123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059 |
- /* Subroutines needed for unwinding stack frames for exception handling. */
- /* Copyright (C) 1997-2015 Free Software Foundation, Inc.
- Contributed by Jason Merrill <jason@cygnus.com>.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- Under Section 7 of GPL version 3, you are granted additional
- permissions described in the GCC Runtime Library Exception, version
- 3.1, as published by the Free Software Foundation.
- You should have received a copy of the GNU General Public License and
- a copy of the GCC Runtime Library Exception along with this program;
- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- <http://www.gnu.org/licenses/>. */
- #ifndef _Unwind_Find_FDE
- #include "tconfig.h"
- #include "tsystem.h"
- #include "coretypes.h"
- #include "tm.h"
- #include "libgcc_tm.h"
- #include "dwarf2.h"
- #include "unwind.h"
- #define NO_BASE_OF_ENCODED_VALUE
- #include "unwind-pe.h"
- #include "unwind-dw2-fde.h"
- #include "gthr.h"
- #endif
- /* The unseen_objects list contains objects that have been registered
- but not yet categorized in any way. The seen_objects list has had
- its pc_begin and count fields initialized at minimum, and is sorted
- by decreasing value of pc_begin. */
- static struct object *unseen_objects;
- static struct object *seen_objects;
- #ifdef __GTHREAD_MUTEX_INIT
- static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
- #define init_object_mutex_once()
- #else
- #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
- static __gthread_mutex_t object_mutex;
- static void
- init_object_mutex (void)
- {
- __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
- }
- static void
- init_object_mutex_once (void)
- {
- static __gthread_once_t once = __GTHREAD_ONCE_INIT;
- __gthread_once (&once, init_object_mutex);
- }
- #else
- /* ??? Several targets include this file with stubbing parts of gthr.h
- and expect no locking to be done. */
- #define init_object_mutex_once()
- static __gthread_mutex_t object_mutex;
- #endif
- #endif
- /* Called from crtbegin.o to register the unwind info for an object. */
- void
- __register_frame_info_bases (const void *begin, struct object *ob,
- void *tbase, void *dbase)
- {
- /* If .eh_frame is empty, don't register at all. */
- if ((const uword *) begin == 0 || *(const uword *) begin == 0)
- return;
- ob->pc_begin = (void *)-1;
- ob->tbase = tbase;
- ob->dbase = dbase;
- ob->u.single = begin;
- ob->s.i = 0;
- ob->s.b.encoding = DW_EH_PE_omit;
- #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
- ob->fde_end = NULL;
- #endif
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
- ob->next = unseen_objects;
- unseen_objects = ob;
- __gthread_mutex_unlock (&object_mutex);
- }
- void
- __register_frame_info (const void *begin, struct object *ob)
- {
- __register_frame_info_bases (begin, ob, 0, 0);
- }
- void
- __register_frame (void *begin)
- {
- struct object *ob;
- /* If .eh_frame is empty, don't register at all. */
- if (*(uword *) begin == 0)
- return;
- ob = malloc (sizeof (struct object));
- __register_frame_info (begin, ob);
- }
- /* Similar, but BEGIN is actually a pointer to a table of unwind entries
- for different translation units. Called from the file generated by
- collect2. */
- void
- __register_frame_info_table_bases (void *begin, struct object *ob,
- void *tbase, void *dbase)
- {
- ob->pc_begin = (void *)-1;
- ob->tbase = tbase;
- ob->dbase = dbase;
- ob->u.array = begin;
- ob->s.i = 0;
- ob->s.b.from_array = 1;
- ob->s.b.encoding = DW_EH_PE_omit;
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
- ob->next = unseen_objects;
- unseen_objects = ob;
- __gthread_mutex_unlock (&object_mutex);
- }
- void
- __register_frame_info_table (void *begin, struct object *ob)
- {
- __register_frame_info_table_bases (begin, ob, 0, 0);
- }
- void
- __register_frame_table (void *begin)
- {
- struct object *ob = malloc (sizeof (struct object));
- __register_frame_info_table (begin, ob);
- }
- /* Called from crtbegin.o to deregister the unwind info for an object. */
- /* ??? Glibc has for a while now exported __register_frame_info and
- __deregister_frame_info. If we call __register_frame_info_bases
- from crtbegin (wherein it is declared weak), and this object does
- not get pulled from libgcc.a for other reasons, then the
- invocation of __deregister_frame_info will be resolved from glibc.
