1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732 |
- /* Vector API for GNU compiler.
- Copyright (C) 2004-2015 Free Software Foundation, Inc.
- Contributed by Nathan Sidwell <nathan@codesourcery.com>
- Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #ifndef GCC_VEC_H
- #define GCC_VEC_H
- /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
- support because the headers generated by gengtype are still not
- present. In particular, the header file gtype-desc.h is missing,
- so compilation may fail if we try to include ggc.h.
- Since we use some of those declarations, we need to provide them
- (even if the GC-based templates are not used). This is not a
- problem because the code that runs before gengtype is built will
- never need to use GC vectors. But it does force us to declare
- these functions more than once. */
- #ifdef GENERATOR_FILE
- #define VEC_GC_ENABLED 0
- #else
- #define VEC_GC_ENABLED 1
- #endif // GENERATOR_FILE
- #include "statistics.h" // For CXX_MEM_STAT_INFO.
- #if VEC_GC_ENABLED
- #include "ggc.h"
- #else
- # ifndef GCC_GGC_H
- /* Even if we think that GC is not enabled, the test that sets it is
- weak. There are files compiled with -DGENERATOR_FILE that already
- include ggc.h. We only need to provide these definitions if ggc.h
- has not been included. Sigh. */
- extern void ggc_free (void *);
- extern size_t ggc_round_alloc_size (size_t requested_size);
- extern void *ggc_realloc (void *, size_t CXX_MEM_STAT_INFO);
- # endif // GCC_GGC_H
- #endif // VEC_GC_ENABLED
- /* Templated vector type and associated interfaces.
- The interface functions are typesafe and use inline functions,
- sometimes backed by out-of-line generic functions. The vectors are
- designed to interoperate with the GTY machinery.
- There are both 'index' and 'iterate' accessors. The index accessor
- is implemented by operator[]. The iterator returns a boolean
- iteration condition and updates the iteration variable passed by
- reference. Because the iterator will be inlined, the address-of
- can be optimized away.
- Each operation that increases the number of active elements is
- available in 'quick' and 'safe' variants. The former presumes that
- there is sufficient allocated space for the operation to succeed
- (it dies if there is not). The latter will reallocate the
- vector, if needed. Reallocation causes an exponential increase in
- vector size. If you know you will be adding N elements, it would
- be more efficient to use the reserve operation before adding the
- elements with the 'quick' operation. This will ensure there are at
- least as many elements as you ask for, it will exponentially
- increase if there are too few spare slots. If you want reserve a
- specific number of slots, but do not want the exponential increase
- (for instance, you know this is the last allocation), use the
- reserve_exact operation. You can also create a vector of a
- specific size from the get go.
- You should prefer the push and pop operations, as they append and
- remove from the end of the vector. If you need to remove several
- items in one go, use the truncate operation. The insert and remove
- operations allow you to change elements in the middle of the
- vector. There are two remove operations, one which preserves the
- element ordering 'ordered_remove', and one which does not
- 'unordered_remove'. The latter function copies the end element
- into the removed slot, rather than invoke a memmove operation. The
- 'lower_bound' function will determine where to place an item in the
- array using insert that will maintain sorted order.
- Vectors are template types with three arguments: the type of the
- elements in the vector, the allocation strategy, and the physical
- layout to use
- Four allocation strategies are supported:
- - Heap: allocation is done using malloc/free. This is the
- default allocation strategy.
- - GC: allocation is done using ggc_alloc/ggc_free.
- - GC atomic: same as GC with the exception that the elements
- themselves are assumed to be of an atomic type that does
- not need to be garbage collected. This means that marking
- routines do not need to traverse the array marking the
- individual elements. This increases the performance of
- GC activities.
- Two physical layouts are supported:
- - Embedded: The vector is structured using the trailing array
- idiom. The last member of the structure is an array of size
- 1. When the vector is initially allocated, a single memory
- block is created to hold the vector's control data and the
- array of elements. These vectors cannot grow without
- reallocation (see discussion on embeddable vectors below).
- - Space efficient: The vector is structured as a pointer to an
- embedded vector. This is the default layout. It means that
- vectors occupy a single word of storage before initial
- allocation. Vectors are allowed to grow (the internal
- pointer is reallocated but the main vector instance does not
- need to relocate).
- The type, allocation and layout are specified when the vector is
- declared.
- If you need to directly manipulate a vector, then the 'address'
- accessor will return the address of the start of the vector. Also
- the 'space' predicate will tell you whether there is spare capacity
- in the vector. You will not normally need to use these two functions.
- Notes on the different layout strategies
- * Embeddable vectors (vec<T, A, vl_embed>)
-
- These vectors are suitable to be embedded in other data
- structures so that they can be pre-allocated in a contiguous
- memory block.
- Embeddable vectors are implemented using the trailing array
- idiom, thus they are not resizeable without changing the address
- of the vector object itself. This means you cannot have
- variables or fields of embeddable vector type -- always use a
- pointer to a vector. The one exception is the final field of a
- structure, which could be a vector type.
- You will have to use the embedded_size & embedded_init calls to
- create such objects, and they will not be resizeable (so the
- 'safe' allocation variants are not available).
- Properties of embeddable vectors:
- - The whole vector and control data are allocated in a single
- contiguous block. It uses the trailing-vector idiom, so
- allocation must reserve enough space for all the elements
- in the vector plus its control data.
