMS > 0)
- {
- this->seekWindowMs = aSeekWindowMS;
- bAutoSeekSetting = FALSE;
- }
- else if (aSeekWindowMS == 0)
- {
- // if zero, use automatic setting
- bAutoSeekSetting = TRUE;
- }
- calcSeqParameters();
- calculateOverlapLength(overlapMs);
- // set tempo to recalculate 'sampleReq'
- setTempo(tempo);
- }
- /// Get routine control parameters, see setParameters() function.
- /// Any of the parameters to this function can be NULL, in such case corresponding parameter
- /// value isn't returned.
- void TDStretch::getParameters(int *pSampleRate, int *pSequenceMs, int *pSeekWindowMs, int *pOverlapMs) const
- {
- if (pSampleRate)
- {
- *pSampleRate = sampleRate;
- }
- if (pSequenceMs)
- {
- *pSequenceMs = (bAutoSeqSetting) ? (USE_AUTO_SEQUENCE_LEN) : sequenceMs;
- }
- if (pSeekWindowMs)
- {
- *pSeekWindowMs = (bAutoSeekSetting) ? (USE_AUTO_SEEKWINDOW_LEN) : seekWindowMs;
- }
- if (pOverlapMs)
- {
- *pOverlapMs = overlapMs;
- }
- }
- // Overlaps samples in 'midBuffer' with the samples in 'pInput'
- void TDStretch::overlapMono(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput) const
- {
- int i;
- SAMPLETYPE m1, m2;
- m1 = (SAMPLETYPE)0;
- m2 = (SAMPLETYPE)overlapLength;
- for (i = 0; i < overlapLength ; i ++)
- {
- pOutput[i] = (pInput[i] * m1 + pMidBuffer[i] * m2 ) / overlapLength;
- m1 += 1;
- m2 -= 1;
- }
- }
- void TDStretch::clearMidBuffer()
- {
- memset(pMidBuffer, 0, channels * sizeof(SAMPLETYPE) * overlapLength);
- }
- void TDStretch::clearInput()
- {
- inputBuffer.clear();
- clearMidBuffer();
- }
- // Clears the sample buffers
- void TDStretch::clear()
- {
- outputBuffer.clear();
- clearInput();
- }
- // Enables/disables the quick position seeking algorithm. Zero to disable, nonzero
- // to enable
- void TDStretch::enableQuickSeek(BOOL enable)
- {
- bQuickSeek = enable;
- }
- // Returns nonzero if the quick seeking algorithm is enabled.
- BOOL TDStretch::isQuickSeekEnabled() const
- {
- return bQuickSeek;
- }
- // Seeks for the optimal overlap-mixing position.
- int TDStretch::seekBestOverlapPosition(const SAMPLETYPE *refPos)
- {
- if (bQuickSeek)
- {
- return seekBestOverlapPositionQuick(refPos);
- }
- else
- {
- return seekBestOverlapPositionFull(refPos);
- }
- }
- // Overlaps samples in 'midBuffer' with the samples in 'pInputBuffer' at position
- // of 'ovlPos'.
- inline void TDStretch::overlap(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput, uint ovlPos) const
- {
- #ifndef USE_MULTICH_ALWAYS
- if (channels == 1)
- {
- // mono sound.
- overlapMono(pOutput, pInput + ovlPos);
- }
- else if (channels == 2)
- {
- // stereo sound
- overlapStereo(pOutput, pInput + 2 * ovlPos);
- }
- else
- #endif // USE_MULTICH_ALWAYS
- {
- assert(channels > 0);
- overlapMulti(pOutput, pInput + channels * ovlPos);
- }
- }
- // Seeks for the optimal overlap-mixing position. The 'stereo' version of the
- // routine
- //
- // The best position is determined as the position where the two overlapped
- // sample sequences are 'most alike', in terms of the highest cross-correlation
- // value over the overlapping period
- int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
- {
- int bestOffs;
- double bestCorr, corr;
- int i;
- bestCorr = FLT_MIN;
- bestOffs = 0;
- // Scans for the best correlation value by testing each possible position
- // over the permitted range.
- for (i = 0; i < seekLength; i ++)
- {
- // Calculates correlation value for the mixing position corresponding
- // to 'i'
- corr = calcCrossCorr(refPos + channels * i, pMidBuffer);
- // heuristic rule to slightly favour values close to mid of the range
- double tmp = (double)(2 * i - seekLength) / (double)seekLength;
- corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
- // Checks for the highest correlation value
- if (corr > bestCorr)
- {
- bestCorr = corr;
- bestOffs = i;
- }
- }
- // clear cross correlation routine state if necessary (is so e.g. in MMX routines).