- Since the registration did not happen there, we'll die.
- Therefore, declare a new deregistration entry point that does the
- exact same thing, but will resolve to the same library as
- implements __register_frame_info_bases. */
- void *
- __deregister_frame_info_bases (const void *begin)
- {
- struct object **p;
- struct object *ob = 0;
- /* If .eh_frame is empty, we haven't registered. */
- if ((const uword *) begin == 0 || *(const uword *) begin == 0)
- return ob;
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
- for (p = &unseen_objects; *p ; p = &(*p)->next)
- if ((*p)->u.single == begin)
- {
- ob = *p;
- *p = ob->next;
- goto out;
- }
- for (p = &seen_objects; *p ; p = &(*p)->next)
- if ((*p)->s.b.sorted)
- {
- if ((*p)->u.sort->orig_data == begin)
- {
- ob = *p;
- *p = ob->next;
- free (ob->u.sort);
- goto out;
- }
- }
- else
- {
- if ((*p)->u.single == begin)
- {
- ob = *p;
- *p = ob->next;
- goto out;
- }
- }
- out:
- __gthread_mutex_unlock (&object_mutex);
- gcc_assert (ob);
- return (void *) ob;
- }
- void *
- __deregister_frame_info (const void *begin)
- {
- return __deregister_frame_info_bases (begin);
- }
- void
- __deregister_frame (void *begin)
- {
- /* If .eh_frame is empty, we haven't registered. */
- if (*(uword *) begin != 0)
- free (__deregister_frame_info (begin));
- }
- /* Like base_of_encoded_value, but take the base from a struct object
- instead of an _Unwind_Context. */
- static _Unwind_Ptr
- base_from_object (unsigned char encoding, struct object *ob)
- {
- if (encoding == DW_EH_PE_omit)
- return 0;
- switch (encoding & 0x70)
- {
- case DW_EH_PE_absptr:
- case DW_EH_PE_pcrel:
- case DW_EH_PE_aligned:
- return 0;
- case DW_EH_PE_textrel:
- return (_Unwind_Ptr) ob->tbase;
- case DW_EH_PE_datarel:
- return (_Unwind_Ptr) ob->dbase;
- default:
- gcc_unreachable ();
- }
- }
- /* Return the FDE pointer encoding from the CIE. */
- /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
- static int
- get_cie_encoding (const struct dwarf_cie *cie)
- {
- const unsigned char *aug, *p;
- _Unwind_Ptr dummy;
- _uleb128_t utmp;
- _sleb128_t stmp;
- aug = cie->augmentation;
- p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string. */
- if (__builtin_expect (cie->version >= 4, 0))
- {
- if (p[0] != sizeof (void *) || p[1] != 0)
- return DW_EH_PE_omit; /* We are not prepared to handle unexpected
- address sizes or segment selectors. */
- p += 2; /* Skip address size and segment size. */
- }
- if (aug[0] != 'z')
- return DW_EH_PE_absptr;
- p = read_uleb128 (p, &utmp); /* Skip code alignment. */
- p = read_sleb128 (p, &stmp); /* Skip data alignment. */
- if (cie->version == 1) /* Skip return address column. */
- p++;
- else
- p = read_uleb128 (p, &utmp);
- aug++; /* Skip 'z' */
- p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
- while (1)
- {
- /* This is what we're looking for. */
- if (*aug == 'R')
- return *p;
- /* Personality encoding and pointer. */
- else if (*aug == 'P')
- {
- /* ??? Avoid dereferencing indirect pointers, since we're
- faking the base address. Gotta keep DW_EH_PE_aligned
- intact, however. */
- p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
- }
- /* LSDA encoding. */
- else if (*aug == 'L')
- p++;
- /* Otherwise end of string, or unknown augmentation. */
- else
- return DW_EH_PE_absptr;
- aug++;
- }
- }
- static inline int
- get_fde_encoding (const struct dwarf_fde *f)
- {
- return get_cie_encoding (get_cie (f));
- }
- /* Sorting an array of FDEs by address.