- - The vector cannot be re-allocated.
- - The vector cannot grow nor shrink.
- - No indirections needed for access/manipulation.
- - It requires 2 words of storage (prior to vector allocation).
- * Space efficient vector (vec<T, A, vl_ptr>)
- These vectors can grow dynamically and are allocated together
- with their control data. They are suited to be included in data
- structures. Prior to initial allocation, they only take a single
- word of storage.
- These vectors are implemented as a pointer to embeddable vectors.
- The semantics allow for this pointer to be NULL to represent
- empty vectors. This way, empty vectors occupy minimal space in
- the structure containing them.
- Properties:
- - The whole vector and control data are allocated in a single
- contiguous block.
- - The whole vector may be re-allocated.
- - Vector data may grow and shrink.
- - Access and manipulation requires a pointer test and
- indirection.
- - It requires 1 word of storage (prior to vector allocation).
- An example of their use would be,
- struct my_struct {
- // A space-efficient vector of tree pointers in GC memory.
- vec<tree, va_gc, vl_ptr> v;
- };
- struct my_struct *s;
- if (s->v.length ()) { we have some contents }
- s->v.safe_push (decl); // append some decl onto the end
- for (ix = 0; s->v.iterate (ix, &elt); ix++)
- { do something with elt }
- */
- /* Support function for statistics. */
- extern void dump_vec_loc_statistics (void);
- /* Control data for vectors. This contains the number of allocated
- and used slots inside a vector. */
- struct vec_prefix
- {
- /* FIXME - These fields should be private, but we need to cater to
- compilers that have stricter notions of PODness for types. */
- /* Memory allocation support routines in vec.c. */
- void register_overhead (size_t, const char *, int, const char *);
- void release_overhead (void);
- static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
- static unsigned calculate_allocation_1 (unsigned, unsigned);
- /* Note that vec_prefix should be a base class for vec, but we use
- offsetof() on vector fields of tree structures (e.g.,
- tree_binfo::base_binfos), and offsetof only supports base types.
- To compensate, we make vec_prefix a field inside vec and make
- vec a friend class of vec_prefix so it can access its fields. */
- template <typename, typename, typename> friend struct vec;
- /* The allocator types also need access to our internals. */
- friend struct va_gc;
- friend struct va_gc_atomic;
- friend struct va_heap;
- unsigned m_alloc : 31;
- unsigned m_using_auto_storage : 1;
- unsigned m_num;
- };
- /* Calculate the number of slots to reserve a vector, making sure that
- RESERVE slots are free. If EXACT grow exactly, otherwise grow
- exponentially. PFX is the control data for the vector. */
- inline unsigned
- vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
- bool exact)
- {
- if (exact)
- return (pfx ? pfx->m_num : 0) + reserve;
- else if (!pfx)
- return MAX (4, reserve);
- return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
- }
- template<typename, typename, typename> struct vec;
- /* Valid vector layouts
- vl_embed - Embeddable vector that uses the trailing array idiom.
- vl_ptr - Space efficient vector that uses a pointer to an
- embeddable vector. */
- struct vl_embed { };
- struct vl_ptr { };
- /* Types of supported allocations
- va_heap - Allocation uses malloc/free.
- va_gc - Allocation uses ggc_alloc.
- va_gc_atomic - Same as GC, but individual elements of the array
- do not need to be marked during collection. */
- /* Allocator type for heap vectors. */
- struct va_heap
- {
- /* Heap vectors are frequently regular instances, so use the vl_ptr
- layout for them. */
- typedef vl_ptr default_layout;
- template<typename T>
- static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
- CXX_MEM_STAT_INFO);
- template<typename T>
- static void release (vec<T, va_heap, vl_embed> *&);
- };
- /* Allocator for heap memory. Ensure there are at least RESERVE free
- slots in V. If EXACT is true, grow exactly, else grow
- exponentially. As a special case, if the vector had not been
- allocated and and RESERVE is 0, no vector will be created. */
- template<typename T>
- inline void
- va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
- MEM_STAT_DECL)
- {
- unsigned alloc
- = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
- gcc_checking_assert (alloc);
- if (GATHER_STATISTICS && v)
- v->m_vecpfx.release_overhead ();
- size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
- unsigned nelem = v ? v->length () : 0;
- v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
- v->embedded_init (alloc, nelem);
- if (GATHER_STATISTICS)
- v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
- }
- /* Free the heap space allocated for vector V. */
- template<typename T>
- void
- va_heap::release (vec<T, va_heap, vl_embed> *&v)
- {
- if (v == NULL)
- return;
- if (GATHER_STATISTICS)
- v->m_vecpfx.release_overhead ();
- ::free (v);
- v = NULL;
- }
- /* Allocator type for GC vectors. Notice that we need the structure
- declaration even if GC is not enabled. */
- struct va_gc
- {
- /* Use vl_embed as the default layout for GC vectors. Due to GTY
- limitations, GC vectors must always be pointers, so it is more
- efficient to use a pointer to the vl_embed layout, rather than
- using a pointer to a pointer as would be the case with vl_ptr. */
- typedef vl_embed default_layout;
- template<typename T, typename A>
- static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
- CXX_MEM_STAT_INFO);
- template<typename T, typename A>
- static void release (vec<T, A, vl_embed> *&v);
