acosq.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. /*
  2. * ====================================================
  3. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  4. *
  5. * Developed at SunPro, a Sun Microsystems, Inc. business.
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /*
  12. __float128 expansions are
  13. Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
  14. and are incorporated herein by permission of the author. The author
  15. reserves the right to distribute this material elsewhere under different
  16. copying permissions. These modifications are distributed here under
  17. the following terms:
  18. This library is free software; you can redistribute it and/or
  19. modify it under the terms of the GNU Lesser General Public
  20. License as published by the Free Software Foundation; either
  21. version 2.1 of the License, or (at your option) any later version.
  22. This library is distributed in the hope that it will be useful,
  23. but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  25. Lesser General Public License for more details.
  26. You should have received a copy of the GNU Lesser General Public
  27. License along with this library; if not, write to the Free Software
  28. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
  29. /* acosq(x)
  30. * Method :
  31. * acos(x) = pi/2 - asin(x)
  32. * acos(-x) = pi/2 + asin(x)
  33. * For |x| <= 0.375
  34. * acos(x) = pi/2 - asin(x)
  35. * Between .375 and .5 the approximation is
  36. * acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x)
  37. * Between .5 and .625 the approximation is
  38. * acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
  39. * For x > 0.625,
  40. * acos(x) = 2 asin(sqrt((1-x)/2))
  41. * computed with an extended precision square root in the leading term.
  42. * For x < -0.625
  43. * acos(x) = pi - 2 asin(sqrt((1-|x|)/2))
  44. *
  45. * Special cases:
  46. * if x is NaN, return x itself;
  47. * if |x|>1, return NaN with invalid signal.
  48. *
  49. * Functions needed: sqrtq.
  50. */
  51. #include "quadmath-imp.h"
  52. static const __float128
  53. one = 1.0Q,
  54. pio2_hi = 1.5707963267948966192313216916397514420986Q,
  55. pio2_lo = 4.3359050650618905123985220130216759843812E-35Q,
  56. /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
  57. -0.0625 <= x <= 0.0625
  58. peak relative error 3.3e-35 */
  59. rS0 = 5.619049346208901520945464704848780243887E0Q,
  60. rS1 = -4.460504162777731472539175700169871920352E1Q,
  61. rS2 = 1.317669505315409261479577040530751477488E2Q,
  62. rS3 = -1.626532582423661989632442410808596009227E2Q,
  63. rS4 = 3.144806644195158614904369445440583873264E1Q,
  64. rS5 = 9.806674443470740708765165604769099559553E1Q,
  65. rS6 = -5.708468492052010816555762842394927806920E1Q,
  66. rS7 = -1.396540499232262112248553357962639431922E1Q,
  67. rS8 = 1.126243289311910363001762058295832610344E1Q,
  68. rS9 = 4.956179821329901954211277873774472383512E-1Q,
  69. rS10 = -3.313227657082367169241333738391762525780E-1Q,
  70. sS0 = -4.645814742084009935700221277307007679325E0Q,
  71. sS1 = 3.879074822457694323970438316317961918430E1Q,
  72. sS2 = -1.221986588013474694623973554726201001066E2Q,
  73. sS3 = 1.658821150347718105012079876756201905822E2Q,
  74. sS4 = -4.804379630977558197953176474426239748977E1Q,
  75. sS5 = -1.004296417397316948114344573811562952793E2Q,
  76. sS6 = 7.530281592861320234941101403870010111138E1Q,
  77. sS7 = 1.270735595411673647119592092304357226607E1Q,
