1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466 |
- /* Support routines for Value Range Propagation (VRP).
- Copyright (C) 2005-2015 Free Software Foundation, Inc.
- Contributed by Diego Novillo <dnovillo@redhat.com>.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
- GCC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "tm.h"
- #include "flags.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "tree.h"
- #include "fold-const.h"
- #include "stor-layout.h"
- #include "calls.h"
- #include "predict.h"
- #include "hard-reg-set.h"
- #include "function.h"
- #include "dominance.h"
- #include "cfg.h"
- #include "cfganal.h"
- #include "basic-block.h"
- #include "tree-ssa-alias.h"
- #include "internal-fn.h"
- #include "gimple-fold.h"
- #include "tree-eh.h"
- #include "gimple-expr.h"
- #include "is-a.h"
- #include "gimple.h"
- #include "gimple-iterator.h"
- #include "gimple-walk.h"
- #include "gimple-ssa.h"
- #include "tree-cfg.h"
- #include "tree-phinodes.h"
- #include "ssa-iterators.h"
- #include "stringpool.h"
- #include "tree-ssanames.h"
- #include "tree-ssa-loop-manip.h"
- #include "tree-ssa-loop-niter.h"
- #include "tree-ssa-loop.h"
- #include "tree-into-ssa.h"
- #include "tree-ssa.h"
- #include "tree-pass.h"
- #include "tree-dump.h"
- #include "gimple-pretty-print.h"
- #include "diagnostic-core.h"
- #include "intl.h"
- #include "cfgloop.h"
- #include "tree-scalar-evolution.h"
- #include "tree-ssa-propagate.h"
- #include "tree-chrec.h"
- #include "tree-ssa-threadupdate.h"
- #include "hashtab.h"
- #include "rtl.h"
- #include "statistics.h"
- #include "real.h"
- #include "fixed-value.h"
- #include "insn-config.h"
- #include "expmed.h"
- #include "dojump.h"
- #include "explow.h"
- #include "emit-rtl.h"
- #include "varasm.h"
- #include "stmt.h"
- #include "expr.h"
- #include "insn-codes.h"
- #include "optabs.h"
- #include "tree-ssa-threadedge.h"
- /* Range of values that can be associated with an SSA_NAME after VRP
- has executed. */
- struct value_range_d
- {
- /* Lattice value represented by this range. */
- enum value_range_type type;
- /* Minimum and maximum values represented by this range. These
- values should be interpreted as follows:
- - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
- be NULL.
- - If TYPE == VR_RANGE then MIN holds the minimum value and
- MAX holds the maximum value of the range [MIN, MAX].
- - If TYPE == ANTI_RANGE the variable is known to NOT
- take any values in the range [MIN, MAX]. */
- tree min;
- tree max;
- /* Set of SSA names whose value ranges are equivalent to this one.
- This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
- bitmap equiv;
- };
- typedef struct value_range_d value_range_t;
- #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
- /* Set of SSA names found live during the RPO traversal of the function
- for still active basic-blocks. */
- static sbitmap *live;
- /* Return true if the SSA name NAME is live on the edge E. */
- static bool
- live_on_edge (edge e, tree name)
- {
- return (live[e->dest->index]
- && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
- }
- /* Local functions. */
- static int compare_values (tree val1, tree val2);
- static int compare_values_warnv (tree val1, tree val2, bool *);
- static void vrp_meet (value_range_t *, value_range_t *);
- static void vrp_intersect_ranges (value_range_t *, value_range_t *);
- static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
- tree, tree, bool, bool *,
- bool *);
- /* Location information for ASSERT_EXPRs. Each instance of this
- structure describes an ASSERT_EXPR for an SSA name. Since a single
- SSA name may have more than one assertion associated with it, these
- locations are kept in a linked list attached to the corresponding
- SSA name. */
- struct assert_locus_d
- {
- /* Basic block where the assertion would be inserted. */
- basic_block bb;
- /* Some assertions need to be inserted on an edge (e.g., assertions
- generated by COND_EXPRs). In those cases, BB will be NULL. */
- edge e;
- /* Pointer to the statement that generated this assertion. */
- gimple_stmt_iterator si;
- /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
- enum tree_code comp_code;
- /* Value being compared against. */
- tree val;
- /* Expression to compare. */
- tree expr;
- /* Next node in the linked list. */
- struct assert_locus_d *next;
- };
- typedef struct assert_locus_d *assert_locus_t;
- /* If bit I is present, it means that SSA name N_i has a list of
- assertions that should be inserted in the IL. */
- static bitmap need_assert_for;
- /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
- holds a list of ASSERT_LOCUS_T nodes that describe where
- ASSERT_EXPRs for SSA name N_I should be inserted. */
- static assert_locus_t *asserts_for;
- /* Value range array. After propagation, VR_VALUE[I] holds the range
- of values that SSA name N_I may take. */
- static unsigned num_vr_values;
- static value_range_t **vr_value;
- static bool values_propagated;
- /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
- number of executable edges we saw the last time we visited the
- node. */
- static int *vr_phi_edge_counts;
- typedef struct {
- gswitch *stmt;
- tree vec;
- } switch_update;
- static vec<edge> to_remove_edges;
- static vec<switch_update> to_update_switch_stmts;
- /* Return the maximum value for TYPE. */
- static inline tree
- vrp_val_max (const_tree type)
- {
- if (!INTEGRAL_TYPE_P (type))
- return NULL_TREE;
- return TYPE_MAX_VALUE (type);
- }
- /* Return the minimum value for TYPE. */
- static inline tree
- vrp_val_min (const_tree type)
- {
- if (!INTEGRAL_TYPE_P (type))
- return NULL_TREE;
- return TYPE_MIN_VALUE (type);
- }
- /* Return whether VAL is equal to the maximum value of its type. This
- will be true for a positive overflow infinity. We can't do a
- simple equality comparison with TYPE_MAX_VALUE because C typedefs
- and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
- to the integer constant with the same value in the type. */
- static inline bool
- vrp_val_is_max (const_tree val)
- {
- tree type_max = vrp_val_max (TREE_TYPE (val));
- return (val == type_max
- || (type_max != NULL_TREE
- && operand_equal_p (val, type_max, 0)));
- }
- /* Return whether VAL is equal to the minimum value of its type. This
- will be true for a negative overflow infinity. */
- static inline bool
- vrp_val_is_min (const_tree val)
- {
- tree type_min = vrp_val_min (TREE_TYPE (val));
- return (val == type_min
- || (type_min != NULL_TREE
- && operand_equal_p (val, type_min, 0)));
- }
- /* Return whether TYPE should use an overflow infinity distinct from
- TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
- represent a signed overflow during VRP computations. An infinity
- is distinct from a half-range, which will go from some number to
- TYPE_{MIN,MAX}_VALUE. */
- static inline bool
- needs_overflow_infinity (const_tree type)
- {
- return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
- }
- /* Return whether TYPE can support our overflow infinity
- representation: we use the TREE_OVERFLOW flag, which only exists
- for constants. If TYPE doesn't support this, we don't optimize
- cases which would require signed overflow--we drop them to
- VARYING. */
- static inline bool
- supports_overflow_infinity (const_tree type)
- {
- tree min = vrp_val_min (type), max = vrp_val_max (type);
- #ifdef ENABLE_CHECKING
- gcc_assert (needs_overflow_infinity (type));
- #endif
- return (min != NULL_TREE
- && CONSTANT_CLASS_P (min)
- && max != NULL_TREE
- && CONSTANT_CLASS_P (max));
- }
- /* VAL is the maximum or minimum value of a type. Return a
- corresponding overflow infinity. */
- static inline tree
- make_overflow_infinity (tree val)
- {
- gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
- val = copy_node (val);
- TREE_OVERFLOW (val) = 1;
- return val;
- }
- /* Return a negative overflow infinity for TYPE. */
- static inline tree
- negative_overflow_infinity (tree type)
- {
- gcc_checking_assert (supports_overflow_infinity (type));
- return make_overflow_infinity (vrp_val_min (type));
- }
- /* Return a positive overflow infinity for TYPE. */
- static inline tree
- positive_overflow_infinity (tree type)
- {
- gcc_checking_assert (supports_overflow_infinity (type));
- return make_overflow_infinity (vrp_val_max (type));
- }
- /* Return whether VAL is a negative overflow infinity. */
- static inline bool
- is_negative_overflow_infinity (const_tree val)
- {
- return (TREE_OVERFLOW_P (val)
- && needs_overflow_infinity (TREE_TYPE (val))
- && vrp_val_is_min (val));
- }
- /* Return whether VAL is a positive overflow infinity. */
- static inline bool
- is_positive_overflow_infinity (const_tree val)
- {
- return (TREE_OVERFLOW_P (val)
- && needs_overflow_infinity (TREE_TYPE (val))
- && vrp_val_is_max (val));
- }
- /* Return whether VAL is a positive or negative overflow infinity. */
- static inline bool
- is_overflow_infinity (const_tree val)
- {
- return (TREE_OVERFLOW_P (val)
- && needs_overflow_infinity (TREE_TYPE (val))
- && (vrp_val_is_min (val) || vrp_val_is_max (val)));
- }
- /* Return whether STMT has a constant rhs that is_overflow_infinity. */
- static inline bool
- stmt_overflow_infinity (gimple stmt)
- {
- if (is_gimple_assign (stmt)
- && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
- GIMPLE_SINGLE_RHS)
- return is_overflow_infinity (gimple_assign_rhs1 (stmt));
- return false;
- }
- /* If VAL is now an overflow infinity, return VAL. Otherwise, return
- the same value with TREE_OVERFLOW clear. This can be used to avoid
- confusing a regular value with an overflow value. */
- static inline tree
- avoid_overflow_infinity (tree val)
- {
- if (!is_overflow_infinity (val))
- return val;
- if (vrp_val_is_max (val))
- return vrp_val_max (TREE_TYPE (val));
- else
- {
- gcc_checking_assert (vrp_val_is_min (val));
- return vrp_val_min (TREE_TYPE (val));
- }
- }
- /* Return true if ARG is marked with the nonnull attribute in the
- current function signature. */
- static bool
- nonnull_arg_p (const_tree arg)
- {
- tree t, attrs, fntype;
- unsigned HOST_WIDE_INT arg_num;
- gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
- /* The static chain decl is always non null. */
- if (arg == cfun->static_chain_decl)
- return true;
- fntype = TREE_TYPE (current_function_decl);
- for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
- {
- attrs = lookup_attribute ("nonnull", attrs);
- /* If "nonnull" wasn't specified, we know nothing about the argument. */
- if (attrs == NULL_TREE)
- return false;
- /* If "nonnull" applies to all the arguments, then ARG is non-null. */
- if (TREE_VALUE (attrs) == NULL_TREE)
- return true;
- /* Get the position number for ARG in the function signature. */
- for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
- t;
- t = DECL_CHAIN (t), arg_num++)
- {
- if (t == arg)
- break;
- }
- gcc_assert (t == arg);
- /* Now see if ARG_NUM is mentioned in the nonnull list. */
- for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
- {
- if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
- return true;
- }
- }
- return false;
- }
- /* Set value range VR to VR_UNDEFINED. */
- static inline void
- set_value_range_to_undefined (value_range_t *vr)
- {
- vr->type = VR_UNDEFINED;
- vr->min = vr->max = NULL_TREE;
- if (vr->equiv)
- bitmap_clear (vr->equiv);
- }
- /* Set value range VR to VR_VARYING. */
- static inline void
- set_value_range_to_varying (value_range_t *vr)
- {
- vr->type = VR_VARYING;
- vr->min = vr->max = NULL_TREE;
- if (vr->equiv)
- bitmap_clear (vr->equiv);
- }
- /* Set value range VR to {T, MIN, MAX, EQUIV}. */
- static void
- set_value_range (value_range_t *vr, enum value_range_type t, tree min,
- tree max, bitmap equiv)
- {
- #if defined ENABLE_CHECKING
- /* Check the validity of the range. */
- if (t == VR_RANGE || t == VR_ANTI_RANGE)
- {
- int cmp;
- gcc_assert (min && max);
- gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
- && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
- if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
- gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
- cmp = compare_values (min, max);
- gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
- if (needs_overflow_infinity (TREE_TYPE (min)))
- gcc_assert (!is_overflow_infinity (min)
- || !is_overflow_infinity (max));
- }
- if (t == VR_UNDEFINED || t == VR_VARYING)
- gcc_assert (min == NULL_TREE && max == NULL_TREE);
- if (t == VR_UNDEFINED || t == VR_VARYING)
- gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
- #endif
- vr->type = t;
- vr->min = min;
- vr->max = max;
- /* Since updating the equivalence set involves deep copying the
- bitmaps, only do it if absolutely necessary. */
- if (vr->equiv == NULL
- && equiv != NULL)
- vr->equiv = BITMAP_ALLOC (NULL);
- if (equiv != vr->equiv)
- {
- if (equiv && !bitmap_empty_p (equiv))
- bitmap_copy (vr->equiv, equiv);
- else
- bitmap_clear (vr->equiv);
- }
- }
- /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
- This means adjusting T, MIN and MAX representing the case of a
- wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
- as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
- In corner cases where MAX+1 or MIN-1 wraps this will fall back
- to varying.
- This routine exists to ease canonicalization in the case where we
- extract ranges from var + CST op limit. */
- static void
- set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
- tree min, tree max, bitmap equiv)
- {
- /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
- if (t == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
- else if (t == VR_VARYING)
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* Nothing to canonicalize for symbolic ranges. */
- if (TREE_CODE (min) != INTEGER_CST
- || TREE_CODE (max) != INTEGER_CST)
- {
- set_value_range (vr, t, min, max, equiv);
- return;
- }
- /* Wrong order for min and max, to swap them and the VR type we need
- to adjust them. */
- if (tree_int_cst_lt (max, min))
- {
- tree one, tmp;
- /* For one bit precision if max < min, then the swapped
- range covers all values, so for VR_RANGE it is varying and
- for VR_ANTI_RANGE empty range, so drop to varying as well. */
- if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
- {
- set_value_range_to_varying (vr);
- return;
- }
- one = build_int_cst (TREE_TYPE (min), 1);
- tmp = int_const_binop (PLUS_EXPR, max, one);
- max = int_const_binop (MINUS_EXPR, min, one);
- min = tmp;
- /* There's one corner case, if we had [C+1, C] before we now have
- that again. But this represents an empty value range, so drop
- to varying in this case. */
- if (tree_int_cst_lt (max, min))
- {
- set_value_range_to_varying (vr);
- return;
- }
- t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
- }
- /* Anti-ranges that can be represented as ranges should be so. */
- if (t == VR_ANTI_RANGE)
- {
- bool is_min = vrp_val_is_min (min);
- bool is_max = vrp_val_is_max (max);
- if (is_min && is_max)
- {
- /* We cannot deal with empty ranges, drop to varying.
- ??? This could be VR_UNDEFINED instead. */
- set_value_range_to_varying (vr);
- return;
- }
- else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
- && (is_min || is_max))
- {
- /* Non-empty boolean ranges can always be represented
- as a singleton range. */
- if (is_min)
- min = max = vrp_val_max (TREE_TYPE (min));
- else
- min = max = vrp_val_min (TREE_TYPE (min));
- t = VR_RANGE;
- }
- else if (is_min
- /* As a special exception preserve non-null ranges. */
- && !(TYPE_UNSIGNED (TREE_TYPE (min))
- && integer_zerop (max)))
- {
- tree one = build_int_cst (TREE_TYPE (max), 1);
- min = int_const_binop (PLUS_EXPR, max, one);
- max = vrp_val_max (TREE_TYPE (max));
- t = VR_RANGE;
- }
- else if (is_max)
- {
- tree one = build_int_cst (TREE_TYPE (min), 1);
- max = int_const_binop (MINUS_EXPR, min, one);
- min = vrp_val_min (TREE_TYPE (min));
- t = VR_RANGE;
- }
- }
- /* Drop [-INF(OVF), +INF(OVF)] to varying. */
- if (needs_overflow_infinity (TREE_TYPE (min))
- && is_overflow_infinity (min)
- && is_overflow_infinity (max))
- {
- set_value_range_to_varying (vr);
- return;
- }
- set_value_range (vr, t, min, max, equiv);
- }
- /* Copy value range FROM into value range TO. */
- static inline void
- copy_value_range (value_range_t *to, value_range_t *from)
- {
- set_value_range (to, from->type, from->min, from->max, from->equiv);
- }
- /* Set value range VR to a single value. This function is only called
- with values we get from statements, and exists to clear the
- TREE_OVERFLOW flag so that we don't think we have an overflow
- infinity when we shouldn't. */
- static inline void
- set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
- {
- gcc_assert (is_gimple_min_invariant (val));
- if (TREE_OVERFLOW_P (val))
- val = drop_tree_overflow (val);
- set_value_range (vr, VR_RANGE, val, val, equiv);
- }
- /* Set value range VR to a non-negative range of type TYPE.
