123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- /* Complex hyperbole tangent for __float128.
- Copyright (C) 1997-2012 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #include "quadmath-imp.h"
- #ifdef HAVE_FENV_H
- # include <fenv.h>
- #endif
- __complex128
- ctanhq (__complex128 x)
- {
- __complex128 res;
- if (__builtin_expect (!finiteq (__real__ x) || !finiteq (__imag__ x), 0))
- {
- if (__quadmath_isinf_nsq (__real__ x))
- {
- __real__ res = copysignq (1.0Q, __real__ x);
- __imag__ res = copysignq (0.0Q, __imag__ x);
- }
- else if (__imag__ x == 0.0Q)
- {
- res = x;
- }
- else
- {
- __real__ res = nanq ("");
- __imag__ res = nanq ("");
- #ifdef HAVE_FENV_H
- if (__quadmath_isinf_nsq (__imag__ x))
- feraiseexcept (FE_INVALID);
- #endif
- }
- }
- else
- {
- __float128 sinix, cosix;
- __float128 den;
- const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q / 2);
- int icls = fpclassifyq (__imag__ x);
- /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
- = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
- if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
- {
- sincosq (__imag__ x, &sinix, &cosix);
- }
- else
- {
- sinix = __imag__ x;
- cosix = 1.0Q;
- }
- if (fabsq (__real__ x) > t)
- {
- /* Avoid intermediate overflow when the imaginary part of
- the result may be subnormal. Ignoring negligible terms,
- the real part is +/- 1, the imaginary part is
- sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
- __float128 exp_2t = expq (2 * t);
- __real__ res = copysignq (1.0, __real__ x);
- __imag__ res = 4 * sinix * cosix;
- __real__ x = fabsq (__real__ x);
- __real__ x -= t;
- __imag__ res /= exp_2t;
- if (__real__ x > t)
- {
- /* Underflow (original real part of x has absolute value
- > 2t). */
- __imag__ res /= exp_2t;
- }
- else
- __imag__ res /= expq (2 * __real__ x);
- }
- else
- {
- __float128 sinhrx, coshrx;
- if (fabsq (__real__ x) > FLT128_MIN)
- {
- sinhrx = sinhq (__real__ x);
- coshrx = coshq (__real__ x);
- }
- else
- {
- sinhrx = __real__ x;
- coshrx = 1.0Q;
- }
- if (fabsq (sinhrx) > fabsq (cosix) * FLT128_EPSILON)
- den = sinhrx * sinhrx + cosix * cosix;
- else
- den = cosix * cosix;
- __real__ res = sinhrx * coshrx / den;
- __imag__ res = sinix * cosix / den;
- }
- }
- return res;
- }
|