- (Ideally we would have the linker sort the FDEs so we don't have to do
- it at run time. But the linkers are not yet prepared for this.) */
- /* Comparison routines. Three variants of increasing complexity. */
- static int
- fde_unencoded_compare (struct object *ob __attribute__((unused)),
- const fde *x, const fde *y)
- {
- _Unwind_Ptr x_ptr, y_ptr;
- memcpy (&x_ptr, x->pc_begin, sizeof (_Unwind_Ptr));
- memcpy (&y_ptr, y->pc_begin, sizeof (_Unwind_Ptr));
- if (x_ptr > y_ptr)
- return 1;
- if (x_ptr < y_ptr)
- return -1;
- return 0;
- }
- static int
- fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y)
- {
- _Unwind_Ptr base, x_ptr, y_ptr;
- base = base_from_object (ob->s.b.encoding, ob);
- read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
- read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
- if (x_ptr > y_ptr)
- return 1;
- if (x_ptr < y_ptr)
- return -1;
- return 0;
- }
- static int
- fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y)
- {
- int x_encoding, y_encoding;
- _Unwind_Ptr x_ptr, y_ptr;
- x_encoding = get_fde_encoding (x);
- read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
- x->pc_begin, &x_ptr);
- y_encoding = get_fde_encoding (y);
- read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
- y->pc_begin, &y_ptr);
- if (x_ptr > y_ptr)
- return 1;
- if (x_ptr < y_ptr)
- return -1;
- return 0;
- }
- typedef int (*fde_compare_t) (struct object *, const fde *, const fde *);
- /* This is a special mix of insertion sort and heap sort, optimized for
- the data sets that actually occur. They look like
- 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
- I.e. a linearly increasing sequence (coming from functions in the text
- section), with additionally a few unordered elements (coming from functions
- in gnu_linkonce sections) whose values are higher than the values in the
- surrounding linear sequence (but not necessarily higher than the values
- at the end of the linear sequence!).
- The worst-case total run time is O(N) + O(n log (n)), where N is the
- total number of FDEs and n is the number of erratic ones. */
- struct fde_accumulator
- {
- struct fde_vector *linear;
- struct fde_vector *erratic;
- };
- static inline int
- start_fde_sort (struct fde_accumulator *accu, size_t count)
- {
- size_t size;
- if (! count)
- return 0;
- size = sizeof (struct fde_vector) + sizeof (const fde *) * count;
- if ((accu->linear = malloc (size)))
- {
- accu->linear->count = 0;
- if ((accu->erratic = malloc (size)))
- accu->erratic->count = 0;
- return 1;
- }
- else
- return 0;
- }
- static inline void
- fde_insert (struct fde_accumulator *accu, const fde *this_fde)
- {
- if (accu->linear)
- accu->linear->array[accu->linear->count++] = this_fde;
- }
- /* Split LINEAR into a linear sequence with low values and an erratic
- sequence with high values, put the linear one (of longest possible
- length) into LINEAR and the erratic one into ERRATIC. This is O(N).
- Because the longest linear sequence we are trying to locate within the
- incoming LINEAR array can be interspersed with (high valued) erratic
- entries. We construct a chain indicating the sequenced entries.