- OVERFLOW_INFINITY indicates whether to use an overflow infinity
- rather than TYPE_MAX_VALUE; this should be true if we determine
- that the range is nonnegative based on the assumption that signed
- overflow does not occur. */
- static inline void
- set_value_range_to_nonnegative (value_range_t *vr, tree type,
- bool overflow_infinity)
- {
- tree zero;
- if (overflow_infinity && !supports_overflow_infinity (type))
- {
- set_value_range_to_varying (vr);
- return;
- }
- zero = build_int_cst (type, 0);
- set_value_range (vr, VR_RANGE, zero,
- (overflow_infinity
- ? positive_overflow_infinity (type)
- : TYPE_MAX_VALUE (type)),
- vr->equiv);
- }
- /* Set value range VR to a non-NULL range of type TYPE. */
- static inline void
- set_value_range_to_nonnull (value_range_t *vr, tree type)
- {
- tree zero = build_int_cst (type, 0);
- set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
- }
- /* Set value range VR to a NULL range of type TYPE. */
- static inline void
- set_value_range_to_null (value_range_t *vr, tree type)
- {
- set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
- }
- /* Set value range VR to a range of a truthvalue of type TYPE. */
- static inline void
- set_value_range_to_truthvalue (value_range_t *vr, tree type)
- {
- if (TYPE_PRECISION (type) == 1)
- set_value_range_to_varying (vr);
- else
- set_value_range (vr, VR_RANGE,
- build_int_cst (type, 0), build_int_cst (type, 1),
- vr->equiv);
- }
- /* If abs (min) < abs (max), set VR to [-max, max], if
- abs (min) >= abs (max), set VR to [-min, min]. */
- static void
- abs_extent_range (value_range_t *vr, tree min, tree max)
- {
- int cmp;
- gcc_assert (TREE_CODE (min) == INTEGER_CST);
- gcc_assert (TREE_CODE (max) == INTEGER_CST);
- gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
- gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
- min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
- max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
- if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
- {
- set_value_range_to_varying (vr);
- return;
- }
- cmp = compare_values (min, max);
- if (cmp == -1)
- min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
- else if (cmp == 0 || cmp == 1)
- {
- max = min;
- min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
- }
- /* Return value range information for VAR.
- If we have no values ranges recorded (ie, VRP is not running), then
- return NULL. Otherwise create an empty range if none existed for VAR. */
- static value_range_t *
- get_value_range (const_tree var)
- {
- static const struct value_range_d vr_const_varying
- = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
- value_range_t *vr;
- tree sym;
- unsigned ver = SSA_NAME_VERSION (var);
- /* If we have no recorded ranges, then return NULL. */
- if (! vr_value)
- return NULL;
- /* If we query the range for a new SSA name return an unmodifiable VARYING.
- We should get here at most from the substitute-and-fold stage which
- will never try to change values. */
- if (ver >= num_vr_values)
- return CONST_CAST (value_range_t *, &vr_const_varying);
- vr = vr_value[ver];
- if (vr)
- return vr;
- /* After propagation finished do not allocate new value-ranges. */
- if (values_propagated)
- return CONST_CAST (value_range_t *, &vr_const_varying);
- /* Create a default value range. */
- vr_value[ver] = vr = XCNEW (value_range_t);
- /* Defer allocating the equivalence set. */
- vr->equiv = NULL;
- /* If VAR is a default definition of a parameter, the variable can
- take any value in VAR's type. */
- if (SSA_NAME_IS_DEFAULT_DEF (var))
- {
- sym = SSA_NAME_VAR (var);
- if (TREE_CODE (sym) == PARM_DECL)
- {
- /* Try to use the "nonnull" attribute to create ~[0, 0]
- anti-ranges for pointers. Note that this is only valid with
- default definitions of PARM_DECLs. */
- if (POINTER_TYPE_P (TREE_TYPE (sym))
- && nonnull_arg_p (sym))
- set_value_range_to_nonnull (vr, TREE_TYPE (sym));
- else
- set_value_range_to_varying (vr);
- }
- else if (TREE_CODE (sym) == RESULT_DECL
- && DECL_BY_REFERENCE (sym))
- set_value_range_to_nonnull (vr, TREE_TYPE (sym));
- }
- return vr;
- }
- /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
- static inline bool
- vrp_operand_equal_p (const_tree val1, const_tree val2)
- {
- if (val1 == val2)
- return true;
- if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
- return false;
- return is_overflow_infinity (val1) == is_overflow_infinity (val2);
- }
- /* Return true, if the bitmaps B1 and B2 are equal. */
- static inline bool
- vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
- {
- return (b1 == b2
- || ((!b1 || bitmap_empty_p (b1))
- && (!b2 || bitmap_empty_p (b2)))
- || (b1 && b2
- && bitmap_equal_p (b1, b2)));
- }
- /* Update the value range and equivalence set for variable VAR to
- NEW_VR. Return true if NEW_VR is different from VAR's previous
- value.
- NOTE: This function assumes that NEW_VR is a temporary value range
- object created for the sole purpose of updating VAR's range. The
- storage used by the equivalence set from NEW_VR will be freed by
- this function. Do not call update_value_range when NEW_VR
- is the range object associated with another SSA name. */
- static inline bool
- update_value_range (const_tree var, value_range_t *new_vr)
- {
- value_range_t *old_vr;
- bool is_new;
- /* If there is a value-range on the SSA name from earlier analysis
- factor that in. */
- if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
- {
- wide_int min, max;
- value_range_type rtype = get_range_info (var, &min, &max);
- if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
- {
- value_range_d nr;
- nr.type = rtype;
- nr.min = wide_int_to_tree (TREE_TYPE (var), min);
- nr.max = wide_int_to_tree (TREE_TYPE (var), max);
- nr.equiv = NULL;
- vrp_intersect_ranges (new_vr, &nr);
- }
- }
- /* Update the value range, if necessary. */
- old_vr = get_value_range (var);
- is_new = old_vr->type != new_vr->type
- || !vrp_operand_equal_p (old_vr->min, new_vr->min)
- || !vrp_operand_equal_p (old_vr->max, new_vr->max)
- || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
- if (is_new)
- {
- /* Do not allow transitions up the lattice. The following
- is slightly more awkward than just new_vr->type < old_vr->type
- because VR_RANGE and VR_ANTI_RANGE need to be considered
- the same. We may not have is_new when transitioning to
- UNDEFINED. If old_vr->type is VARYING, we shouldn't be
- called. */
- if (new_vr->type == VR_UNDEFINED)
- {
- BITMAP_FREE (new_vr->equiv);
- set_value_range_to_varying (old_vr);
- set_value_range_to_varying (new_vr);
- return true;
- }
- else
- set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
- new_vr->equiv);
- }
- BITMAP_FREE (new_vr->equiv);
- return is_new;
- }
- /* Add VAR and VAR's equivalence set to EQUIV. This is the central
- point where equivalence processing can be turned on/off. */
- static void
- add_equivalence (bitmap *equiv, const_tree var)
- {
- unsigned ver = SSA_NAME_VERSION (var);
- value_range_t *vr = vr_value[ver];
- if (*equiv == NULL)
- *equiv = BITMAP_ALLOC (NULL);
- bitmap_set_bit (*equiv, ver);
- if (vr && vr->equiv)
- bitmap_ior_into (*equiv, vr->equiv);
- }
- /* Return true if VR is ~[0, 0]. */
- static inline bool
- range_is_nonnull (value_range_t *vr)
- {
- return vr->type == VR_ANTI_RANGE
- && integer_zerop (vr->min)
- && integer_zerop (vr->max);
- }
- /* Return true if VR is [0, 0]. */
- static inline bool
- range_is_null (value_range_t *vr)
- {
- return vr->type == VR_RANGE
- && integer_zerop (vr->min)
- && integer_zerop (vr->max);
- }
- /* Return true if max and min of VR are INTEGER_CST. It's not necessary
- a singleton. */
- static inline bool
- range_int_cst_p (value_range_t *vr)
- {
- return (vr->type == VR_RANGE
- && TREE_CODE (vr->max) == INTEGER_CST
- && TREE_CODE (vr->min) == INTEGER_CST);
- }
- /* Return true if VR is a INTEGER_CST singleton. */
- static inline bool
- range_int_cst_singleton_p (value_range_t *vr)
- {
- return (range_int_cst_p (vr)
- && !is_overflow_infinity (vr->min)
- && !is_overflow_infinity (vr->max)
- && tree_int_cst_equal (vr->min, vr->max));
- }
- /* Return true if value range VR involves at least one symbol. */
- static inline bool
- symbolic_range_p (value_range_t *vr)
- {
- return (!is_gimple_min_invariant (vr->min)
- || !is_gimple_min_invariant (vr->max));
- }
- /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
- otherwise. We only handle additive operations and set NEG to true if the
- symbol is negated and INV to the invariant part, if any. */
- static tree
- get_single_symbol (tree t, bool *neg, tree *inv)
- {
- bool neg_;
- tree inv_;
- if (TREE_CODE (t) == PLUS_EXPR
- || TREE_CODE (t) == POINTER_PLUS_EXPR
- || TREE_CODE (t) == MINUS_EXPR)
- {
- if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
- {
- neg_ = (TREE_CODE (t) == MINUS_EXPR);
- inv_ = TREE_OPERAND (t, 0);
- t = TREE_OPERAND (t, 1);
- }
- else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
- {
- neg_ = false;
- inv_ = TREE_OPERAND (t, 1);
- t = TREE_OPERAND (t, 0);
- }
- else
- return NULL_TREE;
- }
- else
- {
- neg_ = false;
- inv_ = NULL_TREE;
- }
- if (TREE_CODE (t) == NEGATE_EXPR)
- {
- t = TREE_OPERAND (t, 0);
- neg_ = !neg_;
- }
- if (TREE_CODE (t) != SSA_NAME)
- return NULL_TREE;
- *neg = neg_;
- *inv = inv_;
- return t;
- }
- /* The reverse operation: build a symbolic expression with TYPE
- from symbol SYM, negated according to NEG, and invariant INV. */
- static tree
- build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
- {
- const bool pointer_p = POINTER_TYPE_P (type);
- tree t = sym;
- if (neg)
- t = build1 (NEGATE_EXPR, type, t);
- if (integer_zerop (inv))
- return t;
- return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
- }
- /* Return true if value range VR involves exactly one symbol SYM. */
- static bool
- symbolic_range_based_on_p (value_range_t *vr, const_tree sym)
- {
- bool neg, min_has_symbol, max_has_symbol;
- tree inv;
- if (is_gimple_min_invariant (vr->min))
- min_has_symbol = false;
- else if (get_single_symbol (vr->min, &neg, &inv) == sym)
- min_has_symbol = true;
- else
- return false;
- if (is_gimple_min_invariant (vr->max))
- max_has_symbol = false;
- else if (get_single_symbol (vr->max, &neg, &inv) == sym)
- max_has_symbol = true;
- else
- return false;
- return (min_has_symbol || max_has_symbol);
- }
- /* Return true if value range VR uses an overflow infinity. */
- static inline bool
- overflow_infinity_range_p (value_range_t *vr)
- {
- return (vr->type == VR_RANGE
- && (is_overflow_infinity (vr->min)
- || is_overflow_infinity (vr->max)));
- }
- /* Return false if we can not make a valid comparison based on VR;
- this will be the case if it uses an overflow infinity and overflow
- is not undefined (i.e., -fno-strict-overflow is in effect).
- Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
- uses an overflow infinity. */
- static bool
- usable_range_p (value_range_t *vr, bool *strict_overflow_p)
- {
- gcc_assert (vr->type == VR_RANGE);
- if (is_overflow_infinity (vr->min))
- {
- *strict_overflow_p = true;
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
- return false;
- }
- if (is_overflow_infinity (vr->max))
- {
- *strict_overflow_p = true;
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
- return false;
- }
- return true;
- }
- /* Return true if the result of assignment STMT is know to be non-negative.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
- static bool
- gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
- {
- enum tree_code code = gimple_assign_rhs_code (stmt);
- switch (get_gimple_rhs_class (code))
- {
- case GIMPLE_UNARY_RHS:
- return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_BINARY_RHS:
- return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- strict_overflow_p);
- case GIMPLE_TERNARY_RHS:
- return false;
- case GIMPLE_SINGLE_RHS:
- return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_INVALID_RHS:
- gcc_unreachable ();
- default:
- gcc_unreachable ();
- }
- }
- /* Return true if return value of call STMT is know to be non-negative.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
- static bool
- gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
- {
- tree arg0 = gimple_call_num_args (stmt) > 0 ?
- gimple_call_arg (stmt, 0) : NULL_TREE;
- tree arg1 = gimple_call_num_args (stmt) > 1 ?
- gimple_call_arg (stmt, 1) : NULL_TREE;
- return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
- gimple_call_fndecl (stmt),
- arg0,
- arg1,
- strict_overflow_p);
- }
- /* Return true if STMT is know to to compute a non-negative value.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
- static bool
- gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
- {
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
- case GIMPLE_CALL:
- return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
- default:
- gcc_unreachable ();
- }
- }
- /* Return true if the result of assignment STMT is know to be non-zero.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
- static bool
- gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
- {
- enum tree_code code = gimple_assign_rhs_code (stmt);
- switch (get_gimple_rhs_class (code))
- {
- case GIMPLE_UNARY_RHS:
- return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_BINARY_RHS:
- return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- strict_overflow_p);
- case GIMPLE_TERNARY_RHS:
- return false;
- case GIMPLE_SINGLE_RHS:
- return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_INVALID_RHS:
- gcc_unreachable ();
- default:
- gcc_unreachable ();
- }
- }
- /* Return true if STMT is known to compute a non-zero value.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
- static bool
- gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
- {
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
- case GIMPLE_CALL:
- {
- tree fndecl = gimple_call_fndecl (stmt);
- if (!fndecl) return false;
- if (flag_delete_null_pointer_checks && !flag_check_new
- && DECL_IS_OPERATOR_NEW (fndecl)
- && !TREE_NOTHROW (fndecl))
- return true;
- if (flag_delete_null_pointer_checks &&
- lookup_attribute ("returns_nonnull",
- TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
- return true;
- return gimple_alloca_call_p (stmt);
- }
- default:
- gcc_unreachable ();
- }
- }
- /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
- obtained so far. */
- static bool
- vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
- {
- if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
- return true;
- /* If we have an expression of the form &X->a, then the expression
- is nonnull if X is nonnull. */
- if (is_gimple_assign (stmt)
- && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
- {
- tree expr = gimple_assign_rhs1 (stmt);
- tree base = get_base_address (TREE_OPERAND (expr, 0));
- if (base != NULL_TREE
- && TREE_CODE (base) == MEM_REF
- && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
- {
- value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
- if (range_is_nonnull (vr))
- return true;
- }
- }
- return false;
- }
- /* Returns true if EXPR is a valid value (as expected by compare_values) --
- a gimple invariant, or SSA_NAME +- CST. */
- static bool
- valid_value_p (tree expr)
- {
- if (TREE_CODE (expr) == SSA_NAME)
- return true;
- if (TREE_CODE (expr) == PLUS_EXPR
- || TREE_CODE (expr) == MINUS_EXPR)
- return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
- && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
- return is_gimple_min_invariant (expr);
- }
- /* Return
- 1 if VAL < VAL2
- 0 if !(VAL < VAL2)
- -2 if those are incomparable. */
- static inline int
- operand_less_p (tree val, tree val2)
- {
- /* LT is folded faster than GE and others. Inline the common case. */
- if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
- return tree_int_cst_lt (val, val2);
- else
- {
- tree tcmp;
- fold_defer_overflow_warnings ();
- tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
- fold_undefer_and_ignore_overflow_warnings ();
- if (!tcmp
- || TREE_CODE (tcmp) != INTEGER_CST)
- return -2;
- if (!integer_zerop (tcmp))
- return 1;
- }
- /* val >= val2, not considering overflow infinity. */
- if (is_negative_overflow_infinity (val))
- return is_negative_overflow_infinity (val2) ? 0 : 1;
- else if (is_positive_overflow_infinity (val2))
- return is_positive_overflow_infinity (val) ? 0 : 1;
- return 0;
- }
- /* Compare two values VAL1 and VAL2. Return
- -2 if VAL1 and VAL2 cannot be compared at compile-time,
- -1 if VAL1 < VAL2,
- 0 if VAL1 == VAL2,
- +1 if VAL1 > VAL2, and
- +2 if VAL1 != VAL2
- This is similar to tree_int_cst_compare but supports pointer values
- and values that cannot be compared at compile time.