- clearCrossCorrState();
- return bestOffs;
- }
- // Seeks for the optimal overlap-mixing position. The 'stereo' version of the
- // routine
- //
- // The best position is determined as the position where the two overlapped
- // sample sequences are 'most alike', in terms of the highest cross-correlation
- // value over the overlapping period
- int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
- {
- int j;
- int bestOffs;
- double bestCorr, corr;
- int scanCount, corrOffset, tempOffset;
- bestCorr = FLT_MIN;
- bestOffs = _scanOffsets[0][0];
- corrOffset = 0;
- tempOffset = 0;
- // Scans for the best correlation value using four-pass hierarchical search.
- //
- // The look-up table 'scans' has hierarchical position adjusting steps.
- // In first pass the routine searhes for the highest correlation with
- // relatively coarse steps, then rescans the neighbourhood of the highest
- // correlation with better resolution and so on.
- for (scanCount = 0;scanCount < 4; scanCount ++)
- {
- j = 0;
- while (_scanOffsets[scanCount][j])
- {
- tempOffset = corrOffset + _scanOffsets[scanCount][j];
- if (tempOffset >= seekLength) break;
- // Calculates correlation value for the mixing position corresponding
- // to 'tempOffset'
- corr = (double)calcCrossCorr(refPos + channels * tempOffset, pMidBuffer);
- // heuristic rule to slightly favour values close to mid of the range
- double tmp = (double)(2 * tempOffset - seekLength) / seekLength;
- corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
- // Checks for the highest correlation value
- if (corr > bestCorr)
- {
- bestCorr = corr;
- bestOffs = tempOffset;
- }
- j ++;
- }
- corrOffset = bestOffs;
- }
- // clear cross correlation routine state if necessary (is so e.g. in MMX routines).
- clearCrossCorrState();
- return bestOffs;
- }
- /// clear cross correlation routine state if necessary
- void TDStretch::clearCrossCorrState()
- {
- // default implementation is empty.
- }
- /// Calculates processing sequence length according to tempo setting
- void TDStretch::calcSeqParameters()
- {
- // Adjust tempo param according to tempo, so that variating processing sequence length is used
- // at varius tempo settings, between the given low...top limits
- #define AUTOSEQ_TEMPO_LOW 0.5 // auto setting low tempo range (-50%)
- #define AUTOSEQ_TEMPO_TOP 2.0 // auto setting top tempo range (+100%)
- // sequence-ms setting values at above low & top tempo
- #define AUTOSEQ_AT_MIN 125.0
- #define AUTOSEQ_AT_MAX 50.0
- #define AUTOSEQ_K ((AUTOSEQ_AT_MAX - AUTOSEQ_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
- #define AUTOSEQ_C (AUTOSEQ_AT_MIN - (AUTOSEQ_K) * (AUTOSEQ_TEMPO_LOW))
- // seek-window-ms setting values at above low & top tempo
- #define AUTOSEEK_AT_MIN 25.0
- #define AUTOSEEK_AT_MAX 15.0
- #define AUTOSEEK_K ((AUTOSEEK_AT_MAX - AUTOSEEK_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
- #define AUTOSEEK_C (AUTOSEEK_AT_MIN - (AUTOSEEK_K) * (AUTOSEQ_TEMPO_LOW))
- #define CHECK_LIMITS(x, mi, ma) (((x) < (mi)) ? (mi) : (((x) > (ma)) ? (ma) : (x)))
- double seq, seek;
-
- if (bAutoSeqSetting)
- {
- seq = AUTOSEQ_C + AUTOSEQ_K * tempo;
- seq = CHECK_LIMITS(seq, AUTOSEQ_AT_MAX, AUTOSEQ_AT_MIN);
- sequenceMs = (int)(seq + 0.5);
- }
- if (bAutoSeekSetting)
- {
- seek = AUTOSEEK_C + AUTOSEEK_K * tempo;
- seek = CHECK_LIMITS(seek, AUTOSEEK_AT_MAX, AUTOSEEK_AT_MIN);
- seekWindowMs = (int)(seek + 0.5);
- }
- // Update seek window lengths
- seekWindowLength = (sampleRate * sequenceMs) / 1000;
- if (seekWindowLength < 2 * overlapLength)
- {
- seekWindowLength = 2 * overlapLength;
- }
- seekLength = (sampleRate * seekWindowMs) / 1000;
- }
- // Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower
- // tempo, larger faster tempo.