  78. sS8 = -1.815144839646376500705105967064792930282E1Q,
  79. sS9 = -7.821597334910963922204235247786840828217E-2Q,
  80. /* 1.000000000000000000000000000000000000000E0 */
  81. acosr5625 = 9.7338991014954640492751132535550279812151E-1Q,
  82. pimacosr5625 = 2.1682027434402468335351320579240000860757E0Q,
  83. /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
  84. -0.0625 <= x <= 0.0625
  85. peak relative error 2.1e-35 */
  86. P0 = 2.177690192235413635229046633751390484892E0Q,
  87. P1 = -2.848698225706605746657192566166142909573E1Q,
  88. P2 = 1.040076477655245590871244795403659880304E2Q,
  89. P3 = -1.400087608918906358323551402881238180553E2Q,
  90. P4 = 2.221047917671449176051896400503615543757E1Q,
  91. P5 = 9.643714856395587663736110523917499638702E1Q,
  92. P6 = -5.158406639829833829027457284942389079196E1Q,
  93. P7 = -1.578651828337585944715290382181219741813E1Q,
  94. P8 = 1.093632715903802870546857764647931045906E1Q,
  95. P9 = 5.448925479898460003048760932274085300103E-1Q,
  96. P10 = -3.315886001095605268470690485170092986337E-1Q,
  97. Q0 = -1.958219113487162405143608843774587557016E0Q,
  98. Q1 = 2.614577866876185080678907676023269360520E1Q,
  99. Q2 = -9.990858606464150981009763389881793660938E1Q,
  100. Q3 = 1.443958741356995763628660823395334281596E2Q,
  101. Q4 = -3.206441012484232867657763518369723873129E1Q,
  102. Q5 = -1.048560885341833443564920145642588991492E2Q,
  103. Q6 = 6.745883931909770880159915641984874746358E1Q,
  104. Q7 = 1.806809656342804436118449982647641392951E1Q,
  105. Q8 = -1.770150690652438294290020775359580915464E1Q,
  106. Q9 = -5.659156469628629327045433069052560211164E-1Q,
  107. /* 1.000000000000000000000000000000000000000E0 */
  108. acosr4375 = 1.1179797320499710475919903296900511518755E0Q,
  109. pimacosr4375 = 2.0236129215398221908706530535894517323217E0Q,
  110. /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
  111. 0 <= x <= 0.5
  112. peak relative error 1.9e-35 */
  113. pS0 = -8.358099012470680544198472400254596543711E2Q,
  114. pS1 = 3.674973957689619490312782828051860366493E3Q,
  115. pS2 = -6.730729094812979665807581609853656623219E3Q,
  116. pS3 = 6.643843795209060298375552684423454077633E3Q,
  117. pS4 = -3.817341990928606692235481812252049415993E3Q,
  118. pS5 = 1.284635388402653715636722822195716476156E3Q,
  119. pS6 = -2.410736125231549204856567737329112037867E2Q,
  120. pS7 = 2.219191969382402856557594215833622156220E1Q,
  121. pS8 = -7.249056260830627156600112195061001036533E-1Q,
  122. pS9 = 1.055923570937755300061509030361395604448E-3Q,
  123. qS0 = -5.014859407482408326519083440151745519205E3Q,
  124. qS1 = 2.430653047950480068881028451580393430537E4Q,
  125. qS2 = -4.997904737193653607449250593976069726962E4Q,
  126. qS3 = 5.675712336110456923807959930107347511086E4Q,
  127. qS4 = -3.881523118339661268482937768522572588022E4Q,
  128. qS5 = 1.634202194895541569749717032234510811216E4Q,
  129. qS6 = -4.151452662440709301601820849901296953752E3Q,
  130. qS7 = 5.956050864057192019085175976175695342168E2Q,
  131. qS8 = -4.175375777334867025769346564600396877176E1Q;
  132. /* 1.000000000000000000000000000000000000000E0 */
  133. __float128
  134. acosq (__float128 x)
  135. {
  136. __float128 z, r, w, p, q, s, t, f2;
  137. int32_t ix, sign;
  138. ieee854_float128 u;
  139. u.value = x;
  140. sign = u.words32.w0;
  141. ix = sign & 0x7fffffff;
  142. u.words32.w0 = ix; /* |x| */
  143. if (ix >= 0x3fff0000) /* |x| >= 1 */
  144. {
  145. if (ix == 0x3fff0000