- If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
- true if the return value is only valid if we assume that signed
- overflow is undefined. */
- static int
- compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
- {
- if (val1 == val2)
- return 0;
- /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
- both integers. */
- gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
- == POINTER_TYPE_P (TREE_TYPE (val2)));
- /* Convert the two values into the same type. This is needed because
- sizetype causes sign extension even for unsigned types. */
- val2 = fold_convert (TREE_TYPE (val1), val2);
- STRIP_USELESS_TYPE_CONVERSION (val2);
- if ((TREE_CODE (val1) == SSA_NAME
- || (TREE_CODE (val1) == NEGATE_EXPR
- && TREE_CODE (TREE_OPERAND (val1, 0)) == SSA_NAME)
- || TREE_CODE (val1) == PLUS_EXPR
- || TREE_CODE (val1) == MINUS_EXPR)
- && (TREE_CODE (val2) == SSA_NAME
- || (TREE_CODE (val2) == NEGATE_EXPR
- && TREE_CODE (TREE_OPERAND (val2, 0)) == SSA_NAME)
- || TREE_CODE (val2) == PLUS_EXPR
- || TREE_CODE (val2) == MINUS_EXPR))
- {
- tree n1, c1, n2, c2;
- enum tree_code code1, code2;
- /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
- return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
- same name, return -2. */
- if (TREE_CODE (val1) == SSA_NAME || TREE_CODE (val1) == NEGATE_EXPR)
- {
- code1 = SSA_NAME;
- n1 = val1;
- c1 = NULL_TREE;
- }
- else
- {
- code1 = TREE_CODE (val1);
- n1 = TREE_OPERAND (val1, 0);
- c1 = TREE_OPERAND (val1, 1);
- if (tree_int_cst_sgn (c1) == -1)
- {
- if (is_negative_overflow_infinity (c1))
- return -2;
- c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
- if (!c1)
- return -2;
- code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
- }
- }
- if (TREE_CODE (val2) == SSA_NAME || TREE_CODE (val2) == NEGATE_EXPR)
- {
- code2 = SSA_NAME;
- n2 = val2;
- c2 = NULL_TREE;
- }
- else
- {
- code2 = TREE_CODE (val2);
- n2 = TREE_OPERAND (val2, 0);
- c2 = TREE_OPERAND (val2, 1);
- if (tree_int_cst_sgn (c2) == -1)
- {
- if (is_negative_overflow_infinity (c2))
- return -2;
- c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
- if (!c2)
- return -2;
- code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
- }
- }
- /* Both values must use the same name. */
- if (TREE_CODE (n1) == NEGATE_EXPR && TREE_CODE (n2) == NEGATE_EXPR)
- {
- n1 = TREE_OPERAND (n1, 0);
- n2 = TREE_OPERAND (n2, 0);
- }
- if (n1 != n2)
- return -2;
- if (code1 == SSA_NAME && code2 == SSA_NAME)
- /* NAME == NAME */
- return 0;
- /* If overflow is defined we cannot simplify more. */
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
- return -2;
- if (strict_overflow_p != NULL
- && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
- && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
- *strict_overflow_p = true;
- if (code1 == SSA_NAME)
- {
- if (code2 == PLUS_EXPR)
- /* NAME < NAME + CST */
- return -1;
- else if (code2 == MINUS_EXPR)
- /* NAME > NAME - CST */
- return 1;
- }
- else if (code1 == PLUS_EXPR)
- {
- if (code2 == SSA_NAME)
- /* NAME + CST > NAME */
- return 1;
- else if (code2 == PLUS_EXPR)
- /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
- return compare_values_warnv (c1, c2, strict_overflow_p);
- else if (code2 == MINUS_EXPR)
- /* NAME + CST1 > NAME - CST2 */
- return 1;
- }
- else if (code1 == MINUS_EXPR)
- {
- if (code2 == SSA_NAME)
- /* NAME - CST < NAME */
- return -1;
- else if (code2 == PLUS_EXPR)
- /* NAME - CST1 < NAME + CST2 */
- return -1;
- else if (code2 == MINUS_EXPR)
- /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
- C1 and C2 are swapped in the call to compare_values. */
- return compare_values_warnv (c2, c1, strict_overflow_p);
- }
- gcc_unreachable ();
- }
- /* We cannot compare non-constants. */
- if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
- return -2;
- if (!POINTER_TYPE_P (TREE_TYPE (val1)))
- {
- /* We cannot compare overflowed values, except for overflow
- infinities. */
- if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
- {
- if (strict_overflow_p != NULL)
- *strict_overflow_p = true;
- if (is_negative_overflow_infinity (val1))
- return is_negative_overflow_infinity (val2) ? 0 : -1;
- else if (is_negative_overflow_infinity (val2))
- return 1;
- else if (is_positive_overflow_infinity (val1))
- return is_positive_overflow_infinity (val2) ? 0 : 1;
- else if (is_positive_overflow_infinity (val2))
- return -1;
- return -2;
- }
- return tree_int_cst_compare (val1, val2);
- }
- else
- {
- tree t;
- /* First see if VAL1 and VAL2 are not the same. */
- if (val1 == val2 || operand_equal_p (val1, val2, 0))
- return 0;
- /* If VAL1 is a lower address than VAL2, return -1. */
- if (operand_less_p (val1, val2) == 1)
- return -1;
- /* If VAL1 is a higher address than VAL2, return +1. */
- if (operand_less_p (val2, val1) == 1)
- return 1;
- /* If VAL1 is different than VAL2, return +2.
- For integer constants we either have already returned -1 or 1
- or they are equivalent. We still might succeed in proving
- something about non-trivial operands. */
- if (TREE_CODE (val1) != INTEGER_CST
- || TREE_CODE (val2) != INTEGER_CST)
- {
- t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
- if (t && integer_onep (t))
- return 2;
- }
- return -2;
- }
- }
- /* Compare values like compare_values_warnv, but treat comparisons of
- nonconstants which rely on undefined overflow as incomparable. */
- static int
- compare_values (tree val1, tree val2)
- {
- bool sop;
- int ret;
- sop = false;
- ret = compare_values_warnv (val1, val2, &sop);
- if (sop
- && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
- ret = -2;
- return ret;
- }
- /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
- 0 if VAL is not inside [MIN, MAX],
- -2 if we cannot tell either way.
- Benchmark compile/20001226-1.c compilation time after changing this
- function. */
- static inline int
- value_inside_range (tree val, tree min, tree max)
- {
- int cmp1, cmp2;
- cmp1 = operand_less_p (val, min);
- if (cmp1 == -2)
- return -2;
- if (cmp1 == 1)
- return 0;
- cmp2 = operand_less_p (max, val);
- if (cmp2 == -2)
- return -2;
- return !cmp2;
- }
- /* Return true if value ranges VR0 and VR1 have a non-empty
- intersection.
- Benchmark compile/20001226-1.c compilation time after changing this
- function.
- */
- static inline bool
- value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
- {
- /* The value ranges do not intersect if the maximum of the first range is
- less than the minimum of the second range or vice versa.
- When those relations are unknown, we can't do any better. */
- if (operand_less_p (vr0->max, vr1->min) != 0)
- return false;
- if (operand_less_p (vr1->max, vr0->min) != 0)
- return false;
- return true;
- }
- /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
- include the value zero, -2 if we cannot tell. */
- static inline int
- range_includes_zero_p (tree min, tree max)
- {
- tree zero = build_int_cst (TREE_TYPE (min), 0);
- return value_inside_range (zero, min, max);
- }
- /* Return true if *VR is know to only contain nonnegative values. */
- static inline bool
- value_range_nonnegative_p (value_range_t *vr)
- {
- /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
- which would return a useful value should be encoded as a
- VR_RANGE. */
- if (vr->type == VR_RANGE)
- {
- int result = compare_values (vr->min, integer_zero_node);
- return (result == 0 || result == 1);
- }
- return false;
- }
- /* If *VR has a value rante that is a single constant value return that,
- otherwise return NULL_TREE. */
- static tree
- value_range_constant_singleton (value_range_t *vr)
- {
- if (vr->type == VR_RANGE
- && operand_equal_p (vr->min, vr->max, 0)
- && is_gimple_min_invariant (vr->min))
- return vr->min;
- return NULL_TREE;
- }
- /* If OP has a value range with a single constant value return that,
- otherwise return NULL_TREE. This returns OP itself if OP is a
- constant. */
- static tree
- op_with_constant_singleton_value_range (tree op)
- {
- if (is_gimple_min_invariant (op))
- return op;
- if (TREE_CODE (op) != SSA_NAME)
- return NULL_TREE;
- return value_range_constant_singleton (get_value_range (op));
- }
- /* Return true if op is in a boolean [0, 1] value-range. */
- static bool
- op_with_boolean_value_range_p (tree op)
- {
- value_range_t *vr;
- if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
- return true;
- if (integer_zerop (op)
- || integer_onep (op))
- return true;
- if (TREE_CODE (op) != SSA_NAME)
- return false;
- vr = get_value_range (op);
- return (vr->type == VR_RANGE
- && integer_zerop (vr->min)
- && integer_onep (vr->max));
- }
- /* Extract value range information from an ASSERT_EXPR EXPR and store
- it in *VR_P. */
- static void
- extract_range_from_assert (value_range_t *vr_p, tree expr)
- {
- tree var, cond, limit, min, max, type;
- value_range_t *limit_vr;
- enum tree_code cond_code;
- var = ASSERT_EXPR_VAR (expr);
- cond = ASSERT_EXPR_COND (expr);
- gcc_assert (COMPARISON_CLASS_P (cond));
- /* Find VAR in the ASSERT_EXPR conditional. */
- if (var == TREE_OPERAND (cond, 0)
- || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
- || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
- {
- /* If the predicate is of the form VAR COMP LIMIT, then we just
- take LIMIT from the RHS and use the same comparison code. */
- cond_code = TREE_CODE (cond);
- limit = TREE_OPERAND (cond, 1);
- cond = TREE_OPERAND (cond, 0);
- }
- else
- {
- /* If the predicate is of the form LIMIT COMP VAR, then we need
- to flip around the comparison code to create the proper range
- for VAR. */
- cond_code = swap_tree_comparison (TREE_CODE (cond));
- limit = TREE_OPERAND (cond, 0);
- cond = TREE_OPERAND (cond, 1);
- }
- limit = avoid_overflow_infinity (limit);
- type = TREE_TYPE (var);
- gcc_assert (limit != var);
- /* For pointer arithmetic, we only keep track of pointer equality
- and inequality. */
- if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
- {
- set_value_range_to_varying (vr_p);
- return;
- }
- /* If LIMIT is another SSA name and LIMIT has a range of its own,
- try to use LIMIT's range to avoid creating symbolic ranges
- unnecessarily. */
- limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
- /* LIMIT's range is only interesting if it has any useful information. */
- if (limit_vr
- && (limit_vr->type == VR_UNDEFINED
- || limit_vr->type == VR_VARYING
- || symbolic_range_p (limit_vr)))
- limit_vr = NULL;
- /* Initially, the new range has the same set of equivalences of
- VAR's range. This will be revised before returning the final
- value. Since assertions may be chained via mutually exclusive
- predicates, we will need to trim the set of equivalences before
- we are done. */
- gcc_assert (vr_p->equiv == NULL);
- add_equivalence (&vr_p->equiv, var);
- /* Extract a new range based on the asserted comparison for VAR and
- LIMIT's value range. Notice that if LIMIT has an anti-range, we
- will only use it for equality comparisons (EQ_EXPR). For any
- other kind of assertion, we cannot derive a range from LIMIT's
- anti-range that can be used to describe the new range. For
- instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
- then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
- no single range for x_2 that could describe LE_EXPR, so we might
- as well build the range [b_4, +INF] for it.
- One special case we handle is extracting a range from a
- range test encoded as (unsigned)var + CST <= limit. */
- if (TREE_CODE (cond) == NOP_EXPR
- || TREE_CODE (cond) == PLUS_EXPR)
- {
- if (TREE_CODE (cond) == PLUS_EXPR)
- {
- min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
- TREE_OPERAND (cond, 1));
- max = int_const_binop (PLUS_EXPR, limit, min);
- cond = TREE_OPERAND (cond, 0);
- }
- else
- {
- min = build_int_cst (TREE_TYPE (var), 0);
- max = limit;
- }
- /* Make sure to not set TREE_OVERFLOW on the final type
- conversion. We are willingly interpreting large positive
- unsigned values as negative signed values here. */
- min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
- max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
- /* We can transform a max, min range to an anti-range or
- vice-versa. Use set_and_canonicalize_value_range which does
- this for us. */
- if (cond_code == LE_EXPR)
- set_and_canonicalize_value_range (vr_p, VR_RANGE,
- min, max, vr_p->equiv);
- else if (cond_code == GT_EXPR)
- set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
- min, max, vr_p->equiv);
- else
- gcc_unreachable ();
- }
- else if (cond_code == EQ_EXPR)
- {
- enum value_range_type range_type;
- if (limit_vr)
- {
- range_type = limit_vr->type;
- min = limit_vr->min;
- max = limit_vr->max;
- }
- else
- {
- range_type = VR_RANGE;
- min = limit;
- max = limit;
- }
- set_value_range (vr_p, range_type, min, max, vr_p->equiv);
- /* When asserting the equality VAR == LIMIT and LIMIT is another
- SSA name, the new range will also inherit the equivalence set
- from LIMIT. */
- if (TREE_CODE (limit) == SSA_NAME)
- add_equivalence (&vr_p->equiv, limit);
- }
- else if (cond_code == NE_EXPR)
- {
- /* As described above, when LIMIT's range is an anti-range and
- this assertion is an inequality (NE_EXPR), then we cannot
- derive anything from the anti-range. For instance, if
- LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
- not imply that VAR's range is [0, 0]. So, in the case of
- anti-ranges, we just assert the inequality using LIMIT and
- not its anti-range.
- If LIMIT_VR is a range, we can only use it to build a new
- anti-range if LIMIT_VR is a single-valued range. For
- instance, if LIMIT_VR is [0, 1], the predicate
- VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
- Rather, it means that for value 0 VAR should be ~[0, 0]
- and for value 1, VAR should be ~[1, 1]. We cannot
- represent these ranges.
- The only situation in which we can build a valid
- anti-range is when LIMIT_VR is a single-valued range
- (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
- build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
- if (limit_vr
- && limit_vr->type == VR_RANGE
- && compare_values (limit_vr->min, limit_vr->max) == 0)
- {
- min = limit_vr->min;
- max = limit_vr->max;
- }
- else
- {
- /* In any other case, we cannot use LIMIT's range to build a
- valid anti-range. */
- min = max = limit;
- }
- /* If MIN and MAX cover the whole range for their type, then
- just use the original LIMIT. */
- if (INTEGRAL_TYPE_P (type)
- && vrp_val_is_min (min)
- && vrp_val_is_max (max))
- min = max = limit;
- set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
- min, max, vr_p->equiv);
- }
- else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
- {
- min = TYPE_MIN_VALUE (type);
- if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
- max = limit;
- else
- {
- /* If LIMIT_VR is of the form [N1, N2], we need to build the
- range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
- LT_EXPR. */
- max = limit_vr->max;
- }
- /* If the maximum value forces us to be out of bounds, simply punt.