- void TDStretch::setTempo(float newTempo)
- {
- int intskip;
- tempo = newTempo;
- // Calculate new sequence duration
- calcSeqParameters();
- // Calculate ideal skip length (according to tempo value)
- nominalSkip = tempo * (seekWindowLength - overlapLength);
- intskip = (int)(nominalSkip + 0.5f);
- // Calculate how many samples are needed in the 'inputBuffer' to
- // process another batch of samples
- //sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength / 2;
- sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength;
- }
- // Sets the number of channels, 1 = mono, 2 = stereo
- void TDStretch::setChannels(int numChannels)
- {
- assert(numChannels > 0);
- if (channels == numChannels) return;
- // assert(numChannels == 1 || numChannels == 2);
- channels = numChannels;
- inputBuffer.setChannels(channels);
- outputBuffer.setChannels(channels);
- // re-init overlap/buffer
- overlapLength=0;
- setParameters(sampleRate);
- }
- // nominal tempo, no need for processing, just pass the samples through
- // to outputBuffer
- /*
- void TDStretch::processNominalTempo()
- {
- assert(tempo == 1.0f);
- if (bMidBufferDirty)
- {
- // If there are samples in pMidBuffer waiting for overlapping,
- // do a single sliding overlapping with them in order to prevent a
- // clicking distortion in the output sound
- if (inputBuffer.numSamples() < overlapLength)
- {
- // wait until we've got overlapLength input samples
- return;
- }
- // Mix the samples in the beginning of 'inputBuffer' with the
- // samples in 'midBuffer' using sliding overlapping
- overlap(outputBuffer.ptrEnd(overlapLength), inputBuffer.ptrBegin(), 0);
- outputBuffer.putSamples(overlapLength);
- inputBuffer.receiveSamples(overlapLength);
- clearMidBuffer();
- // now we've caught the nominal sample flow and may switch to
- // bypass mode
- }
- // Simply bypass samples from input to output
- outputBuffer.moveSamples(inputBuffer);
- }
- */
- // Processes as many processing frames of the samples 'inputBuffer', store
- // the result into 'outputBuffer'
- void TDStretch::processSamples()
- {
- int ovlSkip, offset;
- int temp;
- /* Removed this small optimization - can introduce a click to sound when tempo setting
- crosses the nominal value
- if (tempo == 1.0f)
- {
- // tempo not changed from the original, so bypass the processing
- processNominalTempo();
- return;
- }
- */
- // Process samples as long as there are enough samples in 'inputBuffer'
- // to form a processing frame.
- while ((int)inputBuffer.numSamples() >= sampleReq)
- {
- // If tempo differs from the normal ('SCALE'), scan for the best overlapping
- // position
- offset = seekBestOverlapPosition(inputBuffer.ptrBegin());
- // Mix the samples in the 'inputBuffer' at position of 'offset' with the
- // samples in 'midBuffer' using sliding overlapping
- // ... first partially overlap with the end of the previous sequence
- // (that's in 'midBuffer')
- overlap(outputBuffer.ptrEnd((uint)overlapLength), inputBuffer.ptrBegin(), (uint)offset);
- outputBuffer.putSamples((uint)overlapLength);
- // ... then copy sequence samples from 'inputBuffer' to output:
- // length of sequence
- temp = (seekWindowLength - 2 * overlapLength);
- // crosscheck that we don't have buffer overflow...
- if ((int)inputBuffer.numSamples() < (offset + temp + overlapLength * 2))
- {
- continue; // just in case, shouldn't really happen
- }
- outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * (offset + overlapLength), (uint)temp);
- // Copies the end of the current sequence from 'inputBuffer' to
- // 'midBuffer' for being mixed with the beginning of the next
- // processing sequence and so on
- assert((offset + temp + overlapLength * 2) <= (int)inputBuffer.numSamples());
- memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp + overlapLength),
- channels * sizeof(SAMPLETYPE) * overlapLength);
- // Remove the processed samples from the input buffer. Update
- // the difference between integer & nominal skip step to 'skipFract'
- // in order to prevent the error from accumulating over time.
- skipFract += nominalSkip; // real skip size
- ovlSkip = (int)skipFract; // rounded to integer skip
- skipFract -= ovlSkip; // maintain the fraction part, i.e. real vs. integer skip
- inputBuffer.receiveSamples((uint)ovlSkip);
- }
- }
- // Adds 'numsamples' pcs of samples from the 'samples' memory position into
- // the input of the object.
