12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144 |
- /* Operations with very long integers.
- Copyright (C) 2012-2015 Free Software Foundation, Inc.
- Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 3, or (at your option) any
- later version.
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "tm.h"
- #include "hwint.h"
- #include "wide-int.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "inchash.h"
- #include "tree.h"
- #include "dumpfile.h"
- #define HOST_BITS_PER_HALF_WIDE_INT 32
- #if HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_LONG
- # define HOST_HALF_WIDE_INT long
- #elif HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_INT
- # define HOST_HALF_WIDE_INT int
- #else
- #error Please add support for HOST_HALF_WIDE_INT
- #endif
- #define W_TYPE_SIZE HOST_BITS_PER_WIDE_INT
- /* Do not include longlong.h when compiler is clang-based. See PR61146. */
- #if GCC_VERSION >= 3000 && (W_TYPE_SIZE == 32 || defined (__SIZEOF_INT128__)) && !defined(__clang__)
- typedef unsigned HOST_HALF_WIDE_INT UHWtype;
- typedef unsigned HOST_WIDE_INT UWtype;
- typedef unsigned int UQItype __attribute__ ((mode (QI)));
- typedef unsigned int USItype __attribute__ ((mode (SI)));
- typedef unsigned int UDItype __attribute__ ((mode (DI)));
- #if W_TYPE_SIZE == 32
- typedef unsigned int UDWtype __attribute__ ((mode (DI)));
- #else
- typedef unsigned int UDWtype __attribute__ ((mode (TI)));
- #endif
- #include "longlong.h"
- #endif
- static const HOST_WIDE_INT zeros[WIDE_INT_MAX_ELTS] = {};
- /*
- * Internal utilities.
- */
- /* Quantities to deal with values that hold half of a wide int. Used
- in multiply and divide. */
- #define HALF_INT_MASK (((HOST_WIDE_INT) 1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
- #define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
- #define BLOCKS_NEEDED(PREC) \
- (PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1)
- #define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0)
- /* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1
- based on the top existing bit of VAL. */
- static unsigned HOST_WIDE_INT
- safe_uhwi (const HOST_WIDE_INT *val, unsigned int len, unsigned int i)
- {
- return i < len ? val[i] : val[len - 1] < 0 ? (HOST_WIDE_INT) -1 : 0;
- }
- /* Convert the integer in VAL to canonical form, returning its new length.
- LEN is the number of blocks currently in VAL and PRECISION is the number
- of bits in the integer it represents.
- This function only changes the representation, not the value. */
- static unsigned int
- canonize (HOST_WIDE_INT *val, unsigned int len, unsigned int precision)
- {
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
- HOST_WIDE_INT top;
- int i;
- if (len > blocks_needed)
- len = blocks_needed;
- if (len == 1)
- return len;
- top = val[len - 1];
- if (len * HOST_BITS_PER_WIDE_INT > precision)
- val[len - 1] = top = sext_hwi (top, precision % HOST_BITS_PER_WIDE_INT);
- if (top != 0 && top != (HOST_WIDE_INT)-1)
- return len;
- /* At this point we know that the top is either 0 or -1. Find the
- first block that is not a copy of this. */
- for (i = len - 2; i >= 0; i--)
- {
- HOST_WIDE_INT x = val[i];
- if (x != top)
- {
- if (SIGN_MASK (x) == top)
- return i + 1;
- /* We need an extra block because the top bit block i does
- not match the extension. */
- return i + 2;
- }
- }
- /* The number is 0 or -1. */
- return 1;
- }
- /*
- * Conversion routines in and out of wide_int.
- */
- /* Copy XLEN elements from XVAL to VAL. If NEED_CANON, canonize the
- result for an integer with precision PRECISION. Return the length
- of VAL (after any canonization. */
- unsigned int
- wi::from_array (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int precision, bool need_canon)
- {
- for (unsigned i = 0; i < xlen; i++)
- val[i] = xval[i];
- return need_canon ? canonize (val, xlen, precision) : xlen;
- }
- /* Construct a wide int from a buffer of length LEN. BUFFER will be
- read according to byte endianess and word endianess of the target.
- Only the lower BUFFER_LEN bytes of the result are set; the remaining
- high bytes are cleared. */
- wide_int
- wi::from_buffer (const unsigned char *buffer, unsigned int buffer_len)
- {
- unsigned int precision = buffer_len * BITS_PER_UNIT;
- wide_int result = wide_int::create (precision);
- unsigned int words = buffer_len / UNITS_PER_WORD;
- /* We have to clear all the bits ourself, as we merely or in values
- below. */
- unsigned int len = BLOCKS_NEEDED (precision);
- HOST_WIDE_INT *val = result.write_val ();
- for (unsigned int i = 0; i < len; ++i)
- val[i] = 0;
- for (unsigned int byte = 0; byte < buffer_len; byte++)
- {
- unsigned int offset;
- unsigned int index;
- unsigned int bitpos = byte * BITS_PER_UNIT;
- unsigned HOST_WIDE_INT value;
- if (buffer_len > UNITS_PER_WORD)
- {
- unsigned int word = byte / UNITS_PER_WORD;
- if (WORDS_BIG_ENDIAN)
- word = (words - 1) - word;
- offset = word * UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN)
- offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
- else
- offset += byte % UNITS_PER_WORD;
- }
- else
- offset = BYTES_BIG_ENDIAN ? (buffer_len - 1) - byte : byte;
- value = (unsigned HOST_WIDE_INT) buffer[offset];
- index = bitpos / HOST_BITS_PER_WIDE_INT;
- val[index] |= value << (bitpos % HOST_BITS_PER_WIDE_INT);
- }
- result.set_len (canonize (val, len, precision));
- return result;
- }
- /* Sets RESULT from X, the sign is taken according to SGN. */
- void
- wi::to_mpz (const wide_int_ref &x, mpz_t result, signop sgn)
- {
- int len = x.get_len ();
- const HOST_WIDE_INT *v = x.get_val ();
- int excess = len * HOST_BITS_PER_WIDE_INT - x.get_precision ();
- if (wi::neg_p (x, sgn))
- {
- /* We use ones complement to avoid -x80..0 edge case that -
- won't work on. */
- HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
- for (int i = 0; i < len; i++)
- t[i] = ~v[i];
- if (excess > 0)
- t[len - 1] = (unsigned HOST_WIDE_INT) t[len - 1] << excess >> excess;
- mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
- mpz_com (result, result);
- }
- else if (excess > 0)
- {
- HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
- for (int i = 0; i < len - 1; i++)
- t[i] = v[i];
- t[len - 1] = (unsigned HOST_WIDE_INT) v[len - 1] << excess >> excess;
- mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
- }
- else
- mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, v);
- }
- /* Returns X converted to TYPE. If WRAP is true, then out-of-range
- values of VAL will be wrapped; otherwise, they will be set to the
- appropriate minimum or maximum TYPE bound. */
- wide_int
- wi::from_mpz (const_tree type, mpz_t x, bool wrap)
- {
- size_t count, numb;
- unsigned int prec = TYPE_PRECISION (type);
- wide_int res = wide_int::create (prec);
- if (!wrap)
- {
- mpz_t min, max;
- mpz_init (min);
- mpz_init (max);
- get_type_static_bounds (type, min, max);
- if (mpz_cmp (x, min) < 0)
- mpz_set (x, min);
- else if (mpz_cmp (x, max) > 0)
- mpz_set (x, max);
- mpz_clear (min);
- mpz_clear (max);
- }
- /* Determine the number of unsigned HOST_WIDE_INTs that are required
- for representing the value. The code to calculate count is
- extracted from the GMP manual, section "Integer Import and Export":
- http://gmplib.org/manual/Integer-Import-and-Export.html */
- numb = CHAR_BIT * sizeof (HOST_WIDE_INT);
- count = (mpz_sizeinbase (x, 2) + numb - 1) / numb;
- HOST_WIDE_INT *val = res.write_val ();
- /* Write directly to the wide_int storage if possible, otherwise leave
- GMP to allocate the memory for us. It might be slightly more efficient
- to use mpz_tdiv_r_2exp for the latter case, but the situation is
- pathological and it seems safer to operate on the original mpz value
- in all cases. */
- void *valres = mpz_export (count <= WIDE_INT_MAX_ELTS ? val : 0,
- &count, -1, sizeof (HOST_WIDE_INT), 0, 0, x);
- if (count < 1)
- {
- val[0] = 0;
- count = 1;
- }
- count = MIN (count, BLOCKS_NEEDED (prec));
- if (valres != val)
- {
- memcpy (val, valres, count * sizeof (HOST_WIDE_INT));
- free (valres);
- }
- res.set_len (canonize (val, count, prec));
- if (mpz_sgn (x) < 0)
- res = -res;
- return res;
- }
- /*
- * Largest and smallest values in a mode.