- };
- /* Free GC memory used by V and reset V to NULL. */
- template<typename T, typename A>
- inline void
- va_gc::release (vec<T, A, vl_embed> *&v)
- {
- if (v)
- ::ggc_free (v);
- v = NULL;
- }
- /* Allocator for GC memory. Ensure there are at least RESERVE free
- slots in V. If EXACT is true, grow exactly, else grow
- exponentially. As a special case, if the vector had not been
- allocated and and RESERVE is 0, no vector will be created. */
- template<typename T, typename A>
- void
- va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
- MEM_STAT_DECL)
- {
- unsigned alloc
- = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
- if (!alloc)
- {
- ::ggc_free (v);
- v = NULL;
- return;
- }
- /* Calculate the amount of space we want. */
- size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
- /* Ask the allocator how much space it will really give us. */
- size = ::ggc_round_alloc_size (size);
- /* Adjust the number of slots accordingly. */
- size_t vec_offset = sizeof (vec_prefix);
- size_t elt_size = sizeof (T);
- alloc = (size - vec_offset) / elt_size;
- /* And finally, recalculate the amount of space we ask for. */
- size = vec_offset + alloc * elt_size;
- unsigned nelem = v ? v->length () : 0;
- v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
- PASS_MEM_STAT));
- v->embedded_init (alloc, nelem);
- }
- /* Allocator type for GC vectors. This is for vectors of types
- atomics w.r.t. collection, so allocation and deallocation is
- completely inherited from va_gc. */
- struct va_gc_atomic : va_gc
- {
- };
- /* Generic vector template. Default values for A and L indicate the
- most commonly used strategies.
- FIXME - Ideally, they would all be vl_ptr to encourage using regular
- instances for vectors, but the existing GTY machinery is limited
- in that it can only deal with GC objects that are pointers
- themselves.
- This means that vector operations that need to deal with
- potentially NULL pointers, must be provided as free
- functions (see the vec_safe_* functions above). */
- template<typename T,
- typename A = va_heap,
- typename L = typename A::default_layout>
- struct GTY((user)) vec
- {
- };
- /* Type to provide NULL values for vec<T, A, L>. This is used to
- provide nil initializers for vec instances. Since vec must be
- a POD, we cannot have proper ctor/dtor for it. To initialize
- a vec instance, you can assign it the value vNULL. */
- struct vnull
- {
- template <typename T, typename A, typename L>
- operator vec<T, A, L> () { return vec<T, A, L>(); }
- };
- extern vnull vNULL;
- /* Embeddable vector. These vectors are suitable to be embedded
- in other data structures so that they can be pre-allocated in a
- contiguous memory block.
- Embeddable vectors are implemented using the trailing array idiom,
- thus they are not resizeable without changing the address of the
- vector object itself. This means you cannot have variables or
- fields of embeddable vector type -- always use a pointer to a
- vector. The one exception is the final field of a structure, which
- could be a vector type.
- You will have to use the embedded_size & embedded_init calls to
- create such objects, and they will not be resizeable (so the 'safe'
- allocation variants are not available).
- Properties:
- - The whole vector and control data are allocated in a single
- contiguous block. It uses the trailing-vector idiom, so
- allocation must reserve enough space for all the elements
- in the vector plus its control data.
- - The vector cannot be re-allocated.
- - The vector cannot grow nor shrink.
- - No indirections needed for access/manipulation.
- - It requires 2 words of storage (prior to vector allocation). */
- template<typename T, typename A>
- struct GTY((user)) vec<T, A, vl_embed>
- {
- public:
- unsigned allocated (void) const { return m_vecpfx.m_alloc; }
- unsigned length (void) const { return m_vecpfx.m_num; }
- bool is_empty (void) const { return m_vecpfx.m_num == 0; }
- T *address (void) { return m_vecdata; }
- const T *address (void) const { return m_vecdata; }
- const T &operator[] (unsigned) const;
- T &operator[] (unsigned);
- T &last (void);
- bool space (unsigned) const;
- bool iterate (unsigned, T *) const;
- bool iterate (unsigned, T **) const;
- vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
- void splice (vec &);
- void splice (vec *src);
- T *quick_push (const T &);
- T &pop (void);
- void truncate (unsigned);
- void quick_insert (unsigned, const T &);
- void ordered_remove (unsigned);
- void unordered_remove (unsigned);
- void block_remove (unsigned, unsigned);
- void qsort (int (*) (const void *, const void *));
- T *bsearch (const void *key, int (*compar)(const void *, const void *));
- unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
- static size_t embedded_size (unsigned);
- void embedded_init (unsigned, unsigned = 0, unsigned = 0);
- void quick_grow (unsigned len);
- void quick_grow_cleared (unsigned len);
- /* vec class can access our internal data and functions. */
- template <typename, typename, typename> friend struct vec;
- /* The allocator types also need access to our internals. */
- friend struct va_gc;
- friend struct va_gc_atomic;
- friend struct va_heap;
- /* FIXME - These fields should be private, but we need to cater to
- compilers that have stricter notions of PODness for types. */
- vec_prefix m_vecpfx;
- T m_vecdata[1];
- };
- /* Convenience wrapper functions to use when dealing with pointers to
- embedded vectors. Some functionality for these vectors must be
- provided via free functions for these reasons:
- 1- The pointer may be NULL (e.g., before initial allocation).