- void TDStretch::putSamples(const SAMPLETYPE *samples, uint nSamples)
- {
- // Add the samples into the input buffer
- inputBuffer.putSamples(samples, nSamples);
- // Process the samples in input buffer
- processSamples();
- }
- /// Set new overlap length parameter & reallocate RefMidBuffer if necessary.
- void TDStretch::acceptNewOverlapLength(int newOverlapLength)
- {
- int prevOvl;
- assert(newOverlapLength >= 0);
- prevOvl = overlapLength;
- overlapLength = newOverlapLength;
- if (overlapLength > prevOvl)
- {
- delete[] pMidBufferUnaligned;
- pMidBufferUnaligned = new SAMPLETYPE[overlapLength * channels + 16 / sizeof(SAMPLETYPE)];
- // ensure that 'pMidBuffer' is aligned to 16 byte boundary for efficiency
- pMidBuffer = (SAMPLETYPE *)SOUNDTOUCH_ALIGN_POINTER_16(pMidBufferUnaligned);
- clearMidBuffer();
- }
- }
- // Operator 'new' is overloaded so that it automatically creates a suitable instance
- // depending on if we've a MMX/SSE/etc-capable CPU available or not.
- void * TDStretch::operator new(size_t s)
- {
- // Notice! don't use "new TDStretch" directly, use "newInstance" to create a new instance instead!
- ST_THROW_RT_ERROR("Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!");
- return newInstance();
- }
- TDStretch * TDStretch::newInstance()
- {
- uint uExtensions;
- uExtensions = detectCPUextensions();
- // Check if MMX/SSE instruction set extensions supported by CPU
- #ifdef SOUNDTOUCH_ALLOW_MMX
- // MMX routines available only with integer sample types
- if (uExtensions & SUPPORT_MMX)
- {
- return ::new TDStretchMMX;
- }
- else
- #endif // SOUNDTOUCH_ALLOW_MMX
- #ifdef SOUNDTOUCH_ALLOW_SSE
- if (uExtensions & SUPPORT_SSE)
- {
- // SSE support
- return ::new TDStretchSSE;
- }
- else
- #endif // SOUNDTOUCH_ALLOW_SSE
- {
- // ISA optimizations not supported, use plain C version
- return ::new TDStretch;
- }
- }
- //////////////////////////////////////////////////////////////////////////////
- //
- // Integer arithmetics specific algorithm implementations.
- //
- //////////////////////////////////////////////////////////////////////////////
- #ifdef SOUNDTOUCH_INTEGER_SAMPLES
- // Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Stereo'
- // version of the routine.
- void TDStretch::overlapStereo(short *poutput, const short *input) const
- {
- int i;
- short temp;
- int cnt2;
- for (i = 0; i < overlapLength ; i ++)
- {
- temp = (short)(overlapLength - i);
- cnt2 = 2 * i;
- poutput[cnt2] = (input[cnt2] * i + pMidBuffer[cnt2] * temp ) / overlapLength;
- poutput[cnt2 + 1] = (input[cnt2 + 1] * i + pMidBuffer[cnt2 + 1] * temp ) / overlapLength;
- }
- }
- // Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Multi'
- // version of the routine.
- void TDStretch::overlapMulti(SAMPLETYPE *poutput, const SAMPLETYPE *input) const
- {
- SAMPLETYPE m1=(SAMPLETYPE)0;
- SAMPLETYPE m2;
- int i=0;
- for (m2 = (SAMPLETYPE)overlapLength; m2; m2 --)
- {
- for (int c = 0; c < channels; c ++)
- {
- poutput[i] = (input[i] * m1 + pMidBuffer[i] * m2) / overlapLength;
- i++;
- }
- m1++;
- }
- }
- // Calculates the x having the closest 2^x value for the given value
- static int _getClosest2Power(double value)
- {
- return (int)(log(value) / log(2.0) + 0.5);
- }
- /// Calculates overlap period length in samples.
- /// Integer version rounds overlap length to closest power of 2
- /// for a divide scaling operation.