- */
- /* Return the largest SGNed number that is representable in PRECISION bits.
- TODO: There is still code from the double_int era that trys to
- make up for the fact that double int's could not represent the
- min and max values of all types. This code should be removed
- because the min and max values can always be represented in
- wide_ints and int-csts. */
- wide_int
- wi::max_value (unsigned int precision, signop sgn)
- {
- gcc_checking_assert (precision != 0);
- if (sgn == UNSIGNED)
- /* The unsigned max is just all ones. */
- return shwi (-1, precision);
- else
- /* The signed max is all ones except the top bit. This must be
- explicitly represented. */
- return mask (precision - 1, false, precision);
- }
- /* Return the largest SGNed number that is representable in PRECISION bits. */
- wide_int
- wi::min_value (unsigned int precision, signop sgn)
- {
- gcc_checking_assert (precision != 0);
- if (sgn == UNSIGNED)
- return uhwi (0, precision);
- else
- /* The signed min is all zeros except the top bit. This must be
- explicitly represented. */
- return wi::set_bit_in_zero (precision - 1, precision);
- }
- /*
- * Public utilities.
- */
- /* Convert the number represented by XVAL, XLEN and XPRECISION, which has
- signedness SGN, to an integer that has PRECISION bits. Store the blocks
- in VAL and return the number of blocks used.
- This function can handle both extension (PRECISION > XPRECISION)
- and truncation (PRECISION < XPRECISION). */
- unsigned int
- wi::force_to_size (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int xprecision,
- unsigned int precision, signop sgn)
- {
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
- unsigned int len = blocks_needed < xlen ? blocks_needed : xlen;
- for (unsigned i = 0; i < len; i++)
- val[i] = xval[i];
- if (precision > xprecision)
- {
- unsigned int small_xprecision = xprecision % HOST_BITS_PER_WIDE_INT;
- /* Expanding. */
- if (sgn == UNSIGNED)
- {
- if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
- val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
- else if (val[len - 1] < 0)
- {
- while (len < BLOCKS_NEEDED (xprecision))
- val[len++] = -1;
- if (small_xprecision)
- val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
- else
- val[len++] = 0;
- }
- }
- else
- {
- if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
- val[len - 1] = sext_hwi (val[len - 1], small_xprecision);
- }
- }
- len = canonize (val, len, precision);
- return len;
- }
- /* This function hides the fact that we cannot rely on the bits beyond
- the precision. This issue comes up in the relational comparisions
- where we do allow comparisons of values of different precisions. */
- static inline HOST_WIDE_INT
- selt (const HOST_WIDE_INT *a, unsigned int len,
- unsigned int blocks_needed, unsigned int small_prec,
- unsigned int index, signop sgn)
- {
- HOST_WIDE_INT val;
- if (index < len)
- val = a[index];
- else if (index < blocks_needed || sgn == SIGNED)
- /* Signed or within the precision. */
- val = SIGN_MASK (a[len - 1]);
- else
- /* Unsigned extension beyond the precision. */
- val = 0;
- if (small_prec && index == blocks_needed - 1)
- return (sgn == SIGNED
- ? sext_hwi (val, small_prec)
- : zext_hwi (val, small_prec));
- else
- return val;
- }
- /* Find the highest bit represented in a wide int. This will in
- general have the same value as the sign bit. */
- static inline HOST_WIDE_INT
- top_bit_of (const HOST_WIDE_INT *a, unsigned int len, unsigned int prec)
- {
- int excess = len * HOST_BITS_PER_WIDE_INT - prec;
- unsigned HOST_WIDE_INT val = a[len - 1];
- if (excess > 0)
- val <<= excess;
- return val >> (HOST_BITS_PER_WIDE_INT - 1);
- }
- /*
- * Comparisons, note that only equality is an operator. The other
- * comparisons cannot be operators since they are inherently signed or
- * unsigned and C++ has no such operators.
- */
- /* Return true if OP0 == OP1. */
- bool
- wi::eq_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
- const HOST_WIDE_INT *op1, unsigned int op1len,
- unsigned int prec)
- {
- int l0 = op0len - 1;
- unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
- if (op0len != op1len)
- return false;
- if (op0len == BLOCKS_NEEDED (prec) && small_prec)
- {
- /* It does not matter if we zext or sext here, we just have to
- do both the same way. */
- if (zext_hwi (op0 [l0], small_prec) != zext_hwi (op1 [l0], small_prec))
- return false;
- l0--;
- }
- while (l0 >= 0)
- if (op0[l0] != op1[l0])
- return false;
- else
- l0--;
- return true;
- }
- /* Return true if OP0 < OP1 using signed comparisons. */
- bool
- wi::lts_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
- unsigned int precision,
- const HOST_WIDE_INT *op1, unsigned int op1len)
- {
- HOST_WIDE_INT s0, s1;
- unsigned HOST_WIDE_INT u0, u1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
- unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
- int l = MAX (op0len - 1, op1len - 1);
- /* Only the top block is compared as signed. The rest are unsigned
- comparisons. */
- s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
- s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
- if (s0 < s1)
- return true;
- if (s0 > s1)
- return false;
- l--;
- while (l >= 0)
- {
- u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
- u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
- if (u0 < u1)
- return true;
- if (u0 > u1)
- return false;
- l--;
- }
- return false;
- }
- /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
- signed compares. */
- int
- wi::cmps_large (const HOST_WIDE_INT *op0, unsigned int op0len,
- unsigned int precision,
- const HOST_WIDE_INT *op1, unsigned int op1len)
- {
- HOST_WIDE_INT s0, s1;
- unsigned HOST_WIDE_INT u0, u1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
- unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
- int l = MAX (op0len - 1, op1len - 1);
- /* Only the top block is compared as signed. The rest are unsigned
- comparisons. */
- s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
- s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
- if (s0 < s1)
- return -1;
- if (s0 > s1)
- return 1;
- l--;
- while (l >= 0)
- {
- u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
- u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
- if (u0 < u1)
- return -1;
- if (u0 > u1)
- return 1;
- l--;
- }
- return 0;
- }
- /* Return true if OP0 < OP1 using unsigned comparisons. */
- bool
- wi::ltu_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
- unsigned int precision,
- const HOST_WIDE_INT *op1, unsigned int op1len)
- {
- unsigned HOST_WIDE_INT x0;
- unsigned HOST_WIDE_INT x1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
- unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
- int l = MAX (op0len - 1, op1len - 1);
- while (l >= 0)
- {
- x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
- x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
- if (x0 < x1)
- return true;
- if (x0 > x1)
- return false;
- l--;
- }
- return false;
- }
- /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
- unsigned compares. */
- int
- wi::cmpu_large (const HOST_WIDE_INT *op0, unsigned int op0len,
- unsigned int precision,
- const HOST_WIDE_INT *op1, unsigned int op1len)
- {
- unsigned HOST_WIDE_INT x0;
- unsigned HOST_WIDE_INT x1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
- unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
- int l = MAX (op0len - 1, op1len - 1);
- while (l >= 0)
- {
- x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
- x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
- if (x0 < x1)
- return -1;
- if (x0 > x1)
- return 1;
- l--;
- }
- return 0;
- }
- /*
- * Extension.