- It would be pointless to try and do anything more since this
- all should be optimized away above us. */
- if ((cond_code == LT_EXPR
- && compare_values (max, min) == 0)
- || is_overflow_infinity (max))
- set_value_range_to_varying (vr_p);
- else
- {
- /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
- if (cond_code == LT_EXPR)
- {
- if (TYPE_PRECISION (TREE_TYPE (max)) == 1
- && !TYPE_UNSIGNED (TREE_TYPE (max)))
- max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
- build_int_cst (TREE_TYPE (max), -1));
- else
- max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
- build_int_cst (TREE_TYPE (max), 1));
- if (EXPR_P (max))
- TREE_NO_WARNING (max) = 1;
- }
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- }
- else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
- {
- max = TYPE_MAX_VALUE (type);
- if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
- min = limit;
- else
- {
- /* If LIMIT_VR is of the form [N1, N2], we need to build the
- range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
- GT_EXPR. */
- min = limit_vr->min;
- }
- /* If the minimum value forces us to be out of bounds, simply punt.
- It would be pointless to try and do anything more since this
- all should be optimized away above us. */
- if ((cond_code == GT_EXPR
- && compare_values (min, max) == 0)
- || is_overflow_infinity (min))
- set_value_range_to_varying (vr_p);
- else
- {
- /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
- if (cond_code == GT_EXPR)
- {
- if (TYPE_PRECISION (TREE_TYPE (min)) == 1
- && !TYPE_UNSIGNED (TREE_TYPE (min)))
- min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
- build_int_cst (TREE_TYPE (min), -1));
- else
- min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
- build_int_cst (TREE_TYPE (min), 1));
- if (EXPR_P (min))
- TREE_NO_WARNING (min) = 1;
- }
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- }
- else
- gcc_unreachable ();
- /* Finally intersect the new range with what we already know about var. */
- vrp_intersect_ranges (vr_p, get_value_range (var));
- }
- /* Extract range information from SSA name VAR and store it in VR. If
- VAR has an interesting range, use it. Otherwise, create the
- range [VAR, VAR] and return it. This is useful in situations where
- we may have conditionals testing values of VARYING names. For
- instance,
- x_3 = y_5;
- if (x_3 > y_5)
- ...
- Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
- always false. */
- static void
- extract_range_from_ssa_name (value_range_t *vr, tree var)
- {
- value_range_t *var_vr = get_value_range (var);
- if (var_vr->type != VR_VARYING)
- copy_value_range (vr, var_vr);
- else
- set_value_range (vr, VR_RANGE, var, var, NULL);
- add_equivalence (&vr->equiv, var);
- }
- /* Wrapper around int_const_binop. If the operation overflows and we
- are not using wrapping arithmetic, then adjust the result to be
- -INF or +INF depending on CODE, VAL1 and VAL2. This can return
- NULL_TREE if we need to use an overflow infinity representation but
- the type does not support it. */
- static tree
- vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
- {
- tree res;
- res = int_const_binop (code, val1, val2);
- /* If we are using unsigned arithmetic, operate symbolically
- on -INF and +INF as int_const_binop only handles signed overflow. */
- if (TYPE_UNSIGNED (TREE_TYPE (val1)))
- {
- int checkz = compare_values (res, val1);
- bool overflow = false;
- /* Ensure that res = val1 [+*] val2 >= val1
- or that res = val1 - val2 <= val1. */
- if ((code == PLUS_EXPR
- && !(checkz == 1 || checkz == 0))
- || (code == MINUS_EXPR
- && !(checkz == 0 || checkz == -1)))
- {
- overflow = true;
- }
- /* Checking for multiplication overflow is done by dividing the
- output of the multiplication by the first input of the
- multiplication. If the result of that division operation is
- not equal to the second input of the multiplication, then the
- multiplication overflowed. */
- else if (code == MULT_EXPR && !integer_zerop (val1))
- {
- tree tmp = int_const_binop (TRUNC_DIV_EXPR,
- res,
- val1);
- int check = compare_values (tmp, val2);
- if (check != 0)
- overflow = true;
- }
- if (overflow)
- {
- res = copy_node (res);
- TREE_OVERFLOW (res) = 1;
- }
- }
- else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
- /* If the singed operation wraps then int_const_binop has done
- everything we want. */
- ;
- /* Signed division of -1/0 overflows and by the time it gets here
- returns NULL_TREE. */
- else if (!res)
- return NULL_TREE;
- else if ((TREE_OVERFLOW (res)
- && !TREE_OVERFLOW (val1)
- && !TREE_OVERFLOW (val2))
- || is_overflow_infinity (val1)
- || is_overflow_infinity (val2))
- {
- /* If the operation overflowed but neither VAL1 nor VAL2 are
- overflown, return -INF or +INF depending on the operation
- and the combination of signs of the operands. */
- int sgn1 = tree_int_cst_sgn (val1);
- int sgn2 = tree_int_cst_sgn (val2);
- if (needs_overflow_infinity (TREE_TYPE (res))
- && !supports_overflow_infinity (TREE_TYPE (res)))
- return NULL_TREE;
- /* We have to punt on adding infinities of different signs,
- since we can't tell what the sign of the result should be.
- Likewise for subtracting infinities of the same sign. */
- if (((code == PLUS_EXPR && sgn1 != sgn2)
- || (code == MINUS_EXPR && sgn1 == sgn2))
- && is_overflow_infinity (val1)
- && is_overflow_infinity (val2))
- return NULL_TREE;
- /* Don't try to handle division or shifting of infinities. */
- if ((code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR
- || code == RSHIFT_EXPR)
- && (is_overflow_infinity (val1)
- || is_overflow_infinity (val2)))
- return NULL_TREE;
- /* Notice that we only need to handle the restricted set of
- operations handled by extract_range_from_binary_expr.
- Among them, only multiplication, addition and subtraction
- can yield overflow without overflown operands because we
- are working with integral types only... except in the
- case VAL1 = -INF and VAL2 = -1 which overflows to +INF
- for division too. */
- /* For multiplication, the sign of the overflow is given
- by the comparison of the signs of the operands. */
- if ((code == MULT_EXPR && sgn1 == sgn2)
- /* For addition, the operands must be of the same sign
- to yield an overflow. Its sign is therefore that
- of one of the operands, for example the first. For
- infinite operands X + -INF is negative, not positive. */
- || (code == PLUS_EXPR
- && (sgn1 >= 0
- ? !is_negative_overflow_infinity (val2)
- : is_positive_overflow_infinity (val2)))
- /* For subtraction, non-infinite operands must be of
- different signs to yield an overflow. Its sign is
- therefore that of the first operand or the opposite of
- that of the second operand. A first operand of 0 counts
- as positive here, for the corner case 0 - (-INF), which
- overflows, but must yield +INF. For infinite operands 0
- - INF is negative, not positive. */
- || (code == MINUS_EXPR
- && (sgn1 >= 0
- ? !is_positive_overflow_infinity (val2)
- : is_negative_overflow_infinity (val2)))
- /* We only get in here with positive shift count, so the
- overflow direction is the same as the sign of val1.
- Actually rshift does not overflow at all, but we only
- handle the case of shifting overflowed -INF and +INF. */
- || (code == RSHIFT_EXPR
- && sgn1 >= 0)
- /* For division, the only case is -INF / -1 = +INF. */
- || code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR)
- return (needs_overflow_infinity (TREE_TYPE (res))
- ? positive_overflow_infinity (TREE_TYPE (res))
- : TYPE_MAX_VALUE (TREE_TYPE (res)));
- else
- return (needs_overflow_infinity (TREE_TYPE (res))
- ? negative_overflow_infinity (TREE_TYPE (res))
- : TYPE_MIN_VALUE (TREE_TYPE (res)));
- }
- return res;
- }
- /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
- bitmask if some bit is unset, it means for all numbers in the range
- the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
- bitmask if some bit is set, it means for all numbers in the range
- the bit is 1, otherwise it might be 0 or 1. */
- static bool
- zero_nonzero_bits_from_vr (const tree expr_type,
- value_range_t *vr,
- wide_int *may_be_nonzero,
- wide_int *must_be_nonzero)
- {
- *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
- *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
- if (!range_int_cst_p (vr)
- || is_overflow_infinity (vr->min)
- || is_overflow_infinity (vr->max))
- return false;
- if (range_int_cst_singleton_p (vr))
- {
- *may_be_nonzero = vr->min;
- *must_be_nonzero = *may_be_nonzero;
- }
- else if (tree_int_cst_sgn (vr->min) >= 0
- || tree_int_cst_sgn (vr->max) < 0)
- {
- wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
- *may_be_nonzero = wi::bit_or (vr->min, vr->max);
- *must_be_nonzero = wi::bit_and (vr->min, vr->max);
- if (xor_mask != 0)
- {
- wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
- may_be_nonzero->get_precision ());
- *may_be_nonzero = *may_be_nonzero | mask;
- *must_be_nonzero = must_be_nonzero->and_not (mask);
- }
- }
- return true;
- }
- /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
- so that *VR0 U *VR1 == *AR. Returns true if that is possible,
- false otherwise. If *AR can be represented with a single range
- *VR1 will be VR_UNDEFINED. */
- static bool
- ranges_from_anti_range (value_range_t *ar,
- value_range_t *vr0, value_range_t *vr1)
- {
- tree type = TREE_TYPE (ar->min);
- vr0->type = VR_UNDEFINED;
- vr1->type = VR_UNDEFINED;
- if (ar->type != VR_ANTI_RANGE
- || TREE_CODE (ar->min) != INTEGER_CST
- || TREE_CODE (ar->max) != INTEGER_CST
- || !vrp_val_min (type)
- || !vrp_val_max (type))
- return false;
- if (!vrp_val_is_min (ar->min))
- {
- vr0->type = VR_RANGE;
- vr0->min = vrp_val_min (type);
- vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
- }
- if (!vrp_val_is_max (ar->max))
- {
- vr1->type = VR_RANGE;
- vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
- vr1->max = vrp_val_max (type);
- }
- if (vr0->type == VR_UNDEFINED)
- {
- *vr0 = *vr1;
- vr1->type = VR_UNDEFINED;
- }
- return vr0->type != VR_UNDEFINED;
- }
- /* Helper to extract a value-range *VR for a multiplicative operation
- *VR0 CODE *VR1. */
- static void
- extract_range_from_multiplicative_op_1 (value_range_t *vr,
- enum tree_code code,
- value_range_t *vr0, value_range_t *vr1)
- {
- enum value_range_type type;
- tree val[4];
- size_t i;
- tree min, max;
- bool sop;
- int cmp;
- /* Multiplications, divisions and shifts are a bit tricky to handle,
- depending on the mix of signs we have in the two ranges, we
- need to operate on different values to get the minimum and
- maximum values for the new range. One approach is to figure
- out all the variations of range combinations and do the
- operations.
- However, this involves several calls to compare_values and it
- is pretty convoluted. It's simpler to do the 4 operations
- (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
- MAX1) and then figure the smallest and largest values to form
- the new range. */
- gcc_assert (code == MULT_EXPR
- || code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR
- || code == RSHIFT_EXPR
- || code == LSHIFT_EXPR);
- gcc_assert ((vr0->type == VR_RANGE
- || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
- && vr0->type == vr1->type);
- type = vr0->type;
- /* Compute the 4 cross operations. */
- sop = false;
- val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
- if (val[0] == NULL_TREE)
- sop = true;
- if (vr1->max == vr1->min)
- val[1] = NULL_TREE;
- else
- {
- val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
- if (val[1] == NULL_TREE)
- sop = true;
- }
- if (vr0->max == vr0->min)
- val[2] = NULL_TREE;
- else
- {
- val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
- if (val[2] == NULL_TREE)
- sop = true;
- }
- if (vr0->min == vr0->max || vr1->min == vr1->max)
- val[3] = NULL_TREE;
- else
- {
- val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
- if (val[3] == NULL_TREE)
- sop = true;
- }
- if (sop)
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* Set MIN to the minimum of VAL[i] and MAX to the maximum
- of VAL[i]. */
- min = val[0];
- max = val[0];
- for (i = 1; i < 4; i++)
- {
- if (!is_gimple_min_invariant (min)
- || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
- || !is_gimple_min_invariant (max)
- || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
- break;
- if (val[i])
- {
- if (!is_gimple_min_invariant (val[i])
- || (TREE_OVERFLOW (val[i])
- && !is_overflow_infinity (val[i])))
- {
- /* If we found an overflowed value, set MIN and MAX
- to it so that we set the resulting range to
- VARYING. */
- min = max = val[i];
- break;
- }
- if (compare_values (val[i], min) == -1)
- min = val[i];
- if (compare_values (val[i], max) == 1)
- max = val[i];
- }
- }
- /* If either MIN or MAX overflowed, then set the resulting range to
- VARYING. But we do accept an overflow infinity
- representation. */
- if (min == NULL_TREE
- || !is_gimple_min_invariant (min)
- || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
- || max == NULL_TREE
- || !is_gimple_min_invariant (max)
- || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* We punt if:
- 1) [-INF, +INF]
- 2) [-INF, +-INF(OVF)]
- 3) [+-INF(OVF), +INF]
- 4) [+-INF(OVF), +-INF(OVF)]
- We learn nothing when we have INF and INF(OVF) on both sides.
- Note that we do accept [-INF, -INF] and [+INF, +INF] without
- overflow. */
- if ((vrp_val_is_min (min) || is_overflow_infinity (min))
- && (vrp_val_is_max (max) || is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, type, min, max, NULL);
- }
- /* Extract range information from a binary operation CODE based on
- the ranges of each of its operands *VR0 and *VR1 with resulting
- type EXPR_TYPE. The resulting range is stored in *VR. */
- static void
- extract_range_from_binary_expr_1 (value_range_t *vr,
- enum tree_code code, tree expr_type,
- value_range_t *vr0_, value_range_t *vr1_)
- {
- value_range_t vr0 = *vr0_, vr1 = *vr1_;
- value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
- enum value_range_type type;
- tree min = NULL_TREE, max = NULL_TREE;
- int cmp;
- if (!INTEGRAL_TYPE_P (expr_type)
- && !POINTER_TYPE_P (expr_type))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* Not all binary expressions can be applied to ranges in a
- meaningful way. Handle only arithmetic operations. */
- if (code != PLUS_EXPR
- && code != MINUS_EXPR
- && code != POINTER_PLUS_EXPR
- && code != MULT_EXPR
- && code != TRUNC_DIV_EXPR
- && code != FLOOR_DIV_EXPR
- && code != CEIL_DIV_EXPR
- && code != EXACT_DIV_EXPR
- && code != ROUND_DIV_EXPR
- && code != TRUNC_MOD_EXPR
- && code != RSHIFT_EXPR
- && code != LSHIFT_EXPR
- && code != MIN_EXPR
- && code != MAX_EXPR
- && code != BIT_AND_EXPR
- && code != BIT_IOR_EXPR
- && code != BIT_XOR_EXPR)
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* If both ranges are UNDEFINED, so is the result. */
- if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
- /* If one of the ranges is UNDEFINED drop it to VARYING for the following
- code. At some point we may want to special-case operations that
- have UNDEFINED result for all or some value-ranges of the not UNDEFINED
- operand. */
- else if (vr0.type == VR_UNDEFINED)
- set_value_range_to_varying (&vr0);
- else if (vr1.type == VR_UNDEFINED)
- set_value_range_to_varying (&vr1);
- /* Now canonicalize anti-ranges to ranges when they are not symbolic
- and express ~[] op X as ([]' op X) U ([]'' op X). */
- if (vr0.type == VR_ANTI_RANGE
- && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
- {
- extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
- if (vrtem1.type != VR_UNDEFINED)
- {
- value_range_t vrres = VR_INITIALIZER;
- extract_range_from_binary_expr_1 (&vrres, code, expr_type,
- &vrtem1, vr1_);
- vrp_meet (vr, &vrres);
- }
- return;
- }
- /* Likewise for X op ~[]. */
- if (vr1.type == VR_ANTI_RANGE
- && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
- {
- extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
- if (vrtem1.type != VR_UNDEFINED)
- {
- value_range_t vrres = VR_INITIALIZER;
- extract_range_from_binary_expr_1 (&vrres, code, expr_type,
- vr0_, &vrtem1);
- vrp_meet (vr, &vrres);
- }
- return;
- }
- /* The type of the resulting value range defaults to VR0.TYPE. */
- type = vr0.type;
- /* Refuse to operate on VARYING ranges, ranges of different kinds
- and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
- because we may be able to derive a useful range even if one of
- the operands is VR_VARYING or symbolic range. Similarly for
- divisions, MIN/MAX and PLUS/MINUS.