- void TDStretch::calculateOverlapLength(int aoverlapMs)
- {
- int newOvl;
- assert(aoverlapMs >= 0);
- // calculate overlap length so that it's power of 2 - thus it's easy to do
- // integer division by right-shifting. Term "-1" at end is to account for
- // the extra most significatnt bit left unused in result by signed multiplication
- overlapDividerBits = _getClosest2Power((sampleRate * aoverlapMs) / 1000.0) - 1;
- if (overlapDividerBits > 9) overlapDividerBits = 9;
- if (overlapDividerBits < 3) overlapDividerBits = 3;
- newOvl = (int)pow(2.0, (int)overlapDividerBits + 1); // +1 => account for -1 above
- acceptNewOverlapLength(newOvl);
- // calculate sloping divider so that crosscorrelation operation won't
- // overflow 32-bit register. Max. sum of the crosscorrelation sum without
- // divider would be 2^30*(N^3-N)/3, where N = overlap length
- slopingDivider = (newOvl * newOvl - 1) / 3;
- }
- double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare) const
- {
- long corr;
- long norm;
- int i;
- corr = norm = 0;
- // Same routine for stereo and mono. For stereo, unroll loop for better
- // efficiency and gives slightly better resolution against rounding.
- // For mono it same routine, just unrolls loop by factor of 4
- for (i = 0; i < channels * overlapLength; i += 4)
- {
- corr += (mixingPos[i] * compare[i] +
- mixingPos[i + 1] * compare[i + 1] +
- mixingPos[i + 2] * compare[i + 2] +
- mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
- norm += (mixingPos[i] * mixingPos[i] +
- mixingPos[i + 1] * mixingPos[i + 1] +
- mixingPos[i + 2] * mixingPos[i + 2] +
- mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBits;
- }
- // Normalize result by dividing by sqrt(norm) - this step is easiest
- // done using floating point operation
- if (norm == 0) norm = 1; // to avoid div by zero
- return (double)corr / sqrt((double)norm);
- }
- #endif // SOUNDTOUCH_INTEGER_SAMPLES
- //////////////////////////////////////////////////////////////////////////////
- //
- // Floating point arithmetics specific algorithm implementations.
- //
- #ifdef SOUNDTOUCH_FLOAT_SAMPLES
- // Overlaps samples in 'midBuffer' with the samples in 'pInput'
- void TDStretch::overlapStereo(float *pOutput, const float *pInput) const
- {
- int i;
- float fScale;
- float f1;
- float f2;
- fScale = 1.0f / (float)overlapLength;
- f1 = 0;
- f2 = 1.0f;
- for (i = 0; i < 2 * (int)overlapLength ; i += 2)
- {
- pOutput[i + 0] = pInput[i + 0] * f1 + pMidBuffer[i + 0] * f2;
- pOutput[i + 1] = pInput[i + 1] * f1 + pMidBuffer[i + 1] * f2;
- f1 += fScale;
- f2 -= fScale;
- }
- }
- // Overlaps samples in 'midBuffer' with the samples in 'input'.
- void TDStretch::overlapMulti(float *pOutput, const float *pInput) const
- {
- int i;
- float fScale;
- float f1;
- float f2;
- fScale = 1.0f / (float)overlapLength;
- f1 = 0;
- f2 = 1.0f;
- i=0;
- for (int i2 = 0; i2 < overlapLength; i2 ++)
- {
- // note: Could optimize this slightly by taking into account that always channels > 2
- for (int c = 0; c < channels; c ++)
- {
- pOutput[i] = pInput[i] * f1 + pMidBuffer[i] * f2;
- i++;
- }
- f1 += fScale;
- f2 -= fScale;
- }
- }
- /// Calculates overlapInMsec period length in samples.
- void TDStretch::calculateOverlapLength(int overlapInMsec)
- {
- int newOvl;
- assert(overlapInMsec >= 0);
- newOvl = (sampleRate * overlapInMsec) / 1000;
- if (newOvl < 16) newOvl = 16;
- // must be divisible by 8
- newOvl -= newOvl % 8;
- acceptNewOverlapLength(newOvl);
- }
- double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare) const
- {
- double corr;
- double norm;
- int i;
- corr = norm = 0;
- // Same routine for stereo and mono. For Stereo, unroll by factor of 2.
- // For mono it's same routine yet unrollsd by factor of 4.
- for (i = 0; i < channels * overlapLength; i += 4)
- {
- corr += mixingPos[i] * compare[i] +
- mixingPos[i + 1] * compare[i + 1];
- norm += mixingPos[i] * mixingPos[i] +
- mixingPos[i + 1] * mixingPos[i + 1];
- // unroll the loop for better CPU efficiency:
- corr += mixingPos[i + 2] * compare[i + 2] +
- mixingPos[i + 3] * compare[i + 3];
- norm += mixingPos[i + 2] * mixingPos[i + 2] +
- mixingPos[i + 3] * mixingPos[i + 3];
- }
- if (norm < 1e-9) norm = 1.0; // to avoid div by zero
- return corr / sqrt(norm);
- }
- #endif // SOUNDTOUCH_FLOAT_SAMPLES
|