- */
- /* Sign-extend the number represented by XVAL and XLEN into VAL,
- starting at OFFSET. Return the number of blocks in VAL. Both XVAL
- and VAL have PRECISION bits. */
- unsigned int
- wi::sext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int precision, unsigned int offset)
- {
- unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
- /* Extending beyond the precision is a no-op. If we have only stored
- OFFSET bits or fewer, the rest are already signs. */
- if (offset >= precision || len >= xlen)
- {
- for (unsigned i = 0; i < xlen; ++i)
- val[i] = xval[i];
- return xlen;
- }
- unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
- for (unsigned int i = 0; i < len; i++)
- val[i] = xval[i];
- if (suboffset > 0)
- {
- val[len] = sext_hwi (xval[len], suboffset);
- len += 1;
- }
- return canonize (val, len, precision);
- }
- /* Zero-extend the number represented by XVAL and XLEN into VAL,
- starting at OFFSET. Return the number of blocks in VAL. Both XVAL
- and VAL have PRECISION bits. */
- unsigned int
- wi::zext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int precision, unsigned int offset)
- {
- unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
- /* Extending beyond the precision is a no-op. If we have only stored
- OFFSET bits or fewer, and the upper stored bit is zero, then there
- is nothing to do. */
- if (offset >= precision || (len >= xlen && xval[xlen - 1] >= 0))
- {
- for (unsigned i = 0; i < xlen; ++i)
- val[i] = xval[i];
- return xlen;
- }
- unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
- for (unsigned int i = 0; i < len; i++)
- val[i] = i < xlen ? xval[i] : -1;
- if (suboffset > 0)
- val[len] = zext_hwi (len < xlen ? xval[len] : -1, suboffset);
- else
- val[len] = 0;
- return canonize (val, len + 1, precision);
- }
- /*
- * Masking, inserting, shifting, rotating.
- */
- /* Insert WIDTH bits from Y into X starting at START. */
- wide_int
- wi::insert (const wide_int &x, const wide_int &y, unsigned int start,
- unsigned int width)
- {
- wide_int result;
- wide_int mask;
- wide_int tmp;
- unsigned int precision = x.get_precision ();
- if (start >= precision)
- return x;
- gcc_checking_assert (precision >= width);
- if (start + width >= precision)
- width = precision - start;
- mask = wi::shifted_mask (start, width, false, precision);
- tmp = wi::lshift (wide_int::from (y, precision, UNSIGNED), start);
- result = tmp & mask;
- tmp = wi::bit_and_not (x, mask);
- result = result | tmp;
- return result;
- }
- /* Copy the number represented by XVAL and XLEN into VAL, setting bit BIT.
- Return the number of blocks in VAL. Both XVAL and VAL have PRECISION
- bits. */
- unsigned int
- wi::set_bit_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int precision, unsigned int bit)
- {
- unsigned int block = bit / HOST_BITS_PER_WIDE_INT;
- unsigned int subbit = bit % HOST_BITS_PER_WIDE_INT;
- if (block + 1 >= xlen)
- {
- /* The operation either affects the last current block or needs
- a new block. */
- unsigned int len = block + 1;
- for (unsigned int i = 0; i < len; i++)
- val[i] = safe_uhwi (xval, xlen, i);
- val[block] |= (unsigned HOST_WIDE_INT) 1 << subbit;
- /* If the bit we just set is at the msb of the block, make sure
- that any higher bits are zeros. */
- if (bit + 1 < precision && subbit == HOST_BITS_PER_WIDE_INT - 1)
- val[len++] = 0;
- return len;
- }
- else
- {
- for (unsigned int i = 0; i < xlen; i++)
- val[i] = xval[i];
- val[block] |= (unsigned HOST_WIDE_INT) 1 << subbit;
- return canonize (val, xlen, precision);
- }
- }
- /* bswap THIS. */
- wide_int
- wide_int_storage::bswap () const
- {
- wide_int result = wide_int::create (precision);
- unsigned int i, s;
- unsigned int len = BLOCKS_NEEDED (precision);
- unsigned int xlen = get_len ();
- const HOST_WIDE_INT *xval = get_val ();
- HOST_WIDE_INT *val = result.write_val ();
- /* This is not a well defined operation if the precision is not a
- multiple of 8. */
- gcc_assert ((precision & 0x7) == 0);
- for (i = 0; i < len; i++)
- val[i] = 0;
- /* Only swap the bytes that are not the padding. */
- for (s = 0; s < precision; s += 8)
- {
- unsigned int d = precision - s - 8;
- unsigned HOST_WIDE_INT byte;
- unsigned int block = s / HOST_BITS_PER_WIDE_INT;
- unsigned int offset = s & (HOST_BITS_PER_WIDE_INT - 1);
- byte = (safe_uhwi (xval, xlen, block) >> offset) & 0xff;
- block = d / HOST_BITS_PER_WIDE_INT;
- offset = d & (HOST_BITS_PER_WIDE_INT - 1);
- val[block] |= byte << offset;
- }
- result.set_len (canonize (val, len, precision));
- return result;
- }
- /* Fill VAL with a mask where the lower WIDTH bits are ones and the bits
- above that up to PREC are zeros. The result is inverted if NEGATE
- is true. Return the number of blocks in VAL. */
- unsigned int
- wi::mask (HOST_WIDE_INT *val, unsigned int width, bool negate,
- unsigned int prec)
- {
- if (width >= prec)
- {
- val[0] = negate ? 0 : -1;
- return 1;
- }
- else if (width == 0)
- {
- val[0] = negate ? -1 : 0;
- return 1;
- }
- unsigned int i = 0;
- while (i < width / HOST_BITS_PER_WIDE_INT)
- val[i++] = negate ? 0 : -1;
- unsigned int shift = width & (HOST_BITS_PER_WIDE_INT - 1);
- if (shift != 0)
- {
- HOST_WIDE_INT last = ((unsigned HOST_WIDE_INT) 1 << shift) - 1;
- val[i++] = negate ? ~last : last;
- }
- else
- val[i++] = negate ? -1 : 0;
- return i;
- }
- /* Fill VAL with a mask where the lower START bits are zeros, the next WIDTH
- bits are ones, and the bits above that up to PREC are zeros. The result
- is inverted if NEGATE is true. Return the number of blocks in VAL. */
- unsigned int
- wi::shifted_mask (HOST_WIDE_INT *val, unsigned int start, unsigned int width,
- bool negate, unsigned int prec)
- {
- if (start >= prec || width == 0)
- {
- val[0] = negate ? -1 : 0;
- return 1;
- }
- if (width > prec - start)
- width = prec - start;
- unsigned int end = start + width;
- unsigned int i = 0;
- while (i < start / HOST_BITS_PER_WIDE_INT)
- val[i++] = negate ? -1 : 0;
- unsigned int shift = start & (HOST_BITS_PER_WIDE_INT - 1);
- if (shift)
- {
- HOST_WIDE_INT block = ((unsigned HOST_WIDE_INT) 1 << shift) - 1;
- shift += width;
- if (shift < HOST_BITS_PER_WIDE_INT)
- {
- /* case 000111000 */
- block = ((unsigned HOST_WIDE_INT) 1 << shift) - block - 1;
- val[i++] = negate ? ~block : block;
- return i;
- }
- else
- /* ...111000 */
- val[i++] = negate ? block : ~block;
- }
- while (i < end / HOST_BITS_PER_WIDE_INT)
- /* 1111111 */
- val[i++] = negate ? 0 : -1;
- shift = end & (HOST_BITS_PER_WIDE_INT - 1);
- if (shift != 0)
- {
- /* 000011111 */
- HOST_WIDE_INT block = ((unsigned HOST_WIDE_INT) 1 << shift) - 1;
- val[i++] = negate ? ~block : block;
- }
- else if (end < prec)
- val[i++] = negate ? -1 : 0;
- return i;
- }
- /*
- * logical operations.