- TODO, we may be able to derive anti-ranges in some cases. */
- if (code != BIT_AND_EXPR
- && code != BIT_IOR_EXPR
- && code != TRUNC_DIV_EXPR
- && code != FLOOR_DIV_EXPR
- && code != CEIL_DIV_EXPR
- && code != EXACT_DIV_EXPR
- && code != ROUND_DIV_EXPR
- && code != TRUNC_MOD_EXPR
- && code != MIN_EXPR
- && code != MAX_EXPR
- && code != PLUS_EXPR
- && code != MINUS_EXPR
- && code != RSHIFT_EXPR
- && (vr0.type == VR_VARYING
- || vr1.type == VR_VARYING
- || vr0.type != vr1.type
- || symbolic_range_p (&vr0)
- || symbolic_range_p (&vr1)))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* Now evaluate the expression to determine the new range. */
- if (POINTER_TYPE_P (expr_type))
- {
- if (code == MIN_EXPR || code == MAX_EXPR)
- {
- /* For MIN/MAX expressions with pointers, we only care about
- nullness, if both are non null, then the result is nonnull.
- If both are null, then the result is null. Otherwise they
- are varying. */
- if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
- set_value_range_to_nonnull (vr, expr_type);
- else if (range_is_null (&vr0) && range_is_null (&vr1))
- set_value_range_to_null (vr, expr_type);
- else
- set_value_range_to_varying (vr);
- }
- else if (code == POINTER_PLUS_EXPR)
- {
- /* For pointer types, we are really only interested in asserting
- whether the expression evaluates to non-NULL. */
- if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
- set_value_range_to_nonnull (vr, expr_type);
- else if (range_is_null (&vr0) && range_is_null (&vr1))
- set_value_range_to_null (vr, expr_type);
- else
- set_value_range_to_varying (vr);
- }
- else if (code == BIT_AND_EXPR)
- {
- /* For pointer types, we are really only interested in asserting
- whether the expression evaluates to non-NULL. */
- if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
- set_value_range_to_nonnull (vr, expr_type);
- else if (range_is_null (&vr0) || range_is_null (&vr1))
- set_value_range_to_null (vr, expr_type);
- else
- set_value_range_to_varying (vr);
- }
- else
- set_value_range_to_varying (vr);
- return;
- }
- /* For integer ranges, apply the operation to each end of the
- range and see what we end up with. */
- if (code == PLUS_EXPR || code == MINUS_EXPR)
- {
- const bool minus_p = (code == MINUS_EXPR);
- tree min_op0 = vr0.min;
- tree min_op1 = minus_p ? vr1.max : vr1.min;
- tree max_op0 = vr0.max;
- tree max_op1 = minus_p ? vr1.min : vr1.max;
- tree sym_min_op0 = NULL_TREE;
- tree sym_min_op1 = NULL_TREE;
- tree sym_max_op0 = NULL_TREE;
- tree sym_max_op1 = NULL_TREE;
- bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
- /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
- single-symbolic ranges, try to compute the precise resulting range,
- but only if we know that this resulting range will also be constant
- or single-symbolic. */
- if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
- && (TREE_CODE (min_op0) == INTEGER_CST
- || (sym_min_op0
- = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
- && (TREE_CODE (min_op1) == INTEGER_CST
- || (sym_min_op1
- = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
- && (!(sym_min_op0 && sym_min_op1)
- || (sym_min_op0 == sym_min_op1
- && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
- && (TREE_CODE (max_op0) == INTEGER_CST
- || (sym_max_op0
- = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
- && (TREE_CODE (max_op1) == INTEGER_CST
- || (sym_max_op1
- = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
- && (!(sym_max_op0 && sym_max_op1)
- || (sym_max_op0 == sym_max_op1
- && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
- {
- const signop sgn = TYPE_SIGN (expr_type);
- const unsigned int prec = TYPE_PRECISION (expr_type);
- wide_int type_min, type_max, wmin, wmax;
- int min_ovf = 0;
- int max_ovf = 0;
- /* Get the lower and upper bounds of the type. */
- if (TYPE_OVERFLOW_WRAPS (expr_type))
- {
- type_min = wi::min_value (prec, sgn);
- type_max = wi::max_value (prec, sgn);
- }
- else
- {
- type_min = vrp_val_min (expr_type);
- type_max = vrp_val_max (expr_type);
- }
- /* Combine the lower bounds, if any. */
- if (min_op0 && min_op1)
- {
- if (minus_p)
- {
- wmin = wi::sub (min_op0, min_op1);
- /* Check for overflow. */
- if (wi::cmp (0, min_op1, sgn)
- != wi::cmp (wmin, min_op0, sgn))
- min_ovf = wi::cmp (min_op0, min_op1, sgn);
- }
- else
- {
- wmin = wi::add (min_op0, min_op1);
- /* Check for overflow. */
- if (wi::cmp (min_op1, 0, sgn)
- != wi::cmp (wmin, min_op0, sgn))
- min_ovf = wi::cmp (min_op0, wmin, sgn);
- }
- }
- else if (min_op0)
- wmin = min_op0;
- else if (min_op1)
- wmin = minus_p ? wi::neg (min_op1) : min_op1;
- else
- wmin = wi::shwi (0, prec);
- /* Combine the upper bounds, if any. */
- if (max_op0 && max_op1)
- {
- if (minus_p)
- {
- wmax = wi::sub (max_op0, max_op1);
- /* Check for overflow. */
- if (wi::cmp (0, max_op1, sgn)
- != wi::cmp (wmax, max_op0, sgn))
- max_ovf = wi::cmp (max_op0, max_op1, sgn);
- }
- else
- {
- wmax = wi::add (max_op0, max_op1);
- if (wi::cmp (max_op1, 0, sgn)
- != wi::cmp (wmax, max_op0, sgn))
- max_ovf = wi::cmp (max_op0, wmax, sgn);
- }
- }
- else if (max_op0)
- wmax = max_op0;
- else if (max_op1)
- wmax = minus_p ? wi::neg (max_op1) : max_op1;
- else
- wmax = wi::shwi (0, prec);
- /* Check for type overflow. */
- if (min_ovf == 0)
- {
- if (wi::cmp (wmin, type_min, sgn) == -1)
- min_ovf = -1;
- else if (wi::cmp (wmin, type_max, sgn) == 1)
- min_ovf = 1;
- }
- if (max_ovf == 0)
- {
- if (wi::cmp (wmax, type_min, sgn) == -1)
- max_ovf = -1;
- else if (wi::cmp (wmax, type_max, sgn) == 1)
- max_ovf = 1;
- }
- /* If we have overflow for the constant part and the resulting
- range will be symbolic, drop to VR_VARYING. */
- if ((min_ovf && sym_min_op0 != sym_min_op1)
- || (max_ovf && sym_max_op0 != sym_max_op1))
- {
- set_value_range_to_varying (vr);
- return;
- }
- if (TYPE_OVERFLOW_WRAPS (expr_type))
- {
- /* If overflow wraps, truncate the values and adjust the
- range kind and bounds appropriately. */
- wide_int tmin = wide_int::from (wmin, prec, sgn);
- wide_int tmax = wide_int::from (wmax, prec, sgn);
- if (min_ovf == max_ovf)
- {
- /* No overflow or both overflow or underflow. The
- range kind stays VR_RANGE. */
- min = wide_int_to_tree (expr_type, tmin);
- max = wide_int_to_tree (expr_type, tmax);
- }
- else if (min_ovf == -1 && max_ovf == 1)
- {
- /* Underflow and overflow, drop to VR_VARYING. */
- set_value_range_to_varying (vr);
- return;
- }
- else
- {
- /* Min underflow or max overflow. The range kind
- changes to VR_ANTI_RANGE. */
- bool covers = false;
- wide_int tem = tmin;
- gcc_assert ((min_ovf == -1 && max_ovf == 0)
- || (max_ovf == 1 && min_ovf == 0));
- type = VR_ANTI_RANGE;
- tmin = tmax + 1;
- if (wi::cmp (tmin, tmax, sgn) < 0)
- covers = true;
- tmax = tem - 1;
- if (wi::cmp (tmax, tem, sgn) > 0)
- covers = true;
- /* If the anti-range would cover nothing, drop to varying.
- Likewise if the anti-range bounds are outside of the
- types values. */
- if (covers || wi::cmp (tmin, tmax, sgn) > 0)
- {
- set_value_range_to_varying (vr);
- return;
- }
- min = wide_int_to_tree (expr_type, tmin);
- max = wide_int_to_tree (expr_type, tmax);
- }
- }
- else
- {
- /* If overflow does not wrap, saturate to the types min/max
- value. */
- if (min_ovf == -1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- min = negative_overflow_infinity (expr_type);
- else
- min = wide_int_to_tree (expr_type, type_min);
- }
- else if (min_ovf == 1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- min = positive_overflow_infinity (expr_type);
- else
- min = wide_int_to_tree (expr_type, type_max);
- }
- else
- min = wide_int_to_tree (expr_type, wmin);
- if (max_ovf == -1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- max = negative_overflow_infinity (expr_type);
- else
- max = wide_int_to_tree (expr_type, type_min);
- }
- else if (max_ovf == 1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- max = positive_overflow_infinity (expr_type);
- else
- max = wide_int_to_tree (expr_type, type_max);
- }
- else
- max = wide_int_to_tree (expr_type, wmax);
- }
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- {
- if ((min_op0 && is_negative_overflow_infinity (min_op0))
- || (min_op1
- && (minus_p
- ? is_positive_overflow_infinity (min_op1)
- : is_negative_overflow_infinity (min_op1))))
- min = negative_overflow_infinity (expr_type);
- if ((max_op0 && is_positive_overflow_infinity (max_op0))
- || (max_op1
- && (minus_p
- ? is_negative_overflow_infinity (max_op1)
- : is_positive_overflow_infinity (max_op1))))
- max = positive_overflow_infinity (expr_type);
- }
- /* If the result lower bound is constant, we're done;
- otherwise, build the symbolic lower bound. */
- if (sym_min_op0 == sym_min_op1)
- ;
- else if (sym_min_op0)
- min = build_symbolic_expr (expr_type, sym_min_op0,
- neg_min_op0, min);
- else if (sym_min_op1)
- min = build_symbolic_expr (expr_type, sym_min_op1,
- neg_min_op1 ^ minus_p, min);
- /* Likewise for the upper bound. */
- if (sym_max_op0 == sym_max_op1)
- ;
- else if (sym_max_op0)
- max = build_symbolic_expr (expr_type, sym_max_op0,
- neg_max_op0, max);
- else if (sym_max_op1)
- max = build_symbolic_expr (expr_type, sym_max_op1,
- neg_max_op1 ^ minus_p, max);
- }
- else
- {
- /* For other cases, for example if we have a PLUS_EXPR with two
- VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
- to compute a precise range for such a case.
- ??? General even mixed range kind operations can be expressed
- by for example transforming ~[3, 5] + [1, 2] to range-only
- operations and a union primitive:
- [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
- [-INF+1, 4] U [6, +INF(OVF)]
- though usually the union is not exactly representable with
- a single range or anti-range as the above is
- [-INF+1, +INF(OVF)] intersected with ~[5, 5]
- but one could use a scheme similar to equivalences for this. */
- set_value_range_to_varying (vr);
- return;
- }
- }
- else if (code == MIN_EXPR
- || code == MAX_EXPR)
- {
- if (vr0.type == VR_RANGE
- && !symbolic_range_p (&vr0))
- {
- type = VR_RANGE;
- if (vr1.type == VR_RANGE
- && !symbolic_range_p (&vr1))
- {
- /* For operations that make the resulting range directly
- proportional to the original ranges, apply the operation to
- the same end of each range. */
- min = vrp_int_const_binop (code, vr0.min, vr1.min);
- max = vrp_int_const_binop (code, vr0.max, vr1.max);
- }
- else if (code == MIN_EXPR)
- {
- min = vrp_val_min (expr_type);
- max = vr0.max;
- }
- else if (code == MAX_EXPR)
- {
- min = vr0.min;
- max = vrp_val_max (expr_type);
- }
- }
- else if (vr1.type == VR_RANGE
- && !symbolic_range_p (&vr1))
- {
- type = VR_RANGE;
- if (code == MIN_EXPR)
- {
- min = vrp_val_min (expr_type);
- max = vr1.max;
- }
- else if (code == MAX_EXPR)
- {
- min = vr1.min;
- max = vrp_val_max (expr_type);
- }
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else if (code == MULT_EXPR)
- {
- /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
- drop to varying. This test requires 2*prec bits if both
- operands are signed and 2*prec + 2 bits if either is not. */
- signop sign = TYPE_SIGN (expr_type);
- unsigned int prec = TYPE_PRECISION (expr_type);
- if (range_int_cst_p (&vr0)
- && range_int_cst_p (&vr1)
- && TYPE_OVERFLOW_WRAPS (expr_type))
- {
- typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
- typedef generic_wide_int
- <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
- vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
- vrp_int size = sizem1 + 1;
- /* Extend the values using the sign of the result to PREC2.
- From here on out, everthing is just signed math no matter
- what the input types were. */
- vrp_int min0 = vrp_int_cst (vr0.min);
- vrp_int max0 = vrp_int_cst (vr0.max);
- vrp_int min1 = vrp_int_cst (vr1.min);
- vrp_int max1 = vrp_int_cst (vr1.max);
- /* Canonicalize the intervals. */
- if (sign == UNSIGNED)
- {
- if (wi::ltu_p (size, min0 + max0))
- {
- min0 -= size;
- max0 -= size;
- }
- if (wi::ltu_p (size, min1 + max1))
- {
- min1 -= size;
- max1 -= size;
- }
- }
- vrp_int prod0 = min0 * min1;
- vrp_int prod1 = min0 * max1;
- vrp_int prod2 = max0 * min1;
- vrp_int prod3 = max0 * max1;
- /* Sort the 4 products so that min is in prod0 and max is in
- prod3. */
- /* min0min1 > max0max1 */
- if (wi::gts_p (prod0, prod3))
- {
- vrp_int tmp = prod3;
- prod3 = prod0;
- prod0 = tmp;
- }
- /* min0max1 > max0min1 */
- if (wi::gts_p (prod1, prod2))
- {
- vrp_int tmp = prod2;
- prod2 = prod1;
- prod1 = tmp;
- }
- if (wi::gts_p (prod0, prod1))
- {
- vrp_int tmp = prod1;
- prod1 = prod0;
- prod0 = tmp;
- }
- if (wi::gts_p (prod2, prod3))
- {
- vrp_int tmp = prod3;
- prod3 = prod2;
- prod2 = tmp;
- }
- /* diff = max - min. */
- prod2 = prod3 - prod0;
- if (wi::geu_p (prod2, sizem1))
- {
- /* the range covers all values. */
- set_value_range_to_varying (vr);
- return;
- }
- /* The following should handle the wrapping and selecting
- VR_ANTI_RANGE for us. */
- min = wide_int_to_tree (expr_type, prod0);
- max = wide_int_to_tree (expr_type, prod3);
- set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
- return;
- }
- /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
- drop to VR_VARYING. It would take more effort to compute a
- precise range for such a case. For example, if we have
- op0 == 65536 and op1 == 65536 with their ranges both being
- ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
- we cannot claim that the product is in ~[0,0]. Note that we
- are guaranteed to have vr0.type == vr1.type at this
- point. */
- if (vr0.type == VR_ANTI_RANGE
- && !TYPE_OVERFLOW_UNDEFINED (expr_type))
- {
- set_value_range_to_varying (vr);
- return;
- }
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- else if (code == RSHIFT_EXPR
- || code == LSHIFT_EXPR)
- {
- /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
- then drop to VR_VARYING. Outside of this range we get undefined
- behavior from the shift operation. We cannot even trust
- SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
- shifts, and the operation at the tree level may be widened. */
- if (range_int_cst_p (&vr1)
- && compare_tree_int (vr1.min, 0) >= 0
- && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
- {
- if (code == RSHIFT_EXPR)
- {
- /* Even if vr0 is VARYING or otherwise not usable, we can derive
- useful ranges just from the shift count. E.g.