  146. && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
  147. { /* |x| == 1 */
  148. if ((sign & 0x80000000) == 0)
  149. return 0.0; /* acos(1) = 0 */
  150. else
  151. return (2.0 * pio2_hi) + (2.0 * pio2_lo); /* acos(-1)= pi */
  152. }
  153. return (x - x) / (x - x); /* acos(|x| > 1) is NaN */
  154. }
  155. else if (ix < 0x3ffe0000) /* |x| < 0.5 */
  156. {
  157. if (ix < 0x3fc60000) /* |x| < 2**-57 */
  158. return pio2_hi + pio2_lo;
  159. if (ix < 0x3ffde000) /* |x| < .4375 */
  160. {
  161. /* Arcsine of x. */
  162. z = x * x;
  163. p = (((((((((pS9 * z
  164. + pS8) * z
  165. + pS7) * z
  166. + pS6) * z
  167. + pS5) * z
  168. + pS4) * z
  169. + pS3) * z
  170. + pS2) * z
  171. + pS1) * z
  172. + pS0) * z;
  173. q = (((((((( z
  174. + qS8) * z
  175. + qS7) * z
  176. + qS6) * z
  177. + qS5) * z
  178. + qS4) * z
  179. + qS3) * z
  180. + qS2) * z
  181. + qS1) * z
  182. + qS0;
  183. r = x + x * p / q;
  184. z = pio2_hi - (r - pio2_lo);
  185. return z;
  186. }
  187. /* .4375 <= |x| < .5 */
  188. t = u.value - 0.4375Q;
  189. p = ((((((((((P10 * t
  190. + P9) * t
  191. + P8) * t
  192. + P7) * t
  193. + P6) * t
  194. + P5) * t
  195. + P4) * t
  196. + P3) * t
  197. + P2) * t
  198. + P1) * t
  199. + P0) * t;
  200. q = (((((((((t
  201. + Q9) * t
  202. + Q8) * t
  203. + Q7) * t
  204. + Q6) * t
  205. + Q5) * t
  206. + Q4) * t
  207. + Q3) * t
  208. + Q2) * t
  209. + Q1) * t
  210. + Q0;
  211. r = p / q;
  212. if (sign & 0x80000000)
  213. r = pimacosr4375 - r;
  214. else
  215. r = acosr4375 + r;
  216. return r;
  217. }
  218. else if (ix < 0x3ffe4000) /* |x| < 0.625 */
  219. {
  220. t = u.value - 0.5625Q;
  221. p = ((((((((((rS10 * t
  222. + rS9) * t
  223. + rS8) * t
  224. + rS7) * t
  225. + rS6) * t
  226. + rS5) * t
  227. + rS4) * t
  228. + rS3) * t
  229. + rS2) * t
  230. + rS1) * t
  231. + rS0) * t;
  232. q = (((((((((t
  233. + sS9) * t
  234. + sS8) * t
  235. + sS7) * t
  236. + sS6) * t
  237. + sS5) * t
  238. + sS4) * t
  239. + sS3) * t
  240. + sS2) * t
  241. + sS1) * t
  242. + sS0;
  243. if (sign & 0x80000000)
  244. r = pimacosr5625 - p / q;
  245. else
  246. r = acosr5625 + p / q;
  247. return r;
  248. }
  249. else
  250. { /* |x| >= .625 */
  251. z = (one - u.value) * 0.5;
  252. s = sqrtq (z);
  253. /* Compute an extended precision square root from
  254. the Newton iteration s -> 0.5 * (s + z / s).
  255. The change w from s to the improved value is
  256. w = 0.5 * (s + z / s) - s = (s^2 + z)/2s - s = (z - s^2)/2s.
  257. Express s = f1 + f2 where f1 * f1 is exactly representable.
  258. w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .
  259. s + w has extended precision. */
  260. u.value = s;
  261. u.words32.w2 = 0;
  262. u.words32.w3 = 0;
  263. f2 = s - u.value;
  264. w = z - u.value * u.value;
  265. w = w - 2.0 * u.value * f2;
  266. w = w - f2 * f2;
  267. w = w / (2.0 * s);
  268. /* Arcsine of s. */
  269. p = (((((((((pS9 * z
  270. + pS8) * z
  271. + pS7) * z
  272. + pS6) * z
  273. + pS5) * z
  274. + pS4) * z
  275. + pS3) * z
  276. + pS2) * z
  277. + pS1) * z
  278. + pS0) * z;
  279. q = (((((((( z
  280. + qS8) * z
  281. + qS7) * z
  282. + qS6) * z
  283. + qS5) * z
  284. + qS4) * z
  285. + qS3) * z
  286. + qS2) * z
  287. + qS1) * z
  288. + qS0;
  289. r = s + (w + s * p / q);
  290. if (sign & 0x80000000)
  291. w = pio2_hi + (pio2_lo - r);
  292. else
  293. w = r;
  294. return 2.0 * w;
  295. }
  296. }