- */
- /* Set VAL to OP0 & OP1. Return the number of blocks used. */
- unsigned int
- wi::and_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
- unsigned int op0len, const HOST_WIDE_INT *op1,
- unsigned int op1len, unsigned int prec)
- {
- int l0 = op0len - 1;
- int l1 = op1len - 1;
- bool need_canon = true;
- unsigned int len = MAX (op0len, op1len);
- if (l0 > l1)
- {
- HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
- if (op1mask == 0)
- {
- l0 = l1;
- len = l1 + 1;
- }
- else
- {
- need_canon = false;
- while (l0 > l1)
- {
- val[l0] = op0[l0];
- l0--;
- }
- }
- }
- else if (l1 > l0)
- {
- HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
- if (op0mask == 0)
- len = l0 + 1;
- else
- {
- need_canon = false;
- while (l1 > l0)
- {
- val[l1] = op1[l1];
- l1--;
- }
- }
- }
- while (l0 >= 0)
- {
- val[l0] = op0[l0] & op1[l0];
- l0--;
- }
- if (need_canon)
- len = canonize (val, len, prec);
- return len;
- }
- /* Set VAL to OP0 & ~OP1. Return the number of blocks used. */
- unsigned int
- wi::and_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
- unsigned int op0len, const HOST_WIDE_INT *op1,
- unsigned int op1len, unsigned int prec)
- {
- wide_int result;
- int l0 = op0len - 1;
- int l1 = op1len - 1;
- bool need_canon = true;
- unsigned int len = MAX (op0len, op1len);
- if (l0 > l1)
- {
- HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
- if (op1mask != 0)
- {
- l0 = l1;
- len = l1 + 1;
- }
- else
- {
- need_canon = false;
- while (l0 > l1)
- {
- val[l0] = op0[l0];
- l0--;
- }
- }
- }
- else if (l1 > l0)
- {
- HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
- if (op0mask == 0)
- len = l0 + 1;
- else
- {
- need_canon = false;
- while (l1 > l0)
- {
- val[l1] = ~op1[l1];
- l1--;
- }
- }
- }
- while (l0 >= 0)
- {
- val[l0] = op0[l0] & ~op1[l0];
- l0--;
- }
- if (need_canon)
- len = canonize (val, len, prec);
- return len;
- }
- /* Set VAL to OP0 | OP1. Return the number of blocks used. */
- unsigned int
- wi::or_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
- unsigned int op0len, const HOST_WIDE_INT *op1,
- unsigned int op1len, unsigned int prec)
- {
- wide_int result;
- int l0 = op0len - 1;
- int l1 = op1len - 1;
- bool need_canon = true;
- unsigned int len = MAX (op0len, op1len);
- if (l0 > l1)
- {
- HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
- if (op1mask != 0)
- {
- l0 = l1;
- len = l1 + 1;
- }
- else
- {
- need_canon = false;
- while (l0 > l1)
- {
- val[l0] = op0[l0];
- l0--;
- }
- }
- }
- else if (l1 > l0)
- {
- HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
- if (op0mask != 0)
- len = l0 + 1;
- else
- {
- need_canon = false;
- while (l1 > l0)
- {
- val[l1] = op1[l1];
- l1--;
- }
- }
- }
- while (l0 >= 0)
- {
- val[l0] = op0[l0] | op1[l0];
- l0--;
- }
- if (need_canon)
- len = canonize (val, len, prec);
- return len;
- }
- /* Set VAL to OP0 | ~OP1. Return the number of blocks used. */
- unsigned int
- wi::or_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
- unsigned int op0len, const HOST_WIDE_INT *op1,
- unsigned int op1len, unsigned int prec)
- {
- wide_int result;
- int l0 = op0len - 1;
- int l1 = op1len - 1;
- bool need_canon = true;
- unsigned int len = MAX (op0len, op1len);
- if (l0 > l1)
- {
- HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
- if (op1mask == 0)
- {
- l0 = l1;
- len = l1 + 1;
- }
- else
- {
- need_canon = false;
- while (l0 > l1)
- {
- val[l0] = op0[l0];
- l0--;
- }
- }
- }
- else if (l1 > l0)
- {
- HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
- if (op0mask != 0)
- len = l0 + 1;
- else
- {
- need_canon = false;
- while (l1 > l0)
- {
- val[l1] = ~op1[l1];
- l1--;
- }
- }
- }
- while (l0 >= 0)
- {
- val[l0] = op0[l0] | ~op1[l0];
- l0--;
- }
- if (need_canon)
- len = canonize (val, len, prec);
- return len;
- }
- /* Set VAL to OP0 ^ OP1. Return the number of blocks used. */
- unsigned int
- wi::xor_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
- unsigned int op0len, const HOST_WIDE_INT *op1,
- unsigned int op1len, unsigned int prec)
- {
- wide_int result;
- int l0 = op0len - 1;
- int l1 = op1len - 1;
- unsigned int len = MAX (op0len, op1len);
- if (l0 > l1)
- {
- HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
- while (l0 > l1)
- {
- val[l0] = op0[l0] ^ op1mask;
- l0--;
- }
- }
- if (l1 > l0)
- {
- HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
- while (l1 > l0)
- {
- val[l1] = op0mask ^ op1[l1];
- l1--;
- }
- }
- while (l0 >= 0)
- {
- val[l0] = op0[l0] ^ op1[l0];
- l0--;
- }
- return canonize (val, len, prec);
- }
- /*
- * math
- */
- /* Set VAL to OP0 + OP1. If OVERFLOW is nonnull, record in *OVERFLOW
- whether the result overflows when OP0 and OP1 are treated as having
- signedness SGN. Return the number of blocks in VAL. */
- unsigned int
- wi::add_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
- unsigned int op0len, const HOST_WIDE_INT *op1,
- unsigned int op1len, unsigned int prec,
- signop sgn, bool *overflow)
- {
- unsigned HOST_WIDE_INT o0 = 0;
- unsigned HOST_WIDE_INT o1 = 0;
- unsigned HOST_WIDE_INT x = 0;
- unsigned HOST_WIDE_INT carry = 0;
- unsigned HOST_WIDE_INT old_carry = 0;
- unsigned HOST_WIDE_INT mask0, mask1;
- unsigned int i;
- unsigned int len = MAX (op0len, op1len);
- mask0 = -top_bit_of (op0, op0len, prec);
- mask1 = -top_bit_of (op1, op1len, prec);
- /* Add all of the explicitly defined elements. */
- for (i = 0; i < len; i++)
- {
- o0 = i < op0len ? (unsigned HOST_WIDE_INT) op0[i] : mask0;
- o1 = i < op1len ? (unsigned HOST_WIDE_INT) op1[i] : mask1;
- x = o0 + o1 + carry;
- val[i] = x;
- old_carry = carry;
- carry = carry == 0 ? x < o0 : x <= o0;
- }
- if (len * HOST_BITS_PER_WIDE_INT < prec)
- {
- val[len] = mask0 + mask1 + carry;
- len++;
- if (overflow)
- *overflow = false;
- }
- else if (overflow)
- {
- unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
- if (sgn == SIGNED)
- {
- unsigned HOST_WIDE_INT x = (val[len - 1] ^ o0) & (val[len - 1] ^ o1);
- *overflow = (HOST_WIDE_INT) (x << shift) < 0;
- }
- else
- {
- /* Put the MSB of X and O0 and in the top of the HWI. */
- x <<= shift;
- o0 <<= shift;
- if (old_carry)
- *overflow = (x <= o0);
- else
- *overflow = (x < o0);
- }
- }
- return canonize (val, len, prec);
- }
- /* Subroutines of the multiplication and division operations. Unpack
- the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN
- HOST_HALF_WIDE_INTs of RESULT. The rest of RESULT is filled by
- uncompressing the top bit of INPUT[IN_LEN - 1]. */
- static void
- wi_unpack (unsigned HOST_HALF_WIDE_INT *result, const HOST_WIDE_INT *input,
- unsigned int in_len, unsigned int out_len,
- unsigned int prec, signop sgn)
- {
- unsigned int i;
- unsigned int j = 0;
- unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
- unsigned int blocks_needed = BLOCKS_NEEDED (prec);
- HOST_WIDE_INT mask;
- if (sgn == SIGNED)
- {
- mask = -top_bit_of ((const HOST_WIDE_INT *) input, in_len, prec);
- mask &= HALF_INT_MASK;
- }
- else
- mask = 0;
- for (i = 0; i < blocks_needed - 1; i++)
- {
- HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
- result[j++] = x;
- result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
- }
- HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
- if (small_prec)
- {
- if (sgn == SIGNED)
- x = sext_hwi (x, small_prec);
- else
- x = zext_hwi (x, small_prec);
- }
- result[j++] = x;
- result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
- /* Smear the sign bit. */
- while (j < out_len)
- result[j++] = mask;
- }
- /* The inverse of wi_unpack. IN_LEN is the the number of input
- blocks. The number of output blocks will be half this amount. */
- static void
- wi_pack (unsigned HOST_WIDE_INT *result,
- const unsigned HOST_HALF_WIDE_INT *input,
- unsigned int in_len)
- {
- unsigned int i = 0;
- unsigned int j = 0;
- while (i + 2 < in_len)
- {
- result[j++] = (unsigned HOST_WIDE_INT)input[i]
- | ((unsigned HOST_WIDE_INT)input[i + 1]
- << HOST_BITS_PER_HALF_WIDE_INT);
- i += 2;
- }
- /* Handle the case where in_len is odd. For this we zero extend. */
- if (in_len & 1)
- result[j++] = (unsigned HOST_WIDE_INT)input[i];
- else
- result[j++] = (unsigned HOST_WIDE_INT)input[i]
- | ((unsigned HOST_WIDE_INT)input[i + 1] << HOST_BITS_PER_HALF_WIDE_INT);
- }
- /* Multiply Op1 by Op2. If HIGH is set, only the upper half of the
- result is returned.