- x >> 63 for signed 64-bit x is always [-1, 0]. */
- if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
- {
- vr0.type = type = VR_RANGE;
- vr0.min = vrp_val_min (expr_type);
- vr0.max = vrp_val_max (expr_type);
- }
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- /* We can map lshifts by constants to MULT_EXPR handling. */
- else if (code == LSHIFT_EXPR
- && range_int_cst_singleton_p (&vr1))
- {
- bool saved_flag_wrapv;
- value_range_t vr1p = VR_INITIALIZER;
- vr1p.type = VR_RANGE;
- vr1p.min = (wide_int_to_tree
- (expr_type,
- wi::set_bit_in_zero (tree_to_shwi (vr1.min),
- TYPE_PRECISION (expr_type))));
- vr1p.max = vr1p.min;
- /* We have to use a wrapping multiply though as signed overflow
- on lshifts is implementation defined in C89. */
- saved_flag_wrapv = flag_wrapv;
- flag_wrapv = 1;
- extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
- &vr0, &vr1p);
- flag_wrapv = saved_flag_wrapv;
- return;
- }
- else if (code == LSHIFT_EXPR
- && range_int_cst_p (&vr0))
- {
- int prec = TYPE_PRECISION (expr_type);
- int overflow_pos = prec;
- int bound_shift;
- wide_int low_bound, high_bound;
- bool uns = TYPE_UNSIGNED (expr_type);
- bool in_bounds = false;
- if (!uns)
- overflow_pos -= 1;
- bound_shift = overflow_pos - tree_to_shwi (vr1.max);
- /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
- overflow. However, for that to happen, vr1.max needs to be
- zero, which means vr1 is a singleton range of zero, which
- means it should be handled by the previous LSHIFT_EXPR
- if-clause. */
- wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
- wide_int complement = ~(bound - 1);
- if (uns)
- {
- low_bound = bound;
- high_bound = complement;
- if (wi::ltu_p (vr0.max, low_bound))
- {
- /* [5, 6] << [1, 2] == [10, 24]. */
- /* We're shifting out only zeroes, the value increases
- monotonically. */
- in_bounds = true;
- }
- else if (wi::ltu_p (high_bound, vr0.min))
- {
- /* [0xffffff00, 0xffffffff] << [1, 2]
- == [0xfffffc00, 0xfffffffe]. */
- /* We're shifting out only ones, the value decreases
- monotonically. */
- in_bounds = true;
- }
- }
- else
- {
- /* [-1, 1] << [1, 2] == [-4, 4]. */
- low_bound = complement;
- high_bound = bound;
- if (wi::lts_p (vr0.max, high_bound)
- && wi::lts_p (low_bound, vr0.min))
- {
- /* For non-negative numbers, we're shifting out only
- zeroes, the value increases monotonically.
- For negative numbers, we're shifting out only ones, the
- value decreases monotomically. */
- in_bounds = true;
- }
- }
- if (in_bounds)
- {
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- }
- }
- set_value_range_to_varying (vr);
- return;
- }
- else if (code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR)
- {
- if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
- {
- /* For division, if op1 has VR_RANGE but op0 does not, something
- can be deduced just from that range. Say [min, max] / [4, max]
- gives [min / 4, max / 4] range. */
- if (vr1.type == VR_RANGE
- && !symbolic_range_p (&vr1)
- && range_includes_zero_p (vr1.min, vr1.max) == 0)
- {
- vr0.type = type = VR_RANGE;
- vr0.min = vrp_val_min (expr_type);
- vr0.max = vrp_val_max (expr_type);
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- /* For divisions, if flag_non_call_exceptions is true, we must
- not eliminate a division by zero. */
- if (cfun->can_throw_non_call_exceptions
- && (vr1.type != VR_RANGE
- || range_includes_zero_p (vr1.min, vr1.max) != 0))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* For divisions, if op0 is VR_RANGE, we can deduce a range
- even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
- include 0. */
- if (vr0.type == VR_RANGE
- && (vr1.type != VR_RANGE
- || range_includes_zero_p (vr1.min, vr1.max) != 0))
- {
- tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
- int cmp;
- min = NULL_TREE;
- max = NULL_TREE;
- if (TYPE_UNSIGNED (expr_type)
- || value_range_nonnegative_p (&vr1))
- {
- /* For unsigned division or when divisor is known
- to be non-negative, the range has to cover
- all numbers from 0 to max for positive max
- and all numbers from min to 0 for negative min. */
- cmp = compare_values (vr0.max, zero);
- if (cmp == -1)
- max = zero;
- else if (cmp == 0 || cmp == 1)
- max = vr0.max;
- else
- type = VR_VARYING;
- cmp = compare_values (vr0.min, zero);
- if (cmp == 1)
- min = zero;
- else if (cmp == 0 || cmp == -1)
- min = vr0.min;
- else
- type = VR_VARYING;
- }
- else
- {
- /* Otherwise the range is -max .. max or min .. -min
- depending on which bound is bigger in absolute value,
- as the division can change the sign. */
- abs_extent_range (vr, vr0.min, vr0.max);
- return;
- }
- if (type == VR_VARYING)
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- {
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- }
- else if (code == TRUNC_MOD_EXPR)
- {
- if (vr1.type != VR_RANGE
- || range_includes_zero_p (vr1.min, vr1.max) != 0
- || vrp_val_is_min (vr1.min))
- {
- set_value_range_to_varying (vr);
- return;
- }
- type = VR_RANGE;
- /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
- max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
- if (tree_int_cst_lt (max, vr1.max))
- max = vr1.max;
- max = int_const_binop (MINUS_EXPR, max, build_int_cst (TREE_TYPE (max), 1));
- /* If the dividend is non-negative the modulus will be
- non-negative as well. */
- if (TYPE_UNSIGNED (expr_type)
- || value_range_nonnegative_p (&vr0))
- min = build_int_cst (TREE_TYPE (max), 0);
- else
- min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
- }
- else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
- {
- bool int_cst_range0, int_cst_range1;
- wide_int may_be_nonzero0, may_be_nonzero1;
- wide_int must_be_nonzero0, must_be_nonzero1;
- int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
- &may_be_nonzero0,
- &must_be_nonzero0);
- int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
- &may_be_nonzero1,
- &must_be_nonzero1);
- type = VR_RANGE;
- if (code == BIT_AND_EXPR)
- {
- min = wide_int_to_tree (expr_type,
- must_be_nonzero0 & must_be_nonzero1);
- wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
- /* If both input ranges contain only negative values we can
- truncate the result range maximum to the minimum of the
- input range maxima. */
- if (int_cst_range0 && int_cst_range1
- && tree_int_cst_sgn (vr0.max) < 0
- && tree_int_cst_sgn (vr1.max) < 0)
- {
- wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
- wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
- }
- /* If either input range contains only non-negative values
- we can truncate the result range maximum to the respective
- maximum of the input range. */
- if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
- wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
- if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
- wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
- max = wide_int_to_tree (expr_type, wmax);
- }
- else if (code == BIT_IOR_EXPR)
- {
- max = wide_int_to_tree (expr_type,
- may_be_nonzero0 | may_be_nonzero1);
- wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
- /* If the input ranges contain only positive values we can
- truncate the minimum of the result range to the maximum
- of the input range minima. */
- if (int_cst_range0 && int_cst_range1
- && tree_int_cst_sgn (vr0.min) >= 0
- && tree_int_cst_sgn (vr1.min) >= 0)
- {
- wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
- wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
- }
- /* If either input range contains only negative values
- we can truncate the minimum of the result range to the
- respective minimum range. */
- if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
- wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
- if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
- wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
- min = wide_int_to_tree (expr_type, wmin);
- }
- else if (code == BIT_XOR_EXPR)
- {
- wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
- | ~(may_be_nonzero0 | may_be_nonzero1));
- wide_int result_one_bits
- = (must_be_nonzero0.and_not (may_be_nonzero1)
- | must_be_nonzero1.and_not (may_be_nonzero0));
- max = wide_int_to_tree (expr_type, ~result_zero_bits);
- min = wide_int_to_tree (expr_type, result_one_bits);
- /* If the range has all positive or all negative values the
- result is better than VARYING. */
- if (tree_int_cst_sgn (min) < 0
- || tree_int_cst_sgn (max) >= 0)
- ;
- else
- max = min = NULL_TREE;
- }
- }
- else
- gcc_unreachable ();
- /* If either MIN or MAX overflowed, then set the resulting range to
- VARYING. But we do accept an overflow infinity representation. */
- if (min == NULL_TREE
- || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
- || max == NULL_TREE
- || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* We punt if:
- 1) [-INF, +INF]
- 2) [-INF, +-INF(OVF)]
- 3) [+-INF(OVF), +INF]
- 4) [+-INF(OVF), +-INF(OVF)]
- We learn nothing when we have INF and INF(OVF) on both sides.
- Note that we do accept [-INF, -INF] and [+INF, +INF] without
- overflow. */
- if ((vrp_val_is_min (min) || is_overflow_infinity (min))
- && (vrp_val_is_max (max) || is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, type, min, max, NULL);
- }
- /* Extract range information from a binary expression OP0 CODE OP1 based on
- the ranges of each of its operands with resulting type EXPR_TYPE.
- The resulting range is stored in *VR. */
- static void
- extract_range_from_binary_expr (value_range_t *vr,
- enum tree_code code,
- tree expr_type, tree op0, tree op1)
- {
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
- /* Get value ranges for each operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *(get_value_range (op1));
- else if (is_gimple_min_invariant (op1))
- set_value_range_to_value (&vr1, op1, NULL);
- else
- set_value_range_to_varying (&vr1);
- extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
- /* Try harder for PLUS and MINUS if the range of one operand is symbolic
- and based on the other operand, for example if it was deduced from a
- symbolic comparison. When a bound of the range of the first operand
- is invariant, we set the corresponding bound of the new range to INF
- in order to avoid recursing on the range of the second operand. */
- if (vr->type == VR_VARYING
- && (code == PLUS_EXPR || code == MINUS_EXPR)
- && TREE_CODE (op1) == SSA_NAME
- && vr0.type == VR_RANGE
- && symbolic_range_based_on_p (&vr0, op1))
- {
- const bool minus_p = (code == MINUS_EXPR);
- value_range_t n_vr1 = VR_INITIALIZER;
- /* Try with VR0 and [-INF, OP1]. */
- if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
- set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
- /* Try with VR0 and [OP1, +INF]. */
- else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
- set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
- /* Try with VR0 and [OP1, OP1]. */
- else
- set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
- extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
- }
- if (vr->type == VR_VARYING
- && (code == PLUS_EXPR || code == MINUS_EXPR)
- && TREE_CODE (op0) == SSA_NAME
- && vr1.type == VR_RANGE
- && symbolic_range_based_on_p (&vr1, op0))
- {
- const bool minus_p = (code == MINUS_EXPR);
- value_range_t n_vr0 = VR_INITIALIZER;
- /* Try with [-INF, OP0] and VR1. */
- if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
- set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
- /* Try with [OP0, +INF] and VR1. */
- else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
- set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
- /* Try with [OP0, OP0] and VR1. */
- else
- set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
- extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
- }
- }
- /* Extract range information from a unary operation CODE based on
- the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
- The The resulting range is stored in *VR. */
- static void
- extract_range_from_unary_expr_1 (value_range_t *vr,
- enum tree_code code, tree type,
- value_range_t *vr0_, tree op0_type)
- {
- value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
- /* VRP only operates on integral and pointer types. */
- if (!(INTEGRAL_TYPE_P (op0_type)
- || POINTER_TYPE_P (op0_type))
- || !(INTEGRAL_TYPE_P (type)
- || POINTER_TYPE_P (type)))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* If VR0 is UNDEFINED, so is the result. */
- if (vr0.type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
- /* Handle operations that we express in terms of others. */
- if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
- {
- /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
- copy_value_range (vr, &vr0);
- return;
- }
- else if (code == NEGATE_EXPR)
- {
- /* -X is simply 0 - X, so re-use existing code that also handles
- anti-ranges fine. */
- value_range_t zero = VR_INITIALIZER;
- set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
- extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
- return;
- }
- else if (code == BIT_NOT_EXPR)
- {
- /* ~X is simply -1 - X, so re-use existing code that also handles
- anti-ranges fine. */
- value_range_t minusone = VR_INITIALIZER;
- set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
- extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
- type, &minusone, &vr0);
- return;
- }
- /* Now canonicalize anti-ranges to ranges when they are not symbolic
- and express op ~[] as (op []') U (op []''). */
- if (vr0.type == VR_ANTI_RANGE
- && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
- {
- extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
- if (vrtem1.type != VR_UNDEFINED)
- {
- value_range_t vrres = VR_INITIALIZER;
- extract_range_from_unary_expr_1 (&vrres, code, type,
- &vrtem1, op0_type);
- vrp_meet (vr, &vrres);
- }
- return;
- }
- if (CONVERT_EXPR_CODE_P (code))
- {
- tree inner_type = op0_type;
- tree outer_type = type;
- /* If the expression evaluates to a pointer, we are only interested in
- determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
- if (POINTER_TYPE_P (type))
- {
- if (range_is_nonnull (&vr0))
- set_value_range_to_nonnull (vr, type);
- else if (range_is_null (&vr0))
- set_value_range_to_null (vr, type);
- else
- set_value_range_to_varying (vr);
- return;
- }
- /* If VR0 is varying and we increase the type precision, assume
- a full range for the following transformation. */
- if (vr0.type == VR_VARYING
- && INTEGRAL_TYPE_P (inner_type)
- && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
- {
- vr0.type = VR_RANGE;
- vr0.min = TYPE_MIN_VALUE (inner_type);
- vr0.max = TYPE_MAX_VALUE (inner_type);
- }
- /* If VR0 is a constant range or anti-range and the conversion is
- not truncating we can convert the min and max values and
- canonicalize the resulting range. Otherwise we can do the
- conversion if the size of the range is less than what the
- precision of the target type can represent and the range is
- not an anti-range. */
- if ((vr0.type == VR_RANGE
- || vr0.type == VR_ANTI_RANGE)
- && TREE_CODE (vr0.min) == INTEGER_CST
- && TREE_CODE (vr0.max) == INTEGER_CST
- && (!is_overflow_infinity (vr0.min)
- || (vr0.type == VR_RANGE
- && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
- && needs_overflow_infinity (outer_type)
- && supports_overflow_infinity (outer_type)))
- && (!is_overflow_infinity (vr0.max)
- || (vr0.type == VR_RANGE
- && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
- && needs_overflow_infinity (outer_type)
- && supports_overflow_infinity (outer_type)))
- && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
- || (vr0.type == VR_RANGE
- && integer_zerop (int_const_binop (RSHIFT_EXPR,
- int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
- size_int (TYPE_PRECISION (outer_type)))))))
- {
- tree new_min, new_max;
- if (is_overflow_infinity (vr0.min))
- new_min = negative_overflow_infinity (outer_type);
- else
- new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
- 0, false);
- if (is_overflow_infinity (vr0.max))
- new_max = positive_overflow_infinity (outer_type);
- else
- new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
- 0, false);
- set_and_canonicalize_value_range (vr, vr0.type,
- new_min, new_max, NULL);
- return;
- }
- set_value_range_to_varying (vr);
- return;
- }
- else if (code == ABS_EXPR)
- {
- tree min, max;
- int cmp;
- /* Pass through vr0 in the easy cases. */
- if (TYPE_UNSIGNED (type)
- || value_range_nonnegative_p (&vr0))
- {
- copy_value_range (vr, &vr0);
- return;
- }
- /* For the remaining varying or symbolic ranges we can't do anything
- useful. */
- if (vr0.type == VR_VARYING
- || symbolic_range_p (&vr0))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
- useful range. */
- if (!TYPE_OVERFLOW_UNDEFINED (type)
- && ((vr0.type == VR_RANGE
- && vrp_val_is_min (vr0.min))
- || (vr0.type == VR_ANTI_RANGE
- && !vrp_val_is_min (vr0.min))))
- {
- set_value_range_to_varying (vr);
- return;
- }
- /* ABS_EXPR may flip the range around, if the original range
- included negative values. */
- if (is_overflow_infinity (vr0.min))
- min = positive_overflow_infinity (type);
- else if (!vrp_val_is_min (vr0.min))
- min = fold_unary_to_constant (code, type, vr0.min);
- else if (!needs_overflow_infinity (type))
- min = TYPE_MAX_VALUE (type);
- else if (supports_overflow_infinity (type))
- min = positive_overflow_infinity (type);
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- if (is_overflow_infinity (vr0.max))
- max = positive_overflow_infinity (type);
- else if (!vrp_val_is_min (vr0.max))
- max = fold_unary_to_constant (code, type, vr0.max);
- else if (!needs_overflow_infinity (type))
- max = TYPE_MAX_VALUE (type);
- else if (supports_overflow_infinity (type)
- /* We shouldn't generate [+INF, +INF] as set_value_range
- doesn't like this and ICEs. */
- && !is_positive_overflow_infinity (min))
- max = positive_overflow_infinity (type);
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- cmp = compare_values (min, max);
- /* If a VR_ANTI_RANGEs contains zero, then we have
- ~[-INF, min(MIN, MAX)]. */
- if (vr0.type == VR_ANTI_RANGE)
- {
- if (range_includes_zero_p (vr0.min, vr0.max) == 1)
- {
- /* Take the lower of the two values. */
- if (cmp != 1)
- max = min;
- /* Create ~[-INF, min (abs(MIN), abs(MAX))]
- or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
- flag_wrapv is set and the original anti-range doesn't include
- TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
- if (TYPE_OVERFLOW_WRAPS (type))
- {
- tree type_min_value = TYPE_MIN_VALUE (type);
- min = (vr0.min != type_min_value
- ? int_const_binop (PLUS_EXPR, type_min_value,
- build_int_cst (TREE_TYPE (type_min_value), 1))
- : type_min_value);
- }
- else
- {
- if (overflow_infinity_range_p (&vr0))
- min = negative_overflow_infinity (type);
- else
- min = TYPE_MIN_VALUE (type);
- }
- }
- else
- {
- /* All else has failed, so create the range [0, INF], even for
- flag_wrapv since TYPE_MIN_VALUE is in the original
- anti-range. */
- vr0.type = VR_RANGE;
- min = build_int_cst (type, 0);
- if (needs_overflow_infinity (type))
- {
- if (supports_overflow_infinity (type))
- max = positive_overflow_infinity (type);
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- max = TYPE_MAX_VALUE (type);
- }
- }
- /* If the range contains zero then we know that the minimum value in the
- range will be zero. */
- else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
- {
- if (cmp == 1)
- max = min;
- min = build_int_cst (type, 0);
- }
- else
- {
- /* If the range was reversed, swap MIN and MAX. */
- if (cmp == 1)
- {
- tree t = min;
- min = max;
- max = t;
- }
- }
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, vr0.type, min, max, NULL);
- return;
- }
- /* For unhandled operations fall back to varying. */
- set_value_range_to_varying (vr);
- return;
- }
- /* Extract range information from a unary expression CODE OP0 based on
- the range of its operand with resulting type TYPE.