- 2- When the vector needs to grow, it must be reallocated, so
- the pointer will change its value.
- Because of limitations with the current GC machinery, all vectors
- in GC memory *must* be pointers. */
- /* If V contains no room for NELEMS elements, return false. Otherwise,
- return true. */
- template<typename T, typename A>
- inline bool
- vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
- {
- return v ? v->space (nelems) : nelems == 0;
- }
- /* If V is NULL, return 0. Otherwise, return V->length(). */
- template<typename T, typename A>
- inline unsigned
- vec_safe_length (const vec<T, A, vl_embed> *v)
- {
- return v ? v->length () : 0;
- }
- /* If V is NULL, return NULL. Otherwise, return V->address(). */
- template<typename T, typename A>
- inline T *
- vec_safe_address (vec<T, A, vl_embed> *v)
- {
- return v ? v->address () : NULL;
- }
- /* If V is NULL, return true. Otherwise, return V->is_empty(). */
- template<typename T, typename A>
- inline bool
- vec_safe_is_empty (vec<T, A, vl_embed> *v)
- {
- return v ? v->is_empty () : true;
- }
- /* If V does not have space for NELEMS elements, call
- V->reserve(NELEMS, EXACT). */
- template<typename T, typename A>
- inline bool
- vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
- CXX_MEM_STAT_INFO)
- {
- bool extend = nelems ? !vec_safe_space (v, nelems) : false;
- if (extend)
- A::reserve (v, nelems, exact PASS_MEM_STAT);
- return extend;
- }
- template<typename T, typename A>
- inline bool
- vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
- CXX_MEM_STAT_INFO)
- {
- return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
- }
- /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
- is 0, V is initialized to NULL. */
- template<typename T, typename A>
- inline void
- vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
- {
- v = NULL;
- vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
- }
- /* Free the GC memory allocated by vector V and set it to NULL. */
- template<typename T, typename A>
- inline void
- vec_free (vec<T, A, vl_embed> *&v)
- {
- A::release (v);
- }
- /* Grow V to length LEN. Allocate it, if necessary. */
- template<typename T, typename A>
- inline void
- vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
- {
- unsigned oldlen = vec_safe_length (v);
- gcc_checking_assert (len >= oldlen);
- vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
- v->quick_grow (len);
- }
- /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
- template<typename T, typename A>
- inline void
- vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
- {
- unsigned oldlen = vec_safe_length (v);
- vec_safe_grow (v, len PASS_MEM_STAT);
- memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
- }
- /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
- template<typename T, typename A>
- inline bool
- vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
- {
- if (v)
- return v->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- template<typename T, typename A>
- inline bool
- vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
- {
- if (v)
- return v->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* If V has no room for one more element, reallocate it. Then call
- V->quick_push(OBJ). */
- template<typename T, typename A>
- inline T *
- vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
- {
- vec_safe_reserve (v, 1, false PASS_MEM_STAT);
- return v->quick_push (obj);
- }
- /* if V has no room for one more element, reallocate it. Then call
- V->quick_insert(IX, OBJ). */
- template<typename T, typename A>
- inline void
- vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
- CXX_MEM_STAT_INFO)
- {
- vec_safe_reserve (v, 1, false PASS_MEM_STAT);
- v->quick_insert (ix, obj);
- }
- /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
- template<typename T, typename A>
- inline void
- vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
- {
- if (v)
- v->truncate (size);
- }
- /* If SRC is not NULL, return a pointer to a copy of it. */
- template<typename T, typename A>
- inline vec<T, A, vl_embed> *
- vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
- {
- return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
- }
- /* Copy the elements from SRC to the end of DST as if by memcpy.
- Reallocate DST, if necessary. */
- template<typename T, typename A>
- inline void
- vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
- CXX_MEM_STAT_INFO)
- {
- unsigned src_len = vec_safe_length (src);
- if (src_len)
- {
- vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
- PASS_MEM_STAT);
- dst->splice (*src);
- }
- }
- /* Index into vector. Return the IX'th element. IX must be in the
- domain of the vector. */
- template<typename T, typename A>
- inline const T &
- vec<T, A, vl_embed>::operator[] (unsigned ix) const
- {
- gcc_checking_assert (ix < m_vecpfx.m_num);
- return m_vecdata[ix];
- }
- template<typename T, typename A>
- inline T &
- vec<T, A, vl_embed>::operator[] (unsigned ix)
- {
- gcc_checking_assert (ix < m_vecpfx.m_num);
- return m_vecdata[ix];
- }
- /* Get the final element of the vector, which must not be empty. */
- template<typename T, typename A>
- inline T &
- vec<T, A, vl_embed>::last (void)
- {
- gcc_checking_assert (m_vecpfx.m_num > 0);
- return (*this)[m_vecpfx.m_num - 1];
- }
- /* If this vector has space for NELEMS additional entries, return
- true. You usually only need to use this if you are doing your
- own vector reallocation, for instance on an embedded vector. This
- returns true in exactly the same circumstances that vec::reserve
- will. */
- template<typename T, typename A>
- inline bool
- vec<T, A, vl_embed>::space (unsigned nelems) const
- {
- return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
- }
- /* Return iteration condition and update PTR to point to the IX'th
- element of this vector. Use this to iterate over the elements of a
- vector as follows,
- for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
- continue; */
- template<typename T, typename A>
- inline bool
- vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
- {
- if (ix < m_vecpfx.m_num)
- {
- *ptr = m_vecdata[ix];
- return true;
- }
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Return iteration condition and update *PTR to point to the
- IX'th element of this vector. Use this to iterate over the
- elements of a vector as follows,
- for (ix = 0; v->iterate (ix, &ptr); ix++)
- continue;
- This variant is for vectors of objects. */
- template<typename T, typename A>
- inline bool
- vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
- {
- if (ix < m_vecpfx.m_num)
- {
- *ptr = CONST_CAST (T *, &m_vecdata[ix]);
- return true;
- }
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Return a pointer to a copy of this vector. */
- template<typename T, typename A>
- inline vec<T, A, vl_embed> *
- vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
- {
- vec<T, A, vl_embed> *new_vec = NULL;
- unsigned len = length ();
- if (len)
- {
- vec_alloc (new_vec, len PASS_MEM_STAT);
- new_vec->embedded_init (len, len);
- memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
- }
- return new_vec;
- }
- /* Copy the elements from SRC to the end of this vector as if by memcpy.