- If HIGH is not set, throw away the upper half after the check is
- made to see if it overflows. Unfortunately there is no better way
- to check for overflow than to do this. If OVERFLOW is nonnull,
- record in *OVERFLOW whether the result overflowed. SGN controls
- the signedness and is used to check overflow or if HIGH is set. */
- unsigned int
- wi::mul_internal (HOST_WIDE_INT *val, const HOST_WIDE_INT *op1val,
- unsigned int op1len, const HOST_WIDE_INT *op2val,
- unsigned int op2len, unsigned int prec, signop sgn,
- bool *overflow, bool high)
- {
- unsigned HOST_WIDE_INT o0, o1, k, t;
- unsigned int i;
- unsigned int j;
- unsigned int blocks_needed = BLOCKS_NEEDED (prec);
- unsigned int half_blocks_needed = blocks_needed * 2;
- /* The sizes here are scaled to support a 2x largest mode by 2x
- largest mode yielding a 4x largest mode result. This is what is
- needed by vpn. */
- unsigned HOST_HALF_WIDE_INT
- u[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
- unsigned HOST_HALF_WIDE_INT
- v[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
- /* The '2' in 'R' is because we are internally doing a full
- multiply. */
- unsigned HOST_HALF_WIDE_INT
- r[2 * 4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
- HOST_WIDE_INT mask = ((HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT) - 1;
- /* If the top level routine did not really pass in an overflow, then
- just make sure that we never attempt to set it. */
- bool needs_overflow = (overflow != 0);
- if (needs_overflow)
- *overflow = false;
- wide_int_ref op1 = wi::storage_ref (op1val, op1len, prec);
- wide_int_ref op2 = wi::storage_ref (op2val, op2len, prec);
- /* This is a surprisingly common case, so do it first. */
- if (op1 == 0 || op2 == 0)
- {
- val[0] = 0;
- return 1;
- }
- #ifdef umul_ppmm
- if (sgn == UNSIGNED)
- {
- /* If the inputs are single HWIs and the output has room for at
- least two HWIs, we can use umul_ppmm directly. */
- if (prec >= HOST_BITS_PER_WIDE_INT * 2
- && wi::fits_uhwi_p (op1)
- && wi::fits_uhwi_p (op2))
- {
- /* This case never overflows. */
- if (high)
- {
- val[0] = 0;
- return 1;
- }
- umul_ppmm (val[1], val[0], op1.ulow (), op2.ulow ());
- if (val[1] < 0 && prec > HOST_BITS_PER_WIDE_INT * 2)
- {
- val[2] = 0;
- return 3;
- }
- return 1 + (val[1] != 0 || val[0] < 0);
- }
- /* Likewise if the output is a full single HWI, except that the
- upper HWI of the result is only used for determining overflow.
- (We handle this case inline when overflow isn't needed.) */
- else if (prec == HOST_BITS_PER_WIDE_INT)
- {
- unsigned HOST_WIDE_INT upper;
- umul_ppmm (upper, val[0], op1.ulow (), op2.ulow ());
- if (needs_overflow)
- *overflow = (upper != 0);
- if (high)
- val[0] = upper;
- return 1;
- }
- }
- #endif
- /* Handle multiplications by 1. */
- if (op1 == 1)
- {
- if (high)
- {
- val[0] = wi::neg_p (op2, sgn) ? -1 : 0;
- return 1;
- }
- for (i = 0; i < op2len; i++)
- val[i] = op2val[i];
- return op2len;
- }
- if (op2 == 1)
- {
- if (high)
- {
- val[0] = wi::neg_p (op1, sgn) ? -1 : 0;
- return 1;
- }
- for (i = 0; i < op1len; i++)
- val[i] = op1val[i];
- return op1len;
- }
- /* If we need to check for overflow, we can only do half wide
- multiplies quickly because we need to look at the top bits to
- check for the overflow. */
- if ((high || needs_overflow)
- && (prec <= HOST_BITS_PER_HALF_WIDE_INT))
- {
- unsigned HOST_WIDE_INT r;
- if (sgn == SIGNED)
- {
- o0 = op1.to_shwi ();
- o1 = op2.to_shwi ();
- }
- else
- {
- o0 = op1.to_uhwi ();
- o1 = op2.to_uhwi ();
- }
- r = o0 * o1;
- if (needs_overflow)
- {
- if (sgn == SIGNED)
- {
- if ((HOST_WIDE_INT) r != sext_hwi (r, prec))
- *overflow = true;
- }
- else
- {
- if ((r >> prec) != 0)
- *overflow = true;
- }
- }
- val[0] = high ? r >> prec : r;
- return 1;
- }
- /* We do unsigned mul and then correct it. */
- wi_unpack (u, op1val, op1len, half_blocks_needed, prec, SIGNED);
- wi_unpack (v, op2val, op2len, half_blocks_needed, prec, SIGNED);
- /* The 2 is for a full mult. */
- memset (r, 0, half_blocks_needed * 2
- * HOST_BITS_PER_HALF_WIDE_INT / CHAR_BIT);
- for (j = 0; j < half_blocks_needed; j++)
- {
- k = 0;
- for (i = 0; i < half_blocks_needed; i++)
- {
- t = ((unsigned HOST_WIDE_INT)u[i] * (unsigned HOST_WIDE_INT)v[j]
- + r[i + j] + k);
- r[i + j] = t & HALF_INT_MASK;
- k = t >> HOST_BITS_PER_HALF_WIDE_INT;
- }
- r[j + half_blocks_needed] = k;
- }
- /* We did unsigned math above. For signed we must adjust the
- product (assuming we need to see that). */
- if (sgn == SIGNED && (high || needs_overflow))
- {
- unsigned HOST_WIDE_INT b;
- if (wi::neg_p (op1))
- {
- b = 0;
- for (i = 0; i < half_blocks_needed; i++)
- {
- t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
- - (unsigned HOST_WIDE_INT)v[i] - b;
- r[i + half_blocks_needed] = t & HALF_INT_MASK;
- b = t >> (HOST_BITS_PER_WIDE_INT - 1);
- }
- }
- if (wi::neg_p (op2))
- {
- b = 0;
- for (i = 0; i < half_blocks_needed; i++)
- {
- t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
- - (unsigned HOST_WIDE_INT)u[i] - b;
- r[i + half_blocks_needed] = t & HALF_INT_MASK;
- b = t >> (HOST_BITS_PER_WIDE_INT - 1);
- }
- }
- }
- if (needs_overflow)
- {
- HOST_WIDE_INT top;
- /* For unsigned, overflow is true if any of the top bits are set.