- To avoid having to allocate this chain, we overlay it onto the space of
- the ERRATIC array during construction. A final pass iterates over the
- chain to determine what should be placed in the ERRATIC array, and
- what is the linear sequence. This overlay is safe from aliasing. */
- static inline void
- fde_split (struct object *ob, fde_compare_t fde_compare,
- struct fde_vector *linear, struct fde_vector *erratic)
- {
- static const fde *marker;
- size_t count = linear->count;
- const fde *const *chain_end = ▮
- size_t i, j, k;
- /* This should optimize out, but it is wise to make sure this assumption
- is correct. Should these have different sizes, we cannot cast between
- them and the overlaying onto ERRATIC will not work. */
- gcc_assert (sizeof (const fde *) == sizeof (const fde **));
- for (i = 0; i < count; i++)
- {
- const fde *const *probe;
- for (probe = chain_end;
- probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
- probe = chain_end)
- {
- chain_end = (const fde *const*) erratic->array[probe - linear->array];
- erratic->array[probe - linear->array] = NULL;
- }
- erratic->array[i] = (const fde *) chain_end;
- chain_end = &linear->array[i];
- }
- /* Each entry in LINEAR which is part of the linear sequence we have
- discovered will correspond to a non-NULL entry in the chain we built in
- the ERRATIC array. */
- for (i = j = k = 0; i < count; i++)
- if (erratic->array[i])
- linear->array[j++] = linear->array[i];
- else
- erratic->array[k++] = linear->array[i];
- linear->count = j;
- erratic->count = k;
- }
- #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
- /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
- for the first (root) node; push it down to its rightful place. */
- static void
- frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a,
- int lo, int hi)
- {
- int i, j;
- for (i = lo, j = 2*i+1;
- j < hi;
- j = 2*i+1)
- {
- if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
- ++j;
- if (fde_compare (ob, a[i], a[j]) < 0)
- {
- SWAP (a[i], a[j]);
- i = j;
- }
- else
- break;
- }
- }
- /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
- use a name that does not conflict. */
- static void
- frame_heapsort (struct object *ob, fde_compare_t fde_compare,
- struct fde_vector *erratic)
- {
- /* For a description of this algorithm, see:
- Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
- p. 60-61. */
- const fde ** a = erratic->array;
- /* A portion of the array is called a "heap" if for all i>=0:
- If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
- If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
- size_t n = erratic->count;
- int m;
- /* Expand our heap incrementally from the end of the array, heapifying
- each resulting semi-heap as we go. After each step, a[m] is the top
- of a heap. */
- for (m = n/2-1; m >= 0; --m)
- frame_downheap (ob, fde_compare, a, m, n);
- /* Shrink our heap incrementally from the end of the array, first
- swapping out the largest element a[0] and then re-heapifying the
- resulting semi-heap. After each step, a[0..m) is a heap. */
- for (m = n-1; m >= 1; --m)
- {
- SWAP (a[0], a[m]);
- frame_downheap (ob, fde_compare, a, 0, m);
- }
- #undef SWAP
- }
- /* Merge V1 and V2, both sorted, and put the result into V1. */
- static inline void
- fde_merge (struct object *ob, fde_compare_t fde_compare,
- struct fde_vector *v1, struct fde_vector *v2)
- {
- size_t i1, i2;
- const fde * fde2;
- i2 = v2->count;
- if (i2 > 0)
- {
- i1 = v1->count;
- do
- {
- i2--;
- fde2 = v2->array[i2];
- while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
- {