- The vector must have sufficient headroom available. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
- {
- unsigned len = src.length ();
- if (len)
- {
- gcc_checking_assert (space (len));
- memcpy (address () + length (), src.address (), len * sizeof (T));
- m_vecpfx.m_num += len;
- }
- }
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
- {
- if (src)
- splice (*src);
- }
- /* Push OBJ (a new element) onto the end of the vector. There must be
- sufficient space in the vector. Return a pointer to the slot
- where OBJ was inserted. */
- template<typename T, typename A>
- inline T *
- vec<T, A, vl_embed>::quick_push (const T &obj)
- {
- gcc_checking_assert (space (1));
- T *slot = &m_vecdata[m_vecpfx.m_num++];
- *slot = obj;
- return slot;
- }
- /* Pop and return the last element off the end of the vector. */
- template<typename T, typename A>
- inline T &
- vec<T, A, vl_embed>::pop (void)
- {
- gcc_checking_assert (length () > 0);
- return m_vecdata[--m_vecpfx.m_num];
- }
- /* Set the length of the vector to SIZE. The new length must be less
- than or equal to the current length. This is an O(1) operation. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::truncate (unsigned size)
- {
- gcc_checking_assert (length () >= size);
- m_vecpfx.m_num = size;
- }
- /* Insert an element, OBJ, at the IXth position of this vector. There
- must be sufficient space. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
- {
- gcc_checking_assert (length () < allocated ());
- gcc_checking_assert (ix <= length ());
- T *slot = &m_vecdata[ix];
- memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
- *slot = obj;
- }
- /* Remove an element from the IXth position of this vector. Ordering of
- remaining elements is preserved. This is an O(N) operation due to
- memmove. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::ordered_remove (unsigned ix)
- {
- gcc_checking_assert (ix < length ());
- T *slot = &m_vecdata[ix];
- memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
- }
- /* Remove an element from the IXth position of this vector. Ordering of
- remaining elements is destroyed. This is an O(1) operation. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::unordered_remove (unsigned ix)
- {
- gcc_checking_assert (ix < length ());
- m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
- }
- /* Remove LEN elements starting at the IXth. Ordering is retained.
- This is an O(N) operation due to memmove. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
- {
- gcc_checking_assert (ix + len <= length ());
- T *slot = &m_vecdata[ix];
- m_vecpfx.m_num -= len;
- memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
- }
- /* Sort the contents of this vector with qsort. CMP is the comparison
- function to pass to qsort. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
- {
- if (length () > 1)
- ::qsort (address (), length (), sizeof (T), cmp);
- }
- /* Search the contents of the sorted vector with a binary search.
- CMP is the comparison function to pass to bsearch. */
- template<typename T, typename A>
- inline T *
- vec<T, A, vl_embed>::bsearch (const void *key,
- int (*compar) (const void *, const void *))
- {
- const void *base = this->address ();
- size_t nmemb = this->length ();
- size_t size = sizeof (T);
- /* The following is a copy of glibc stdlib-bsearch.h. */
- size_t l, u, idx;
- const void *p;
- int comparison;
- l = 0;
- u = nmemb;
- while (l < u)
- {
- idx = (l + u) / 2;
- p = (const void *) (((const char *) base) + (idx * size));
- comparison = (*compar) (key, p);
- if (comparison < 0)
- u = idx;
- else if (comparison > 0)
- l = idx + 1;
- else
- return (T *)const_cast<void *>(p);
- }
- return NULL;
- }
- /* Find and return the first position in which OBJ could be inserted
- without changing the ordering of this vector. LESSTHAN is a
- function that returns true if the first argument is strictly less
- than the second. */
- template<typename T, typename A>
- unsigned
- vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
- const
- {
- unsigned int len = length ();
- unsigned int half, middle;
- unsigned int first = 0;
- while (len > 0)
- {
- half = len / 2;
- middle = first;
- middle += half;
- T middle_elem = (*this)[middle];
- if (lessthan (middle_elem, obj))
- {
- first = middle;
- ++first;
- len = len - half - 1;
- }
- else
- len = half;
- }
- return first;
- }
- /* Return the number of bytes needed to embed an instance of an
- embeddable vec inside another data structure.