- For signed, overflow is true if any of the top bits are not equal
- to the sign bit. */
- if (sgn == UNSIGNED)
- top = 0;
- else
- {
- top = r[(half_blocks_needed) - 1];
- top = SIGN_MASK (top << (HOST_BITS_PER_WIDE_INT / 2));
- top &= mask;
- }
- for (i = half_blocks_needed; i < half_blocks_needed * 2; i++)
- if (((HOST_WIDE_INT)(r[i] & mask)) != top)
- *overflow = true;
- }
- if (high)
- {
- /* compute [prec] <- ([prec] * [prec]) >> [prec] */
- wi_pack ((unsigned HOST_WIDE_INT *) val,
- &r[half_blocks_needed], half_blocks_needed);
- return canonize (val, blocks_needed, prec);
- }
- else
- {
- /* compute [prec] <- ([prec] * [prec]) && ((1 << [prec]) - 1) */
- wi_pack ((unsigned HOST_WIDE_INT *) val, r, half_blocks_needed);
- return canonize (val, blocks_needed, prec);
- }
- }
- /* Compute the population count of X. */
- int
- wi::popcount (const wide_int_ref &x)
- {
- unsigned int i;
- int count;
- /* The high order block is special if it is the last block and the
- precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We
- have to clear out any ones above the precision before doing
- popcount on this block. */
- count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
- unsigned int stop = x.len;
- if (count < 0)
- {
- count = popcount_hwi (x.uhigh () << -count);
- stop -= 1;
- }
- else
- {
- if (x.sign_mask () >= 0)
- count = 0;
- }
- for (i = 0; i < stop; ++i)
- count += popcount_hwi (x.val[i]);
- return count;
- }
- /* Set VAL to OP0 - OP1. If OVERFLOW is nonnull, record in *OVERFLOW
- whether the result overflows when OP0 and OP1 are treated as having
- signedness SGN. Return the number of blocks in VAL. */
- unsigned int
- wi::sub_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
- unsigned int op0len, const HOST_WIDE_INT *op1,
- unsigned int op1len, unsigned int prec,
- signop sgn, bool *overflow)
- {
- unsigned HOST_WIDE_INT o0 = 0;
- unsigned HOST_WIDE_INT o1 = 0;
- unsigned HOST_WIDE_INT x = 0;
- /* We implement subtraction as an in place negate and add. Negation
- is just inversion and add 1, so we can do the add of 1 by just
- starting the borrow in of the first element at 1. */
- unsigned HOST_WIDE_INT borrow = 0;
- unsigned HOST_WIDE_INT old_borrow = 0;
- unsigned HOST_WIDE_INT mask0, mask1;
- unsigned int i;
- unsigned int len = MAX (op0len, op1len);
- mask0 = -top_bit_of (op0, op0len, prec);
- mask1 = -top_bit_of (op1, op1len, prec);
- /* Subtract all of the explicitly defined elements. */
- for (i = 0; i < len; i++)
- {
- o0 = i < op0len ? (unsigned HOST_WIDE_INT)op0[i] : mask0;
- o1 = i < op1len ? (unsigned HOST_WIDE_INT)op1[i] : mask1;
- x = o0 - o1 - borrow;
- val[i] = x;
- old_borrow = borrow;
- borrow = borrow == 0 ? o0 < o1 : o0 <= o1;
- }
- if (len * HOST_BITS_PER_WIDE_INT < prec)
- {
- val[len] = mask0 - mask1 - borrow;
- len++;
- if (overflow)
- *overflow = false;
- }
- else if (overflow)
- {
- unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
- if (sgn == SIGNED)
- {
- unsigned HOST_WIDE_INT x = (o0 ^ o1) & (val[len - 1] ^ o0);
- *overflow = (HOST_WIDE_INT) (x << shift) < 0;
- }
- else
- {
- /* Put the MSB of X and O0 and in the top of the HWI. */
- x <<= shift;
- o0 <<= shift;
- if (old_borrow)
- *overflow = (x >= o0);
- else
- *overflow = (x > o0);
- }
- }
- return canonize (val, len, prec);
- }
- /*
- * Division and Mod
- */
- /* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR. The
- algorithm is a small modification of the algorithm in Hacker's
- Delight by Warren, which itself is a small modification of Knuth's
- algorithm. M is the number of significant elements of U however
- there needs to be at least one extra element of B_DIVIDEND
- allocated, N is the number of elements of B_DIVISOR. */
- static void
- divmod_internal_2 (unsigned HOST_HALF_WIDE_INT *b_quotient,
- unsigned HOST_HALF_WIDE_INT *b_remainder,
- unsigned HOST_HALF_WIDE_INT *b_dividend,
- unsigned HOST_HALF_WIDE_INT *b_divisor,
- int m, int n)
- {
- /* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a
- HOST_WIDE_INT and stored in the lower bits of each word. This
- algorithm should work properly on both 32 and 64 bit
- machines. */
- unsigned HOST_WIDE_INT b
- = (unsigned HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT;
- unsigned HOST_WIDE_INT qhat; /* Estimate of quotient digit. */
- unsigned HOST_WIDE_INT rhat; /* A remainder. */
- unsigned HOST_WIDE_INT p; /* Product of two digits. */
- HOST_WIDE_INT t, k;
- int i, j, s;
- /* Single digit divisor. */
- if (n == 1)
- {
- k = 0;
- for (j = m - 1; j >= 0; j--)
- {
- b_quotient[j] = (k * b + b_dividend[j])/b_divisor[0];
- k = ((k * b + b_dividend[j])
- - ((unsigned HOST_WIDE_INT)b_quotient[j]
- * (unsigned HOST_WIDE_INT)b_divisor[0]));
- }
- b_remainder[0] = k;
- return;
- }
- s = clz_hwi (b_divisor[n-1]) - HOST_BITS_PER_HALF_WIDE_INT; /* CHECK clz */
- if (s)
- {
- /* Normalize B_DIVIDEND and B_DIVISOR. Unlike the published
- algorithm, we can overwrite b_dividend and b_divisor, so we do
- that. */
- for (i = n - 1; i > 0; i--)
- b_divisor[i] = (b_divisor[i] << s)
- | (b_divisor[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
- b_divisor[0] = b_divisor[0] << s;
- b_dividend[m] = b_dividend[m-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s);
- for (i = m - 1; i > 0; i--)
- b_dividend[i] = (b_dividend[i] << s)
- | (b_dividend[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
- b_dividend[0] = b_dividend[0] << s;
- }
- /* Main loop. */
- for (j = m - n; j >= 0; j--)
- {
- qhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) / b_divisor[n-1];
- rhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) - qhat * b_divisor[n-1];
- again:
- if (qhat >= b || qhat * b_divisor[n-2] > b * rhat + b_dividend[j+n-2])
- {
- qhat -= 1;
- rhat += b_divisor[n-1];
- if (rhat < b)
- goto again;
- }
- /* Multiply and subtract. */
- k = 0;