- The resulting range is stored in *VR. */
- static void
- extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
- tree type, tree op0)
- {
- value_range_t vr0 = VR_INITIALIZER;
- /* Get value ranges for the operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
- extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
- }
- /* Extract range information from a conditional expression STMT based on
- the ranges of each of its operands and the expression code. */
- static void
- extract_range_from_cond_expr (value_range_t *vr, gassign *stmt)
- {
- tree op0, op1;
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
- /* Get value ranges for each operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- op0 = gimple_assign_rhs2 (stmt);
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
- op1 = gimple_assign_rhs3 (stmt);
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *(get_value_range (op1));
- else if (is_gimple_min_invariant (op1))
- set_value_range_to_value (&vr1, op1, NULL);
- else
- set_value_range_to_varying (&vr1);
- /* The resulting value range is the union of the operand ranges */
- copy_value_range (vr, &vr0);
- vrp_meet (vr, &vr1);
- }
- /* Extract range information from a comparison expression EXPR based
- on the range of its operand and the expression code. */
- static void
- extract_range_from_comparison (value_range_t *vr, enum tree_code code,
- tree type, tree op0, tree op1)
- {
- bool sop = false;
- tree val;
- val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
- NULL);
- /* A disadvantage of using a special infinity as an overflow
- representation is that we lose the ability to record overflow
- when we don't have an infinity. So we have to ignore a result
- which relies on overflow. */
- if (val && !is_overflow_infinity (val) && !sop)
- {
- /* Since this expression was found on the RHS of an assignment,
- its type may be different from _Bool. Convert VAL to EXPR's
- type. */
- val = fold_convert (type, val);
- if (is_gimple_min_invariant (val))
- set_value_range_to_value (vr, val, vr->equiv);
- else
- set_value_range (vr, VR_RANGE, val, val, vr->equiv);
- }
- else
- /* The result of a comparison is always true or false. */
- set_value_range_to_truthvalue (vr, type);
- }
- /* Helper function for simplify_internal_call_using_ranges and
- extract_range_basic. Return true if OP0 SUBCODE OP1 for
- SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
- always overflow. Set *OVF to true if it is known to always
- overflow. */
- static bool
- check_for_binary_op_overflow (enum tree_code subcode, tree type,
- tree op0, tree op1, bool *ovf)
- {
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *get_value_range (op0);
- else if (TREE_CODE (op0) == INTEGER_CST)
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *get_value_range (op1);
- else if (TREE_CODE (op1) == INTEGER_CST)
- set_value_range_to_value (&vr1, op1, NULL);
- else
- set_value_range_to_varying (&vr1);
- if (!range_int_cst_p (&vr0)
- || TREE_OVERFLOW (vr0.min)
- || TREE_OVERFLOW (vr0.max))
- {
- vr0.min = vrp_val_min (TREE_TYPE (op0));
- vr0.max = vrp_val_max (TREE_TYPE (op0));
- }
- if (!range_int_cst_p (&vr1)
- || TREE_OVERFLOW (vr1.min)
- || TREE_OVERFLOW (vr1.max))
- {
- vr1.min = vrp_val_min (TREE_TYPE (op1));
- vr1.max = vrp_val_max (TREE_TYPE (op1));
- }
- *ovf = arith_overflowed_p (subcode, type, vr0.min,
- subcode == MINUS_EXPR ? vr1.max : vr1.min);
- if (arith_overflowed_p (subcode, type, vr0.max,
- subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
- return false;
- if (subcode == MULT_EXPR)
- {
- if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
- || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
- return false;
- }
- if (*ovf)
- {
- /* So far we found that there is an overflow on the boundaries.
- That doesn't prove that there is an overflow even for all values
- in between the boundaries. For that compute widest_int range
- of the result and see if it doesn't overlap the range of
- type. */
- widest_int wmin, wmax;
- widest_int w[4];
- int i;
- w[0] = wi::to_widest (vr0.min);
- w[1] = wi::to_widest (vr0.max);
- w[2] = wi::to_widest (vr1.min);
- w[3] = wi::to_widest (vr1.max);
- for (i = 0; i < 4; i++)
- {
- widest_int wt;
- switch (subcode)
- {
- case PLUS_EXPR:
- wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
- break;
- case MINUS_EXPR:
- wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
- break;
- case MULT_EXPR:
- wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
- break;
- default:
- gcc_unreachable ();
- }
- if (i == 0)
- {
- wmin = wt;
- wmax = wt;
- }
- else
- {
- wmin = wi::smin (wmin, wt);
- wmax = wi::smax (wmax, wt);
- }
- }
- /* The result of op0 CODE op1 is known to be in range
- [wmin, wmax]. */
- widest_int wtmin = wi::to_widest (vrp_val_min (type));
- widest_int wtmax = wi::to_widest (vrp_val_max (type));
- /* If all values in [wmin, wmax] are smaller than
- [wtmin, wtmax] or all are larger than [wtmin, wtmax],
- the arithmetic operation will always overflow. */
- if (wi::lts_p (wmax, wtmin) || wi::gts_p (wmin, wtmax))
- return true;
- return false;
- }
- return true;
- }
- /* Try to derive a nonnegative or nonzero range out of STMT relying
- primarily on generic routines in fold in conjunction with range data.
- Store the result in *VR */
- static void
- extract_range_basic (value_range_t *vr, gimple stmt)
- {
- bool sop = false;
- tree type = gimple_expr_type (stmt);
- if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
- {
- tree fndecl = gimple_call_fndecl (stmt), arg;
- int mini, maxi, zerov = 0, prec;
- switch (DECL_FUNCTION_CODE (fndecl))
- {
- case BUILT_IN_CONSTANT_P:
- /* If the call is __builtin_constant_p and the argument is a
- function parameter resolve it to false. This avoids bogus
- array bound warnings.
- ??? We could do this as early as inlining is finished. */
- arg = gimple_call_arg (stmt, 0);
- if (TREE_CODE (arg) == SSA_NAME
- && SSA_NAME_IS_DEFAULT_DEF (arg)
- && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
- {
- set_value_range_to_null (vr, type);
- return;
- }
- break;
- /* Both __builtin_ffs* and __builtin_popcount return
- [0, prec]. */
- CASE_INT_FN (BUILT_IN_FFS):
- CASE_INT_FN (BUILT_IN_POPCOUNT):
- arg = gimple_call_arg (stmt, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- mini = 0;
- maxi = prec;
- if (TREE_CODE (arg) == SSA_NAME)
- {
- value_range_t *vr0 = get_value_range (arg);
- /* If arg is non-zero, then ffs or popcount
- are non-zero. */
- if (((vr0->type == VR_RANGE
- && range_includes_zero_p (vr0->min, vr0->max) == 0)
- || (vr0->type == VR_ANTI_RANGE
- && range_includes_zero_p (vr0->min, vr0->max) == 1))
- && !is_overflow_infinity (vr0->min)
- && !is_overflow_infinity (vr0->max))
- mini = 1;
- /* If some high bits are known to be zero,
- we can decrease the maximum. */
- if (vr0->type == VR_RANGE
- && TREE_CODE (vr0->max) == INTEGER_CST
- && !operand_less_p (vr0->min,
- build_zero_cst (TREE_TYPE (vr0->min)))
- && !is_overflow_infinity (vr0->max))
- maxi = tree_floor_log2 (vr0->max) + 1;
- }
- goto bitop_builtin;
- /* __builtin_parity* returns [0, 1]. */
- CASE_INT_FN (BUILT_IN_PARITY):
- mini = 0;
- maxi = 1;
- goto bitop_builtin;
- /* __builtin_c[lt]z* return [0, prec-1], except for
- when the argument is 0, but that is undefined behavior.
- On many targets where the CLZ RTL or optab value is defined
- for 0 the value is prec, so include that in the range
- by default. */
- CASE_INT_FN (BUILT_IN_CLZ):
- arg = gimple_call_arg (stmt, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- mini = 0;
- maxi = prec;
- if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
- != CODE_FOR_nothing
- && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
- zerov)
- /* Handle only the single common value. */
- && zerov != prec)
- /* Magic value to give up, unless vr0 proves
- arg is non-zero. */
- mini = -2;
- if (TREE_CODE (arg) == SSA_NAME)
- {
- value_range_t *vr0 = get_value_range (arg);
- /* From clz of VR_RANGE minimum we can compute
- result maximum. */
- if (vr0->type == VR_RANGE
- && TREE_CODE (vr0->min) == INTEGER_CST
- && !is_overflow_infinity (vr0->min))
- {
- maxi = prec - 1 - tree_floor_log2 (vr0->min);
- if (maxi != prec)
- mini = 0;
- }
- else if (vr0->type == VR_ANTI_RANGE
- && integer_zerop (vr0->min)
- && !is_overflow_infinity (vr0->min))
- {
- maxi = prec - 1;
- mini = 0;
- }
- if (mini == -2)
- break;
- /* From clz of VR_RANGE maximum we can compute
- result minimum. */
- if (vr0->type == VR_RANGE
- && TREE_CODE (vr0->max) == INTEGER_CST
- && !is_overflow_infinity (vr0->max))
- {
- mini = prec - 1 - tree_floor_log2 (vr0->max);
- if (mini == prec)
- break;
- }
- }
- if (mini == -2)
- break;
- goto bitop_builtin;
- /* __builtin_ctz* return [0, prec-1], except for
- when the argument is 0, but that is undefined behavior.
