123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- /* Compute complex base 10 logarithm for complex __float128.
- Copyright (C) 1997-2012 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #include "quadmath-imp.h"
- /* log_10 (2). */
- #define M_LOG10_2q 0.3010299956639811952137388947244930267682Q
- __complex128
- clog10q (__complex128 x)
- {
- __complex128 result;
- int rcls = fpclassifyq (__real__ x);
- int icls = fpclassifyq (__imag__ x);
- if (__builtin_expect (rcls == QUADFP_ZERO && icls == QUADFP_ZERO, 0))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbitq (__real__ x) ? M_PIq : 0.0Q;
- __imag__ result = copysignq (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0Q / fabsq (__real__ x);
- }
- else if (__builtin_expect (rcls != QUADFP_NAN && icls != QUADFP_NAN, 1))
- {
- /* Neither real nor imaginary part is NaN. */
- __float128 absx = fabsq (__real__ x), absy = fabsq (__imag__ x);
- int scale = 0;
- if (absx < absy)
- {
- __float128 t = absx;
- absx = absy;
- absy = t;
- }
- if (absx > FLT128_MAX / 2.0Q)
- {
- scale = -1;
- absx = scalbnq (absx, scale);
- absy = (absy >= FLT128_MIN * 2.0Q ? scalbnq (absy, scale) : 0.0Q);
- }
- else if (absx < FLT128_MIN && absy < FLT128_MIN)
- {
- scale = FLT128_MANT_DIG;
- absx = scalbnq (absx, scale);
- absy = scalbnq (absy, scale);
- }
- if (absx == 1.0Q && scale == 0)
- {
- __float128 absy2 = absy * absy;
- if (absy2 <= FLT128_MIN * 2.0Q * M_LN10q)
- __real__ result
- = (absy2 / 2.0Q - absy2 * absy2 / 4.0Q) * M_LOG10Eq;
- else
- __real__ result = log1pq (absy2) * (M_LOG10Eq / 2.0Q);
- }
- else if (absx > 1.0Q && absx < 2.0Q && absy < 1.0Q && scale == 0)
- {
- __float128 d2m1 = (absx - 1.0Q) * (absx + 1.0Q);
- if (absy >= FLT128_EPSILON)
- d2m1 += absy * absy;
- __real__ result = log1pq (d2m1) * (M_LOG10Eq / 2.0Q);
- }
- else if (absx < 1.0Q
- && absx >= 0.75Q
- && absy < FLT128_EPSILON / 2.0Q
- && scale == 0)
- {
- __float128 d2m1 = (absx - 1.0Q) * (absx + 1.0Q);
- __real__ result = log1pq (d2m1) * (M_LOG10Eq / 2.0Q);
- }
- else if (absx < 1.0Q && (absx >= 0.75Q || absy >= 0.5Q) && scale == 0)
- {
- __float128 d2m1 = __quadmath_x2y2m1q (absx, absy);
- __real__ result = log1pq (d2m1) * (M_LOG10Eq / 2.0Q);
- }
- else
- {
- __float128 d = hypotq (absx, absy);
- __real__ result = log10q (d) - scale * M_LOG10_2q;
- }
- __imag__ result = M_LOG10Eq * atan2q (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = nanq ("");
- if (rcls == QUADFP_INFINITE || icls == QUADFP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VALQ;
- else
- __real__ result = nanq ("");
- }
- return result;
- }
|