- v1->array[i1+i2] = v1->array[i1-1];
- i1--;
- }
- v1->array[i1+i2] = fde2;
- }
- while (i2 > 0);
- v1->count += v2->count;
- }
- }
- static inline void
- end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
- {
- fde_compare_t fde_compare;
- gcc_assert (!accu->linear || accu->linear->count == count);
- if (ob->s.b.mixed_encoding)
- fde_compare = fde_mixed_encoding_compare;
- else if (ob->s.b.encoding == DW_EH_PE_absptr)
- fde_compare = fde_unencoded_compare;
- else
- fde_compare = fde_single_encoding_compare;
- if (accu->erratic)
- {
- fde_split (ob, fde_compare, accu->linear, accu->erratic);
- gcc_assert (accu->linear->count + accu->erratic->count == count);
- frame_heapsort (ob, fde_compare, accu->erratic);
- fde_merge (ob, fde_compare, accu->linear, accu->erratic);
- free (accu->erratic);
- }
- else
- {
- /* We've not managed to malloc an erratic array,
- so heap sort in the linear one. */
- frame_heapsort (ob, fde_compare, accu->linear);
- }
- }
- /* Update encoding, mixed_encoding, and pc_begin for OB for the
- fde array beginning at THIS_FDE. Return the number of fdes
- encountered along the way. */
- static size_t
- classify_object_over_fdes (struct object *ob, const fde *this_fde)
- {
- const struct dwarf_cie *last_cie = 0;
- size_t count = 0;
- int encoding = DW_EH_PE_absptr;
- _Unwind_Ptr base = 0;
- for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
- {
- const struct dwarf_cie *this_cie;
- _Unwind_Ptr mask, pc_begin;
- /* Skip CIEs. */
- if (this_fde->CIE_delta == 0)
- continue;
- /* Determine the encoding for this FDE. Note mixed encoded
- objects for later. */
- this_cie = get_cie (this_fde);
- if (this_cie != last_cie)
- {
- last_cie = this_cie;
- encoding = get_cie_encoding (this_cie);
- if (encoding == DW_EH_PE_omit)
- return -1;
- base = base_from_object (encoding, ob);
- if (ob->s.b.encoding == DW_EH_PE_omit)
- ob->s.b.encoding = encoding;
- else if (ob->s.b.encoding != encoding)
- ob->s.b.mixed_encoding = 1;
- }
- read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
- &pc_begin);
- /* Take care to ignore link-once functions that were removed.
- In these cases, the function address will be NULL, but if
- the encoding is smaller than a pointer a true NULL may not
- be representable. Assume 0 in the representable bits is NULL. */
- mask = size_of_encoded_value (encoding);
- if (mask < sizeof (void *))
- mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
- else
- mask = -1;
- if ((pc_begin & mask) == 0)
- continue;
- count += 1;
- if ((void *) pc_begin < ob->pc_begin)
- ob->pc_begin = (void *) pc_begin;
- }
- return count;
- }
- static void
- add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde)
- {
- const struct dwarf_cie *last_cie = 0;
- int encoding = ob->s.b.encoding;
- _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
- for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
- {
- const struct dwarf_cie *this_cie;
- /* Skip CIEs. */
- if (this_fde->CIE_delta == 0)
- continue;
- if (ob->s.b.mixed_encoding)
- {
- /* Determine the encoding for this FDE. Note mixed encoded
- objects for later. */
- this_cie = get_cie (this_fde);
- if (this_cie != last_cie)
- {
- last_cie = this_cie;
- encoding = get_cie_encoding (this_cie);
- base = base_from_object (encoding, ob);
- }
- }
- if (encoding == DW_EH_PE_absptr)
- {
- _Unwind_Ptr ptr;
- memcpy (&ptr, this_fde->pc_begin, sizeof (_Unwind_Ptr));
- if (ptr == 0)
- continue;
- }
- else
- {
- _Unwind_Ptr pc_begin, mask;
- read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
- &pc_begin);
- /* Take care to ignore link-once functions that were removed.