- for (i = 0; i < n; i++)
- {
- p = qhat * b_divisor[i];
- t = b_dividend[i+j] - k - (p & HALF_INT_MASK);
- b_dividend[i + j] = t;
- k = ((p >> HOST_BITS_PER_HALF_WIDE_INT)
- - (t >> HOST_BITS_PER_HALF_WIDE_INT));
- }
- t = b_dividend[j+n] - k;
- b_dividend[j+n] = t;
- b_quotient[j] = qhat;
- if (t < 0)
- {
- b_quotient[j] -= 1;
- k = 0;
- for (i = 0; i < n; i++)
- {
- t = (HOST_WIDE_INT)b_dividend[i+j] + b_divisor[i] + k;
- b_dividend[i+j] = t;
- k = t >> HOST_BITS_PER_HALF_WIDE_INT;
- }
- b_dividend[j+n] += k;
- }
- }
- if (s)
- for (i = 0; i < n; i++)
- b_remainder[i] = (b_dividend[i] >> s)
- | (b_dividend[i+1] << (HOST_BITS_PER_HALF_WIDE_INT - s));
- else
- for (i = 0; i < n; i++)
- b_remainder[i] = b_dividend[i];
- }
- /* Divide DIVIDEND by DIVISOR, which have signedness SGN, and truncate
- the result. If QUOTIENT is nonnull, store the value of the quotient
- there and return the number of blocks in it. The return value is
- not defined otherwise. If REMAINDER is nonnull, store the value
- of the remainder there and store the number of blocks in
- *REMAINDER_LEN. If OFLOW is not null, store in *OFLOW whether
- the division overflowed. */
- unsigned int
- wi::divmod_internal (HOST_WIDE_INT *quotient, unsigned int *remainder_len,
- HOST_WIDE_INT *remainder,
- const HOST_WIDE_INT *dividend_val,
- unsigned int dividend_len, unsigned int dividend_prec,
- const HOST_WIDE_INT *divisor_val, unsigned int divisor_len,
- unsigned int divisor_prec, signop sgn,
- bool *oflow)
- {
- unsigned int dividend_blocks_needed = 2 * BLOCKS_NEEDED (dividend_prec);
- unsigned int divisor_blocks_needed = 2 * BLOCKS_NEEDED (divisor_prec);
- unsigned HOST_HALF_WIDE_INT
- b_quotient[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
- unsigned HOST_HALF_WIDE_INT
- b_remainder[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
- unsigned HOST_HALF_WIDE_INT
- b_dividend[(4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT) + 1];
- unsigned HOST_HALF_WIDE_INT
- b_divisor[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
- unsigned int m, n;
- bool dividend_neg = false;
- bool divisor_neg = false;
- bool overflow = false;
- wide_int neg_dividend, neg_divisor;
- wide_int_ref dividend = wi::storage_ref (dividend_val, dividend_len,
- dividend_prec);
- wide_int_ref divisor = wi::storage_ref (divisor_val, divisor_len,
- divisor_prec);
- if (divisor == 0)
- overflow = true;
- /* The smallest signed number / -1 causes overflow. The dividend_len
- check is for speed rather than correctness. */
- if (sgn == SIGNED
- && dividend_len == BLOCKS_NEEDED (dividend_prec)
- && divisor == -1
- && wi::only_sign_bit_p (dividend))
- overflow = true;
- /* Handle the overflow cases. Viewed as unsigned value, the quotient of
- (signed min / -1) has the same representation as the orignal dividend.
- We have traditionally made division by zero act as division by one,
- so there too we use the original dividend. */
- if (overflow)
- {
- if (remainder)
- {
- *remainder_len = 1;
- remainder[0] = 0;
- }
- if (oflow != 0)
- *oflow = true;
- if (quotient)
- for (unsigned int i = 0; i < dividend_len; ++i)
- quotient[i] = dividend_val[i];
- return dividend_len;
- }
- if (oflow)
- *oflow = false;
- /* Do it on the host if you can. */
- if (sgn == SIGNED
- && wi::fits_shwi_p (dividend)
- && wi::fits_shwi_p (divisor))
- {
- HOST_WIDE_INT o0 = dividend.to_shwi ();
- HOST_WIDE_INT o1 = divisor.to_shwi ();
- if (o0 == HOST_WIDE_INT_MIN && o1 == -1)
- {
- gcc_checking_assert (dividend_prec > HOST_BITS_PER_WIDE_INT);
- if (quotient)
- {
- quotient[0] = HOST_WIDE_INT_MIN;
- quotient[1] = 0;
- }
- if (remainder)
- {
- remainder[0] = 0;
- *remainder_len = 1;
- }
- return 2;
- }
- else
- {
- if (quotient)
- quotient[0] = o0 / o1;
- if (remainder)
- {
- remainder[0] = o0 % o1;
- *remainder_len = 1;
- }
- return 1;
- }
- }
- if (sgn == UNSIGNED
- && wi::fits_uhwi_p (dividend)
- && wi::fits_uhwi_p (divisor))
- {
- unsigned HOST_WIDE_INT o0 = dividend.to_uhwi ();
- unsigned HOST_WIDE_INT o1 = divisor.to_uhwi ();
- if (quotient)
- quotient[0] = o0 / o1;
- if (remainder)
- {
- remainder[0] = o0 % o1;
- *remainder_len = 1;
- }
- return 1;
- }
- /* Make the divisor and dividend positive and remember what we
- did. */
- if (sgn == SIGNED)
- {
- if (wi::neg_p (dividend))
- {
- neg_dividend = -dividend;
- dividend = neg_dividend;
- dividend_neg = true;
- }
- if (wi::neg_p (divisor))
- {
- neg_divisor = -divisor;
- divisor = neg_divisor;
- divisor_neg = true;
- }
- }
- wi_unpack (b_dividend, dividend.get_val (), dividend.get_len (),
- dividend_blocks_needed, dividend_prec, sgn);
- wi_unpack (b_divisor, divisor.get_val (), divisor.get_len (),
- divisor_blocks_needed, divisor_prec, sgn);
- m = dividend_blocks_needed;
- b_dividend[m] = 0;
- while (m > 1 && b_dividend[m - 1] == 0)
- m--;
- n = divisor_blocks_needed;
- while (n > 1 && b_divisor[n - 1] == 0)
- n--;
- memset (b_quotient, 0, sizeof (b_quotient));
- divmod_internal_2 (b_quotient, b_remainder, b_dividend, b_divisor, m, n);
- unsigned int quotient_len = 0;
- if (quotient)
- {
- wi_pack ((unsigned HOST_WIDE_INT *) quotient, b_quotient, m);
- quotient_len = canonize (quotient, (m + 1) / 2, dividend_prec);
- /* The quotient is neg if exactly one of the divisor or dividend is
- neg. */
- if (dividend_neg != divisor_neg)
- quotient_len = wi::sub_large (quotient, zeros, 1, quotient,
- quotient_len, dividend_prec,
- UNSIGNED, 0);
- }
- if (remainder)
- {
- wi_pack ((unsigned HOST_WIDE_INT *) remainder, b_remainder, n);
- *remainder_len = canonize (remainder, (n + 1) / 2, dividend_prec);
- /* The remainder is always the same sign as the dividend. */
- if (dividend_neg)
- *remainder_len = wi::sub_large (remainder, zeros, 1, remainder,
- *remainder_len, dividend_prec,
- UNSIGNED, 0);
- }
- return quotient_len;
- }
- /*
- * Shifting, rotating and extraction.