- Use these methods to determine the required size and initialization
- of a vector V of type T embedded within another structure (as the
- final member):
- size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
- void v->embedded_init (unsigned alloc, unsigned num);
- These allow the caller to perform the memory allocation. */
- template<typename T, typename A>
- inline size_t
- vec<T, A, vl_embed>::embedded_size (unsigned alloc)
- {
- typedef vec<T, A, vl_embed> vec_embedded;
- return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
- }
- /* Initialize the vector to contain room for ALLOC elements and
- NUM active elements. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
- {
- m_vecpfx.m_alloc = alloc;
- m_vecpfx.m_using_auto_storage = aut;
- m_vecpfx.m_num = num;
- }
- /* Grow the vector to a specific length. LEN must be as long or longer than
- the current length. The new elements are uninitialized. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::quick_grow (unsigned len)
- {
- gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
- m_vecpfx.m_num = len;
- }
- /* Grow the vector to a specific length. LEN must be as long or longer than
- the current length. The new elements are initialized to zero. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
- {
- unsigned oldlen = length ();
- quick_grow (len);
- memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
- }
- /* Garbage collection support for vec<T, A, vl_embed>. */
- template<typename T>
- void
- gt_ggc_mx (vec<T, va_gc> *v)
- {
- extern void gt_ggc_mx (T &);
- for (unsigned i = 0; i < v->length (); i++)
- gt_ggc_mx ((*v)[i]);
- }
- template<typename T>
- void
- gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
- {
- /* Nothing to do. Vectors of atomic types wrt GC do not need to
- be traversed. */
- }
- /* PCH support for vec<T, A, vl_embed>. */
- template<typename T, typename A>
- void
- gt_pch_nx (vec<T, A, vl_embed> *v)
- {
- extern void gt_pch_nx (T &);
- for (unsigned i = 0; i < v->length (); i++)
- gt_pch_nx ((*v)[i]);
- }
- template<typename T, typename A>
- void
- gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
- {
- for (unsigned i = 0; i < v->length (); i++)
- op (&((*v)[i]), cookie);
- }
- template<typename T, typename A>
- void
- gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
- {
- extern void gt_pch_nx (T *, gt_pointer_operator, void *);
- for (unsigned i = 0; i < v->length (); i++)
- gt_pch_nx (&((*v)[i]), op, cookie);
- }
- /* Space efficient vector. These vectors can grow dynamically and are
- allocated together with their control data. They are suited to be
- included in data structures. Prior to initial allocation, they
- only take a single word of storage.
- These vectors are implemented as a pointer to an embeddable vector.
- The semantics allow for this pointer to be NULL to represent empty
- vectors. This way, empty vectors occupy minimal space in the
- structure containing them.
- Properties:
- - The whole vector and control data are allocated in a single
- contiguous block.
- - The whole vector may be re-allocated.
- - Vector data may grow and shrink.
- - Access and manipulation requires a pointer test and
- indirection.
- - It requires 1 word of storage (prior to vector allocation).
- Limitations:
- These vectors must be PODs because they are stored in unions.
- (http://en.wikipedia.org/wiki/Plain_old_data_structures).
- As long as we use C++03, we cannot have constructors nor
- destructors in classes that are stored in unions. */
- template<typename T>
- struct vec<T, va_heap, vl_ptr>
- {
- public:
- /* Memory allocation and deallocation for the embedded vector.
- Needed because we cannot have proper ctors/dtors defined. */
- void create (unsigned nelems CXX_MEM_STAT_INFO);
- void release (void);
- /* Vector operations. */
- bool exists (void) const
- { return m_vec != NULL; }
- bool is_empty (void) const
- { return m_vec ? m_vec->is_empty () : true; }
- unsigned length (void) const
- { return m_vec ? m_vec->length () : 0; }
- T *address (void)
- { return m_vec ? m_vec->m_vecdata : NULL; }
- const T *address (void) const
- { return m_vec ? m_vec->m_vecdata : NULL; }
- const T &operator[] (unsigned ix) const
- { return (*m_vec)[ix]; }
- bool operator!=(const vec &other) const
- { return !(*this == other); }
- bool operator==(const vec &other) const
- { return address () == other.address (); }
- T &operator[] (unsigned ix)
- { return (*m_vec)[ix]; }
- T &last (void)
- { return m_vec->last (); }
- bool space (int nelems) const
- { return m_vec ? m_vec->space (nelems) : nelems == 0; }
- bool iterate (unsigned ix, T *p) const;
- bool iterate (unsigned ix, T **p) const;
- vec copy (ALONE_CXX_MEM_STAT_INFO) const;
- bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
- bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
- void splice (vec &);
- void safe_splice (vec & CXX_MEM_STAT_INFO);
- T *quick_push (const T &);
- T *safe_push (const T &CXX_MEM_STAT_INFO);
- T &pop (void);
- void truncate (unsigned);
- void safe_grow (unsigned CXX_MEM_STAT_INFO);
- void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
- void quick_grow (unsigned);
- void quick_grow_cleared (unsigned);
- void quick_insert (unsigned, const T &);
- void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
- void ordered_remove (unsigned);
- void unordered_remove (unsigned);
- void block_remove (unsigned, unsigned);
- void qsort (int (*) (const void *, const void *));
- T *bsearch (const void *key, int (*compar)(const void *, const void *));
- unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
- bool using_auto_storage () const;
- /* FIXME - This field should be private, but we need to cater to
- compilers that have stricter notions of PODness for types. */
- vec<T, va_heap, vl_embed> *m_vec;
- };
- /* auto_vec is a subclass of vec that automatically manages creating and
- releasing the internal vector. If N is non zero then it has N elements of
- internal storage. The default is no internal storage, and you probably only
- want to ask for internal storage for vectors on the stack because if the
- size of the vector is larger than the internal storage that space is wasted.