- In these cases, the function address will be NULL, but if
- the encoding is smaller than a pointer a true NULL may not
- be representable. Assume 0 in the representable bits is NULL. */
- mask = size_of_encoded_value (encoding);
- if (mask < sizeof (void *))
- mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
- else
- mask = -1;
- if ((pc_begin & mask) == 0)
- continue;
- }
- fde_insert (accu, this_fde);
- }
- }
- /* Set up a sorted array of pointers to FDEs for a loaded object. We
- count up the entries before allocating the array because it's likely to
- be faster. We can be called multiple times, should we have failed to
- allocate a sorted fde array on a previous occasion. */
- static inline void
- init_object (struct object* ob)
- {
- struct fde_accumulator accu;
- size_t count;
- count = ob->s.b.count;
- if (count == 0)
- {
- if (ob->s.b.from_array)
- {
- fde **p = ob->u.array;
- for (count = 0; *p; ++p)
- {
- size_t cur_count = classify_object_over_fdes (ob, *p);
- if (cur_count == (size_t) -1)
- goto unhandled_fdes;
- count += cur_count;
- }
- }
- else
- {
- count = classify_object_over_fdes (ob, ob->u.single);
- if (count == (size_t) -1)
- {
- static const fde terminator;
- unhandled_fdes:
- ob->s.i = 0;
- ob->s.b.encoding = DW_EH_PE_omit;
- ob->u.single = &terminator;
- return;
- }
- }
- /* The count field we have in the main struct object is somewhat
- limited, but should suffice for virtually all cases. If the
- counted value doesn't fit, re-write a zero. The worst that
- happens is that we re-count next time -- admittedly non-trivial
- in that this implies some 2M fdes, but at least we function. */
- ob->s.b.count = count;
- if (ob->s.b.count != count)
- ob->s.b.count = 0;
- }
- if (!start_fde_sort (&accu, count))
- return;
- if (ob->s.b.from_array)
- {
- fde **p;
- for (p = ob->u.array; *p; ++p)
- add_fdes (ob, &accu, *p);
- }
- else
- add_fdes (ob, &accu, ob->u.single);
- end_fde_sort (ob, &accu, count);
- /* Save the original fde pointer, since this is the key by which the
- DSO will deregister the object. */
- accu.linear->orig_data = ob->u.single;
- ob->u.sort = accu.linear;
- ob->s.b.sorted = 1;
- }
- /* A linear search through a set of FDEs for the given PC. This is
- used when there was insufficient memory to allocate and sort an
- array. */
- static const fde *
- linear_search_fdes (struct object *ob, const fde *this_fde, void *pc)
- {
- const struct dwarf_cie *last_cie = 0;
- int encoding = ob->s.b.encoding;
- _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
- for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
- {
- const struct dwarf_cie *this_cie;
- _Unwind_Ptr pc_begin, pc_range;
- /* Skip CIEs. */
- if (this_fde->CIE_delta == 0)
- continue;
- if (ob->s.b.mixed_encoding)
- {
- /* Determine the encoding for this FDE. Note mixed encoded
- objects for later. */
- this_cie = get_cie (this_fde);
- if (this_cie != last_cie)
- {
- last_cie = this_cie;
- encoding = get_cie_encoding (this_cie);
- base = base_from_object (encoding, ob);
- }
- }
- if (encoding == DW_EH_PE_absptr)
- {
- const _Unwind_Ptr *pc_array = (const _Unwind_Ptr *) this_fde->pc_begin;
- pc_begin = pc_array[0];
- pc_range = pc_array[1];
- if (pc_begin == 0)
- continue;
- }
- else
- {
- _Unwind_Ptr mask;
- const unsigned char *p;
- p = read_encoded_value_with_base (encoding, base,
- this_fde->pc_begin, &pc_begin);
- read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
- /* Take care to ignore link-once functions that were removed.
- In these cases, the function address will be NULL, but if
- the encoding is smaller than a pointer a true NULL may not
- be representable. Assume 0 in the representable bits is NULL. */
- mask = size_of_encoded_value (encoding);
- if (mask < sizeof (void *))
- mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
- else
- mask = -1;
- if ((pc_begin & mask) == 0)
- continue;
- }
- if ((_Unwind_Ptr) pc - pc_begin < pc_range)
- return this_fde;
- }
- return NULL;
- }
- /* Binary search for an FDE containing the given PC. Here are three
- implementations of increasing complexity. */
- static inline const fde *
- binary_search_unencoded_fdes (struct object *ob, void *pc)