- */
- /* Left shift XVAL by SHIFT and store the result in VAL. Return the
- number of blocks in VAL. Both XVAL and VAL have PRECISION bits. */
- unsigned int
- wi::lshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int precision,
- unsigned int shift)
- {
- /* Split the shift into a whole-block shift and a subblock shift. */
- unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
- unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
- /* The whole-block shift fills with zeros. */
- unsigned int len = BLOCKS_NEEDED (precision);
- for (unsigned int i = 0; i < skip; ++i)
- val[i] = 0;
- /* It's easier to handle the simple block case specially. */
- if (small_shift == 0)
- for (unsigned int i = skip; i < len; ++i)
- val[i] = safe_uhwi (xval, xlen, i - skip);
- else
- {
- /* The first unfilled output block is a left shift of the first
- block in XVAL. The other output blocks contain bits from two
- consecutive input blocks. */
- unsigned HOST_WIDE_INT carry = 0;
- for (unsigned int i = skip; i < len; ++i)
- {
- unsigned HOST_WIDE_INT x = safe_uhwi (xval, xlen, i - skip);
- val[i] = (x << small_shift) | carry;
- carry = x >> (-small_shift % HOST_BITS_PER_WIDE_INT);
- }
- }
- return canonize (val, len, precision);
- }
- /* Right shift XVAL by SHIFT and store the result in VAL. Return the
- number of blocks in VAL. The input has XPRECISION bits and the
- output has XPRECISION - SHIFT bits. */
- static unsigned int
- rshift_large_common (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int xprecision,
- unsigned int shift)
- {
- /* Split the shift into a whole-block shift and a subblock shift. */
- unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
- unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
- /* Work out how many blocks are needed to store the significant bits
- (excluding the upper zeros or signs). */
- unsigned int len = BLOCKS_NEEDED (xprecision - shift);
- /* It's easier to handle the simple block case specially. */
- if (small_shift == 0)
- for (unsigned int i = 0; i < len; ++i)
- val[i] = safe_uhwi (xval, xlen, i + skip);
- else
- {
- /* Each output block but the last is a combination of two input blocks.
- The last block is a right shift of the last block in XVAL. */
- unsigned HOST_WIDE_INT curr = safe_uhwi (xval, xlen, skip);
- for (unsigned int i = 0; i < len; ++i)
- {
- val[i] = curr >> small_shift;
- curr = safe_uhwi (xval, xlen, i + skip + 1);
- val[i] |= curr << (-small_shift % HOST_BITS_PER_WIDE_INT);
- }
- }
- return len;
- }
- /* Logically right shift XVAL by SHIFT and store the result in VAL.
- Return the number of blocks in VAL. XVAL has XPRECISION bits and
- VAL has PRECISION bits. */
- unsigned int
- wi::lrshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int xprecision,
- unsigned int precision, unsigned int shift)
- {
- unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
- /* The value we just created has precision XPRECISION - SHIFT.
- Zero-extend it to wider precisions. */
- if (precision > xprecision - shift)
- {
- unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
- if (small_prec)
- val[len - 1] = zext_hwi (val[len - 1], small_prec);
- else if (val[len - 1] < 0)
- {
- /* Add a new block with a zero. */
- val[len++] = 0;
- return len;
- }
- }
- return canonize (val, len, precision);
- }
- /* Arithmetically right shift XVAL by SHIFT and store the result in VAL.
- Return the number of blocks in VAL. XVAL has XPRECISION bits and
- VAL has PRECISION bits. */
- unsigned int
- wi::arshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
- unsigned int xlen, unsigned int xprecision,
- unsigned int precision, unsigned int shift)
- {
- unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
- /* The value we just created has precision XPRECISION - SHIFT.
- Sign-extend it to wider types. */
- if (precision > xprecision - shift)
- {
- unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
- if (small_prec)
- val[len - 1] = sext_hwi (val[len - 1], small_prec);
- }
- return canonize (val, len, precision);
- }
- /* Return the number of leading (upper) zeros in X. */
- int
- wi::clz (const wide_int_ref &x)
- {
- /* Calculate how many bits there above the highest represented block. */
- int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
- unsigned HOST_WIDE_INT high = x.uhigh ();
- if (count < 0)
- /* The upper -COUNT bits of HIGH are not part of the value.
- Clear them out. */
- high = (high << -count) >> -count;
- else if (x.sign_mask () < 0)
- /* The upper bit is set, so there are no leading zeros. */
- return 0;
- /* We don't need to look below HIGH. Either HIGH is nonzero,
- or the top bit of the block below is nonzero; clz_hwi is
- HOST_BITS_PER_WIDE_INT in the latter case. */
- return count + clz_hwi (high);
- }
- /* Return the number of redundant sign bits in X. (That is, the number
- of bits immediately below the sign bit that have the same value as
- the sign bit.) */
- int
- wi::clrsb (const wide_int_ref &x)
- {
- /* Calculate how many bits there above the highest represented block. */
- int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
- unsigned HOST_WIDE_INT high = x.uhigh ();
- unsigned HOST_WIDE_INT mask = -1;
- if (count < 0)
- {
- /* The upper -COUNT bits of HIGH are not part of the value.
- Clear them from both MASK and HIGH. */
- mask >>= -count;
- high &= mask;
- }
- /* If the top bit is 1, count the number of leading 1s. If the top
- bit is zero, count the number of leading zeros. */
- if (high > mask / 2)
- high ^= mask;
- /* There are no sign bits below the top block, so we don't need to look
- beyond HIGH. Note that clz_hwi is HOST_BITS_PER_WIDE_INT when
- HIGH is 0. */
- return count + clz_hwi (high) - 1;
- }
- /* Return the number of trailing (lower) zeros in X. */
- int
- wi::ctz (const wide_int_ref &x)
- {
- if (x.len == 1 && x.ulow () == 0)
- return x.precision;
- /* Having dealt with the zero case, there must be a block with a
- nonzero bit. We don't care about the bits above the first 1. */
- unsigned int i = 0;
- while (x.val[i] == 0)
- ++i;
- return i * HOST_BITS_PER_WIDE_INT + ctz_hwi (x.val[i]);
- }
- /* If X is an exact power of 2, return the base-2 logarithm, otherwise
- return -1. */
- int
- wi::exact_log2 (const wide_int_ref &x)
- {
- /* Reject cases where there are implicit -1 blocks above HIGH. */
- if (x.len * HOST_BITS_PER_WIDE_INT < x.precision && x.sign_mask () < 0)
- return -1;
- /* Set CRUX to the index of the entry that should be nonzero.
- If the top block is zero then the next lowest block (if any)
- must have the high bit set. */
- unsigned int crux = x.len - 1;
- if (crux > 0 && x.val[crux] == 0)
- crux -= 1;
- /* Check that all lower blocks are zero. */
- for (unsigned int i = 0; i < crux; ++i)
- if (x.val[i] != 0)
- return -1;
- /* Get a zero-extended form of block CRUX. */
- unsigned HOST_WIDE_INT hwi = x.val[crux];
- if ((crux + 1) * HOST_BITS_PER_WIDE_INT > x.precision)
- hwi = zext_hwi (hwi, x.precision % HOST_BITS_PER_WIDE_INT);
- /* Now it's down to whether HWI is a power of 2. */
- int res = ::exact_log2 (hwi);
- if (res >= 0)
- res += crux * HOST_BITS_PER_WIDE_INT;
- return res;
- }
- /* Return the base-2 logarithm of X, rounding down. Return -1 if X is 0. */
- int
- wi::floor_log2 (const wide_int_ref &x)
- {
- return x.precision - 1 - clz (x);
- }
- /* Return the index of the first (lowest) set bit in X, counting from 1.
- Return 0 if X is 0. */
- int
- wi::ffs (const wide_int_ref &x)
- {
- return eq_p (x, 0) ? 0 : ctz (x) + 1;
- }
- /* Return true if sign-extending X to have precision PRECISION would give
- the minimum signed value at that precision. */
- bool
- wi::only_sign_bit_p (const wide_int_ref &x, unsigned int precision)
- {
- return ctz (x) + 1 == int (precision);
- }
- /* Return true if X represents the minimum signed value. */
- bool
- wi::only_sign_bit_p (const wide_int_ref &x)
- {
- return only_sign_bit_p (x, x.precision);
- }
- /*
- * Private utilities.
- */
- void gt_ggc_mx (widest_int *) { }
- void gt_pch_nx (widest_int *, void (*) (void *, void *), void *) { }
- void gt_pch_nx (widest_int *) { }
- template void wide_int::dump () const;
- template void generic_wide_int <wide_int_ref_storage <false> >::dump () const;
- template void generic_wide_int <wide_int_ref_storage <true> >::dump () const;
- template void offset_int::dump () const;
- template void widest_int::dump () const;
|