- */
- template<typename T, size_t N = 0>
- class auto_vec : public vec<T, va_heap>
- {
- public:
- auto_vec ()
- {
- m_auto.embedded_init (MAX (N, 2), 0, 1);
- this->m_vec = &m_auto;
- }
- ~auto_vec ()
- {
- this->release ();
- }
- private:
- vec<T, va_heap, vl_embed> m_auto;
- T m_data[MAX (N - 1, 1)];
- };
- /* auto_vec is a sub class of vec whose storage is released when it is
- destroyed. */
- template<typename T>
- class auto_vec<T, 0> : public vec<T, va_heap>
- {
- public:
- auto_vec () { this->m_vec = NULL; }
- auto_vec (size_t n) { this->create (n); }
- ~auto_vec () { this->release (); }
- };
- /* Allocate heap memory for pointer V and create the internal vector
- with space for NELEMS elements. If NELEMS is 0, the internal
- vector is initialized to empty. */
- template<typename T>
- inline void
- vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
- {
- v = new vec<T>;
- v->create (nelems PASS_MEM_STAT);
- }
- /* Conditionally allocate heap memory for VEC and its internal vector. */
- template<typename T>
- inline void
- vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
- {
- if (!vec)
- vec_alloc (vec, nelems PASS_MEM_STAT);
- }
- /* Free the heap memory allocated by vector V and set it to NULL. */
- template<typename T>
- inline void
- vec_free (vec<T> *&v)
- {
- if (v == NULL)
- return;
- v->release ();
- delete v;
- v = NULL;
- }
- /* Return iteration condition and update PTR to point to the IX'th
- element of this vector. Use this to iterate over the elements of a
- vector as follows,
- for (ix = 0; v.iterate (ix, &ptr); ix++)
- continue; */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
- {
- if (m_vec)
- return m_vec->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Return iteration condition and update *PTR to point to the
- IX'th element of this vector. Use this to iterate over the
- elements of a vector as follows,
- for (ix = 0; v->iterate (ix, &ptr); ix++)
- continue;
- This variant is for vectors of objects. */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
- {
- if (m_vec)
- return m_vec->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Convenience macro for forward iteration. */
- #define FOR_EACH_VEC_ELT(V, I, P) \
- for (I = 0; (V).iterate ((I), &(P)); ++(I))
- #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
- for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
- /* Likewise, but start from FROM rather than 0. */
- #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
- for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
- /* Convenience macro for reverse iteration. */
- #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
- for (I = (V).length () - 1; \
- (V).iterate ((I), &(P)); \
- (I)--)
- #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
- for (I = vec_safe_length (V) - 1; \
- vec_safe_iterate ((V), (I), &(P)); \
- (I)--)
- /* Return a copy of this vector. */
- template<typename T>
- inline vec<T, va_heap, vl_ptr>
- vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
- {
- vec<T, va_heap, vl_ptr> new_vec = vNULL;
- if (length ())
- new_vec.m_vec = m_vec->copy ();
- return new_vec;
- }
- /* Ensure that the vector has at least RESERVE slots available (if
- EXACT is false), or exactly RESERVE slots available (if EXACT is
- true).
- This may create additional headroom if EXACT is false.
- Note that this can cause the embedded vector to be reallocated.
- Returns true iff reallocation actually occurred. */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
- {
- if (space (nelems))
- return false;
- /* For now play a game with va_heap::reserve to hide our auto storage if any,
- this is necessary because it doesn't have enough information to know the
- embedded vector is in auto storage, and so should not be freed. */
- vec<T, va_heap, vl_embed> *oldvec = m_vec;
- unsigned int oldsize = 0;
- bool handle_auto_vec = m_vec && using_auto_storage ();
- if (handle_auto_vec)
- {
- m_vec = NULL;
- oldsize = oldvec->length ();
- nelems += oldsize;
- }
- va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
- if (handle_auto_vec)
- {
- memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
- m_vec->m_vecpfx.m_num = oldsize;
- }
- return true;
- }
- /* Ensure that this vector has exactly NELEMS slots available. This
- will not create additional headroom. Note this can cause the
- embedded vector to be reallocated. Returns true iff reallocation
- actually occurred. */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
- {
- return reserve (nelems, true PASS_MEM_STAT);
- }
- /* Create the internal vector and reserve NELEMS for it. This is
- exactly like vec::reserve, but the internal vector is
- unconditionally allocated from scratch. The old one, if it
- existed, is lost. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
- {
- m_vec = NULL;
- if (nelems > 0)
- reserve_exact (nelems PASS_MEM_STAT);
- }
- /* Free the memory occupied by the embedded vector. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::release (void)
- {
- if (!m_vec)
- return;
- if (using_auto_storage ())
- {
- m_vec->m_vecpfx.m_num = 0;
- return;
- }
- va_heap::release (m_vec);
- }
- /* Copy the elements from SRC to the end of this vector as if by memcpy.