- {
- struct fde_vector *vec = ob->u.sort;
- size_t lo, hi;
- for (lo = 0, hi = vec->count; lo < hi; )
- {
- size_t i = (lo + hi) / 2;
- const fde *const f = vec->array[i];
- void *pc_begin;
- uaddr pc_range;
- memcpy (&pc_begin, (const void * const *) f->pc_begin, sizeof (void *));
- memcpy (&pc_range, (const uaddr *) f->pc_begin + 1, sizeof (uaddr));
- if (pc < pc_begin)
- hi = i;
- else if (pc >= pc_begin + pc_range)
- lo = i + 1;
- else
- return f;
- }
- return NULL;
- }
- static inline const fde *
- binary_search_single_encoding_fdes (struct object *ob, void *pc)
- {
- struct fde_vector *vec = ob->u.sort;
- int encoding = ob->s.b.encoding;
- _Unwind_Ptr base = base_from_object (encoding, ob);
- size_t lo, hi;
- for (lo = 0, hi = vec->count; lo < hi; )
- {
- size_t i = (lo + hi) / 2;
- const fde *f = vec->array[i];
- _Unwind_Ptr pc_begin, pc_range;
- const unsigned char *p;
- p = read_encoded_value_with_base (encoding, base, f->pc_begin,
- &pc_begin);
- read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
- if ((_Unwind_Ptr) pc < pc_begin)
- hi = i;
- else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
- lo = i + 1;
- else
- return f;
- }
- return NULL;
- }
- static inline const fde *
- binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
- {
- struct fde_vector *vec = ob->u.sort;
- size_t lo, hi;
- for (lo = 0, hi = vec->count; lo < hi; )
- {
- size_t i = (lo + hi) / 2;
- const fde *f = vec->array[i];
- _Unwind_Ptr pc_begin, pc_range;
- const unsigned char *p;
- int encoding;
- encoding = get_fde_encoding (f);
- p = read_encoded_value_with_base (encoding,
- base_from_object (encoding, ob),
- f->pc_begin, &pc_begin);
- read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
- if ((_Unwind_Ptr) pc < pc_begin)
- hi = i;
- else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
- lo = i + 1;
- else
- return f;
- }
- return NULL;
- }
- static const fde *
- search_object (struct object* ob, void *pc)
- {
- /* If the data hasn't been sorted, try to do this now. We may have
- more memory available than last time we tried. */
- if (! ob->s.b.sorted)
- {
- init_object (ob);
- /* Despite the above comment, the normal reason to get here is
- that we've not processed this object before. A quick range
- check is in order. */
- if (pc < ob->pc_begin)
- return NULL;
- }
- if (ob->s.b.sorted)
- {
- if (ob->s.b.mixed_encoding)
- return binary_search_mixed_encoding_fdes (ob, pc);
- else if (ob->s.b.encoding == DW_EH_PE_absptr)
- return binary_search_unencoded_fdes (ob, pc);
- else
- return binary_search_single_encoding_fdes (ob, pc);
- }
- else
- {
- /* Long slow laborious linear search, cos we've no memory. */
- if (ob->s.b.from_array)
- {
- fde **p;
- for (p = ob->u.array; *p ; p++)
- {
- const fde *f = linear_search_fdes (ob, *p, pc);
- if (f)
- return f;
- }
- return NULL;
- }
- else
- return linear_search_fdes (ob, ob->u.single, pc);
- }
- }
- const fde *
- _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
- {
- struct object *ob;
- const fde *f = NULL;
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
- /* Linear search through the classified objects, to find the one
- containing the pc. Note that pc_begin is sorted descending, and
- we expect objects to be non-overlapping. */
- for (ob = seen_objects; ob; ob = ob->next)
- if (pc >= ob->pc_begin)
- {
- f = search_object (ob, pc);
- if (f)
- goto fini;
- break;
- }
- /* Classify and search the objects we've not yet processed. */
- while ((ob = unseen_objects))
- {
- struct object **p;
- unseen_objects = ob->next;
- f = search_object (ob, pc);
- /* Insert the object into the classified list. */
- for (p = &seen_objects; *p ; p = &(*p)->next)
- if ((*p)->pc_begin < ob->pc_begin)
- break;
- ob->next = *p;
- *p = ob;
- if (f)
- goto fini;
- }
- fini:
- __gthread_mutex_unlock (&object_mutex);
- if (f)
- {
- int encoding;
- _Unwind_Ptr func;
- bases->tbase = ob->tbase;
- bases->dbase = ob->dbase;
- encoding = ob->s.b.encoding;
- if (ob->s.b.mixed_encoding)
- encoding = get_fde_encoding (f);
- read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
- f->pc_begin, &func);
- bases->func = (void *) func;
- }
- return f;
- }
|