- SRC and this vector must be allocated with the same memory
- allocation mechanism. This vector is assumed to have sufficient
- headroom available. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
- {
- if (src.m_vec)
- m_vec->splice (*(src.m_vec));
- }
- /* Copy the elements in SRC to the end of this vector as if by memcpy.
- SRC and this vector must be allocated with the same mechanism.
- If there is not enough headroom in this vector, it will be reallocated
- as needed. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
- MEM_STAT_DECL)
- {
- if (src.length ())
- {
- reserve_exact (src.length ());
- splice (src);
- }
- }
- /* Push OBJ (a new element) onto the end of the vector. There must be
- sufficient space in the vector. Return a pointer to the slot
- where OBJ was inserted. */
- template<typename T>
- inline T *
- vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
- {
- return m_vec->quick_push (obj);
- }
- /* Push a new element OBJ onto the end of this vector. Reallocates
- the embedded vector, if needed. Return a pointer to the slot where
- OBJ was inserted. */
- template<typename T>
- inline T *
- vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
- {
- reserve (1, false PASS_MEM_STAT);
- return quick_push (obj);
- }
- /* Pop and return the last element off the end of the vector. */
- template<typename T>
- inline T &
- vec<T, va_heap, vl_ptr>::pop (void)
- {
- return m_vec->pop ();
- }
- /* Set the length of the vector to LEN. The new length must be less
- than or equal to the current length. This is an O(1) operation. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::truncate (unsigned size)
- {
- if (m_vec)
- m_vec->truncate (size);
- else
- gcc_checking_assert (size == 0);
- }
- /* Grow the vector to a specific length. LEN must be as long or
- longer than the current length. The new elements are
- uninitialized. Reallocate the internal vector, if needed. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
- {
- unsigned oldlen = length ();
- gcc_checking_assert (oldlen <= len);
- reserve_exact (len - oldlen PASS_MEM_STAT);
- if (m_vec)
- m_vec->quick_grow (len);
- else
- gcc_checking_assert (len == 0);
- }
- /* Grow the embedded vector to a specific length. LEN must be as
- long or longer than the current length. The new elements are
- initialized to zero. Reallocate the internal vector, if needed. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
- {
- unsigned oldlen = length ();
- safe_grow (len PASS_MEM_STAT);
- memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
- }
- /* Same as vec::safe_grow but without reallocation of the internal vector.
- If the vector cannot be extended, a runtime assertion will be triggered. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
- {
- gcc_checking_assert (m_vec);
- m_vec->quick_grow (len);
- }
- /* Same as vec::quick_grow_cleared but without reallocation of the
- internal vector. If the vector cannot be extended, a runtime
- assertion will be triggered. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
- {
- gcc_checking_assert (m_vec);
- m_vec->quick_grow_cleared (len);
- }
- /* Insert an element, OBJ, at the IXth position of this vector. There
- must be sufficient space. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
- {
- m_vec->quick_insert (ix, obj);
- }
- /* Insert an element, OBJ, at the IXth position of the vector.
- Reallocate the embedded vector, if necessary. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
- {
- reserve (1, false PASS_MEM_STAT);
- quick_insert (ix, obj);
- }
- /* Remove an element from the IXth position of this vector. Ordering of
- remaining elements is preserved. This is an O(N) operation due to
- a memmove. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
- {
- m_vec->ordered_remove (ix);
- }
- /* Remove an element from the IXth position of this vector. Ordering
- of remaining elements is destroyed. This is an O(1) operation. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
- {
- m_vec->unordered_remove (ix);
- }
- /* Remove LEN elements starting at the IXth. Ordering is retained.
- This is an O(N) operation due to memmove. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
- {
- m_vec->block_remove (ix, len);
- }
- /* Sort the contents of this vector with qsort. CMP is the comparison
- function to pass to qsort. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
- {
- if (m_vec)
- m_vec->qsort (cmp);
- }
- /* Search the contents of the sorted vector with a binary search.
- CMP is the comparison function to pass to bsearch. */
- template<typename T>
- inline T *
- vec<T, va_heap, vl_ptr>::bsearch (const void *key,
- int (*cmp) (const void *, const void *))
- {
- if (m_vec)
- return m_vec->bsearch (key, cmp);
- return NULL;
- }
- /* Find and return the first position in which OBJ could be inserted
- without changing the ordering of this vector. LESSTHAN is a
- function that returns true if the first argument is strictly less
- than the second. */
- template<typename T>
- inline unsigned
- vec<T, va_heap, vl_ptr>::lower_bound (T obj,
- bool (*lessthan)(const T &, const T &))
- const
- {
- return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
- }
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::using_auto_storage () const
- {
- return m_vec->m_vecpfx.m_using_auto_storage;
- }
- #if (GCC_VERSION >= 3000)
- # pragma GCC poison m_vec m_vecpfx m_vecdata
- #endif
- #endif // GCC_VEC_H
|