- If there is a ctz optab for this mode and
- CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
- otherwise just assume 0 won't be seen. */
- CASE_INT_FN (BUILT_IN_CTZ):
- arg = gimple_call_arg (stmt, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- mini = 0;
- maxi = prec - 1;
- if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
- != CODE_FOR_nothing
- && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
- zerov))
- {
- /* Handle only the two common values. */
- if (zerov == -1)
- mini = -1;
- else if (zerov == prec)
- maxi = prec;
- else
- /* Magic value to give up, unless vr0 proves
- arg is non-zero. */
- mini = -2;
- }
- if (TREE_CODE (arg) == SSA_NAME)
- {
- value_range_t *vr0 = get_value_range (arg);
- /* If arg is non-zero, then use [0, prec - 1]. */
- if (((vr0->type == VR_RANGE
- && integer_nonzerop (vr0->min))
- || (vr0->type == VR_ANTI_RANGE
- && integer_zerop (vr0->min)))
- && !is_overflow_infinity (vr0->min))
- {
- mini = 0;
- maxi = prec - 1;
- }
- /* If some high bits are known to be zero,
- we can decrease the result maximum. */
- if (vr0->type == VR_RANGE
- && TREE_CODE (vr0->max) == INTEGER_CST
- && !is_overflow_infinity (vr0->max))
- {
- maxi = tree_floor_log2 (vr0->max);
- /* For vr0 [0, 0] give up. */
- if (maxi == -1)
- break;
- }
- }
- if (mini == -2)
- break;
- goto bitop_builtin;
- /* __builtin_clrsb* returns [0, prec-1]. */
- CASE_INT_FN (BUILT_IN_CLRSB):
- arg = gimple_call_arg (stmt, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- mini = 0;
- maxi = prec - 1;
- goto bitop_builtin;
- bitop_builtin:
- set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
- build_int_cst (type, maxi), NULL);
- return;
- default:
- break;
- }
- }
- else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
- {
- enum tree_code subcode = ERROR_MARK;
- switch (gimple_call_internal_fn (stmt))
- {
- case IFN_UBSAN_CHECK_ADD:
- subcode = PLUS_EXPR;
- break;
- case IFN_UBSAN_CHECK_SUB:
- subcode = MINUS_EXPR;
- break;
- case IFN_UBSAN_CHECK_MUL:
- subcode = MULT_EXPR;
- break;
- default:
- break;
- }
- if (subcode != ERROR_MARK)
- {
- bool saved_flag_wrapv = flag_wrapv;
- /* Pretend the arithmetics is wrapping. If there is
- any overflow, we'll complain, but will actually do
- wrapping operation. */
- flag_wrapv = 1;
- extract_range_from_binary_expr (vr, subcode, type,
- gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1));
- flag_wrapv = saved_flag_wrapv;
- /* If for both arguments vrp_valueize returned non-NULL,
- this should have been already folded and if not, it
- wasn't folded because of overflow. Avoid removing the
- UBSAN_CHECK_* calls in that case. */
- if (vr->type == VR_RANGE
- && (vr->min == vr->max
- || operand_equal_p (vr->min, vr->max, 0)))
- set_value_range_to_varying (vr);
- return;
- }
- }
- /* Handle extraction of the two results (result of arithmetics and
- a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
- internal function. */
- else if (is_gimple_assign (stmt)
- && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
- || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
- && INTEGRAL_TYPE_P (type))
- {
- enum tree_code code = gimple_assign_rhs_code (stmt);
- tree op = gimple_assign_rhs1 (stmt);
- if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
- {
- gimple g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
- if (is_gimple_call (g) && gimple_call_internal_p (g))
- {
- enum tree_code subcode = ERROR_MARK;
- switch (gimple_call_internal_fn (g))
- {
- case IFN_ADD_OVERFLOW:
- subcode = PLUS_EXPR;
- break;
- case IFN_SUB_OVERFLOW:
- subcode = MINUS_EXPR;
- break;
- case IFN_MUL_OVERFLOW:
- subcode = MULT_EXPR;
- break;
- default:
- break;
- }
- if (subcode != ERROR_MARK)
- {
- tree op0 = gimple_call_arg (g, 0);
- tree op1 = gimple_call_arg (g, 1);
- if (code == IMAGPART_EXPR)
- {
- bool ovf = false;
- if (check_for_binary_op_overflow (subcode, type,
- op0, op1, &ovf))
- set_value_range_to_value (vr,
- build_int_cst (type, ovf),
- NULL);
- else
- set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
- build_int_cst (type, 1), NULL);
- }
- else if (types_compatible_p (type, TREE_TYPE (op0))
- && types_compatible_p (type, TREE_TYPE (op1)))
- {
- bool saved_flag_wrapv = flag_wrapv;
- /* Pretend the arithmetics is wrapping. If there is
- any overflow, IMAGPART_EXPR will be set. */
- flag_wrapv = 1;
- extract_range_from_binary_expr (vr, subcode, type,
- op0, op1);
- flag_wrapv = saved_flag_wrapv;
- }
- else
- {
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
- bool saved_flag_wrapv = flag_wrapv;
- /* Pretend the arithmetics is wrapping. If there is
- any overflow, IMAGPART_EXPR will be set. */
- flag_wrapv = 1;
- extract_range_from_unary_expr (&vr0, NOP_EXPR,
- type, op0);
- extract_range_from_unary_expr (&vr1, NOP_EXPR,
- type, op1);
- extract_range_from_binary_expr_1 (vr, subcode, type,
- &vr0, &vr1);
- flag_wrapv = saved_flag_wrapv;
- }
- return;
- }
- }
- }
- }
- if (INTEGRAL_TYPE_P (type)
- && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
- set_value_range_to_nonnegative (vr, type,
- sop || stmt_overflow_infinity (stmt));
- else if (vrp_stmt_computes_nonzero (stmt, &sop)
- && !sop)
- set_value_range_to_nonnull (vr, type);
- else
- set_value_range_to_varying (vr);
- }
- /* Try to compute a useful range out of assignment STMT and store it
- in *VR. */
- static void
- extract_range_from_assignment (value_range_t *vr, gassign *stmt)
- {
- enum tree_code code = gimple_assign_rhs_code (stmt);
- if (code == ASSERT_EXPR)
- extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
- else if (code == SSA_NAME)
- extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
- else if (TREE_CODE_CLASS (code) == tcc_binary)
- extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt));
- else if (TREE_CODE_CLASS (code) == tcc_unary)
- extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt));
- else if (code == COND_EXPR)
- extract_range_from_cond_expr (vr, stmt);
- else if (TREE_CODE_CLASS (code) == tcc_comparison)
- extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt));
- else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
- && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
- set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
- else
- set_value_range_to_varying (vr);
- if (vr->type == VR_VARYING)
- extract_range_basic (vr, stmt);
- }
- /* Given a range VR, a LOOP and a variable VAR, determine whether it
- would be profitable to adjust VR using scalar evolution information
- for VAR. If so, update VR with the new limits. */
- static void
- adjust_range_with_scev (value_range_t *vr, struct loop *loop,
- gimple stmt, tree var)
- {
- tree init, step, chrec, tmin, tmax, min, max, type, tem;
- enum ev_direction dir;
- /* TODO. Don't adjust anti-ranges. An anti-range may provide
- better opportunities than a regular range, but I'm not sure. */
- if (vr->type == VR_ANTI_RANGE)
- return;
- chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
- /* Like in PR19590, scev can return a constant function. */
- if (is_gimple_min_invariant (chrec))
- {
- set_value_range_to_value (vr, chrec, vr->equiv);
- return;
- }
- if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
- return;
- init = initial_condition_in_loop_num (chrec, loop->num);
- tem = op_with_constant_singleton_value_range (init);
- if (tem)
- init = tem;
- step = evolution_part_in_loop_num (chrec, loop->num);
- tem = op_with_constant_singleton_value_range (step);
- if (tem)
- step = tem;
- /* If STEP is symbolic, we can't know whether INIT will be the
- minimum or maximum value in the range. Also, unless INIT is
- a simple expression, compare_values and possibly other functions
- in tree-vrp won't be able to handle it. */
- if (step == NULL_TREE
- || !is_gimple_min_invariant (step)
- || !valid_value_p (init))
- return;
- dir = scev_direction (chrec);
- if (/* Do not adjust ranges if we do not know whether the iv increases
- or decreases, ... */
- dir == EV_DIR_UNKNOWN
- /* ... or if it may wrap. */
- || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
- true))
- return;
- /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
- negative_overflow_infinity and positive_overflow_infinity,
- because we have concluded that the loop probably does not
- wrap. */
- type = TREE_TYPE (var);
- if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
- tmin = lower_bound_in_type (type, type);
- else
- tmin = TYPE_MIN_VALUE (type);
- if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
- tmax = upper_bound_in_type (type, type);
- else
- tmax = TYPE_MAX_VALUE (type);
- /* Try to use estimated number of iterations for the loop to constrain the
- final value in the evolution. */
- if (TREE_CODE (step) == INTEGER_CST
- && is_gimple_val (init)
- && (TREE_CODE (init) != SSA_NAME
- || get_value_range (init)->type == VR_RANGE))
- {
- widest_int nit;
- /* We are only entering here for loop header PHI nodes, so using
- the number of latch executions is the correct thing to use. */
- if (max_loop_iterations (loop, &nit))
- {
- value_range_t maxvr = VR_INITIALIZER;
- signop sgn = TYPE_SIGN (TREE_TYPE (step));
- bool overflow;
- widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
- &overflow);
- /* If the multiplication overflowed we can't do a meaningful
- adjustment. Likewise if the result doesn't fit in the type
- of the induction variable. For a signed type we have to
- check whether the result has the expected signedness which
- is that of the step as number of iterations is unsigned. */
- if (!overflow
- && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
- && (sgn == UNSIGNED
- || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
- {
- tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
- extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
- TREE_TYPE (init), init, tem);
- /* Likewise if the addition did. */
- if (maxvr.type == VR_RANGE)
- {
- tmin = maxvr.min;
- tmax = maxvr.max;
- }
- }
- }
- }
- if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
- {
- min = tmin;
- max = tmax;
- /* For VARYING or UNDEFINED ranges, just about anything we get
- from scalar evolutions should be better. */
- if (dir == EV_DIR_DECREASES)
- max = init;
- else
- min = init;
- }
- else if (vr->type == VR_RANGE)
- {
- min = vr->min;
- max = vr->max;
- if (dir == EV_DIR_DECREASES)
- {
- /* INIT is the maximum value. If INIT is lower than VR->MAX
- but no smaller than VR->MIN, set VR->MAX to INIT. */
- if (compare_values (init, max) == -1)
- max = init;
- /* According to the loop information, the variable does not
- overflow. If we think it does, probably because of an
- overflow due to arithmetic on a different INF value,
- reset now. */
- if (is_negative_overflow_infinity (min)
- || compare_values (min, tmin) == -1)
- min = tmin;
- }
- else
- {
- /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
- if (compare_values (init, min) == 1)
- min = init;
- if (is_positive_overflow_infinity (max)
- || compare_values (tmax, max) == -1)
- max = tmax;
- }
- }
- else
- return;
- /* If we just created an invalid range with the minimum
- greater than the maximum, we fail conservatively.
- This should happen only in unreachable
- parts of code, or for invalid programs. */
- if (compare_values (min, max) == 1
- || (is_negative_overflow_infinity (min)
- && is_positive_overflow_infinity (max)))
- return;
- set_value_range (vr, VR_RANGE, min, max, vr->equiv);
- }
- /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
- - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
- all the values in the ranges.
- - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
- - Return NULL_TREE if it is not always possible to determine the
- value of the comparison.
- Also set *STRICT_OVERFLOW_P to indicate whether a range with an
- overflow infinity was used in the test. */
- static tree
- compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
- bool *strict_overflow_p)
- {
- /* VARYING or UNDEFINED ranges cannot be compared. */
- if (vr0->type == VR_VARYING
- || vr0->type == VR_UNDEFINED
- || vr1->type == VR_VARYING
- || vr1->type == VR_UNDEFINED)
- return NULL_TREE;
- /* Anti-ranges need to be handled separately. */
- if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
- {
- /* If both are anti-ranges, then we cannot compute any
- comparison. */
- if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
- return NULL_TREE;
- /* These comparisons are never statically computable. */
- if (comp == GT_EXPR
- || comp == GE_EXPR
- || comp == LT_EXPR
- || comp == LE_EXPR)
- return NULL_TREE;
- /* Equality can be computed only between a range and an
- anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
- if (vr0->type == VR_RANGE)
- {
- /* To simplify processing, make VR0 the anti-range. */
- value_range_t *tmp = vr0;
- vr0 = vr1;
- vr1 = tmp;
- }
- gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
- if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
- && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
- return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
- return NULL_TREE;
- }
- if (!usable_range_p (vr0, strict_overflow_p)
- || !usable_range_p (vr1, strict_overflow_p))
- return NULL_TREE;
- /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
- operands around and change the comparison code. */
- if (comp == GT_EXPR || comp == GE_EXPR)
- {
- value_range_t *tmp;
- comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
- tmp = vr0;
- vr0 = vr1;
- vr1 = tmp;
- }
- if (comp == EQ_EXPR)
- {
- /* Equality may only be computed if both ranges represent
- exactly one value. */
- if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
- && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
- {
- int cmp_min = compare_values_warnv (vr0->min, vr1->min,
- strict_overflow_p);
- int cmp_max = compare_values_warnv (vr0->max, vr1->max,
- strict_overflow_p);
- if (cmp_min == 0 && cmp_max == 0)
- return boolean_true_node;
- else if (cmp_min != -2 && cmp_max != -2)
- return boolean_false_node;
- }
- /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
- else if (compare_values_warnv (vr0->min, vr1->max,
- strict_overflow_p) == 1
- || compare_values_warnv (vr1->min, vr0->max,
- strict_overflow_p) == 1)
- return boolean_false_node;
- return NULL_TREE;
- }
- else if (comp == NE_EXPR)
- {
- int cmp1, cmp2;
- /* If VR0 is completely to the left or completely to the right
- of VR1, they are always different. Notice that we need to
- make sure that both comparisons yield similar results to
- avoid comparing values that cannot be compared at
- compile-time. */
- cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
- cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
- if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
- return boolean_true_node;
- /* If VR0 and VR1 represent a single value and are identical,
- return false. */
- else if (compare_values_warnv (vr0->min, vr0->max,
- strict_overflow_p) == 0
- && compare_values_warnv (vr1->min, vr1->max,
- strict_overflow_p) == 0
- && compare_values_warnv (vr0->min, vr1->min,
- strict_overflow_p) == 0
- && compare_values_warnv (vr0->max, vr1->max,
- strict_overflow_p) == 0)
- return boolean_false_node;
- /* Otherwise, they may or may not be different. */
- else
- return NULL_TREE;
- }
- else if (comp == LT_EXPR || comp == LE_EXPR)
- {
- int tst;
- /* If VR0 is to the left of VR1, return true. */
- tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
- if ((comp == LT_EXPR && tst == -1)
- || (comp == LE_EXPR && (tst == -1 || tst == 0)))
- {
- if (overflow_infinity_range_p (vr0)
- || overflow_infinity_range_p (vr1))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
- /* If VR0 is to the right of VR1, return false. */
- tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
- if ((comp == LT_EXPR && (tst == 0 || tst == 1))
- || (comp == LE_EXPR && tst == 1))
- {
- if (overflow_infinity_range_p (vr0)
- || overflow_infinity_range_p (vr1))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
- gcc_unreachable ();
- }
- /* Given a value range VR, a value VAL and a comparison code COMP, return
- BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
- values in VR. Return BOOLEAN_FALSE_NODE if the comparison
- always returns false. Return NULL_TREE if it is not always
- possible to determine the value of the comparison. Also set
- *STRICT_OVERFLOW_P to indicate whether a range with an overflow
- infinity was used in the test. */
- static tree
- compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
- bool *strict_overflow_p)
- {
- if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
- return NULL_TREE;
- /* Anti-ranges need to be handled separately. */
- if (vr->type == VR_ANTI_RANGE)
- {
- /* For anti-ranges, the only predicates that we can compute at
- compile time are equality and inequality. */
- if (comp == GT_EXPR
- || comp == GE_EXPR
- || comp == LT_EXPR
- || comp == LE_EXPR)
- return NULL_TREE;
- /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
- if (value_inside_range (val, vr->min, vr->max) == 1)
- return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
- return NULL_TREE;
- }
- if (!usable_range_p (vr, strict_overflow_p))
- return NULL_TREE;
- if (comp == EQ_EXPR)
- {
- /* EQ_EXPR may only be computed if VR represents exactly
- one value. */
- if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
- {
- int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
- if (cmp == 0)
- return boolean_true_node;
- else if (cmp == -1 || cmp == 1 || cmp == 2)
- return boolean_false_node;
- }
- else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
- || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
- return boolean_false_node;
- return NULL_TREE;
- }
- else if (comp == NE_EXPR)
- {
- /* If VAL is not inside VR, then they are always different. */
- if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
- || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
- return boolean_true_node;
- /* If VR represents exactly one value equal to VAL, then return
- false. */
- if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
- && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
- return boolean_false_node;
- /* Otherwise, they may or may not be different. */
- return NULL_TREE;
- }
- else if (comp == LT_EXPR || comp == LE_EXPR)
- {
- int tst;
- /* If VR is to the left of VAL, return true. */
- tst = compare_values_warnv (vr->max, val, strict_overflow_p);
- if ((comp == LT_EXPR && tst == -1)
- || (comp == LE_EXPR && (tst == -1 || tst == 0)))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
- /* If VR is to the right of VAL, return false. */
- tst = compare_values_warnv (vr->min, val, strict_overflow_p);
- if ((comp == LT_EXPR && (tst == 0 || tst == 1))
- || (comp == LE_EXPR && tst == 1))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
- else if (comp == GT_EXPR || comp == GE_EXPR)
- {
- int tst;
- /* If VR is to the right of VAL, return true. */
- tst = compare_values_warnv (vr->min, val, strict_overflow_p);
- if ((comp == GT_EXPR && tst == 1)
- || (comp == GE_EXPR && (tst == 0 || tst == 1)))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
- /* If VR is to the left of VAL, return false. */
- tst = compare_values_warnv (vr->max, val, strict_overflow_p);
- if ((comp == GT_EXPR && (tst == -1 || tst == 0))
- || (comp == GE_EXPR && tst == -1))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
- gcc_unreachable ();
- }
- /* Debugging dumps. */
- void dump_value_range (FILE *, value_range_t *);
- void debug_value_range (value_range_t *);
- void dump_all_value_ranges (FILE *);
- void debug_all_value_ranges (void);
- void dump_vr_equiv (FILE *, bitmap);
- void debug_vr_equiv (bitmap);
- /* Dump value range VR to FILE. */
- void
- dump_value_range (FILE *file, value_range_t *vr)
- {
- if (vr == NULL)
- fprintf (file, "[]");
- else if (vr->type == VR_UNDEFINED)
- fprintf (file, "UNDEFINED");
- else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
- {
- tree type = TREE_TYPE (vr->min);
- fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
- if (is_negative_overflow_infinity (vr->min))
- fprintf (file, "-INF(OVF)");
- else if (INTEGRAL_TYPE_P (type)
- && !TYPE_UNSIGNED (type)
- && vrp_val_is_min (vr->min))
- fprintf (file, "-INF");
- else
- print_generic_expr (file, vr->min, 0);
- fprintf (file, ", ");
- if (is_positive_overflow_infinity (vr->max))
- fprintf (file, "+INF(OVF)");
- else if (INTEGRAL_TYPE_P (type)
- && vrp_val_is_max (vr->max))
- fprintf (file, "+INF");
- else
- print_generic_expr (file, vr->max, 0);
- fprintf (file, "]");
- if (vr->equiv)
- {
- bitmap_iterator bi;
- unsigned i, c = 0;
- fprintf (file, " EQUIVALENCES: { ");
- EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
- {
- print_generic_expr (file, ssa_name (i), 0);
- fprintf (file, " ");
- c++;
- }
- fprintf (file, "} (%u elements)", c);
- }
- }
- else if (vr->type == VR_VARYING)
- fprintf (file, "VARYING");
- else
- fprintf (file, "INVALID RANGE");
- }
- /* Dump value range VR to stderr. */
- DEBUG_FUNCTION void
- debug_value_range (value_range_t *vr)
- {
- dump_value_range (stderr, vr);
- fprintf (stderr, "\n");
- }
- /* Dump value ranges of all SSA_NAMEs to FILE. */
- void
- dump_all_value_ranges (FILE *file)
- {
- size_t i;
- for (i = 0; i < num_vr_values; i++)
- {
- if (vr_value[i])
- {
- print_generic_expr (file, ssa_name (i), 0);
- fprintf (file, ": ");
- dump_value_range (file, vr_value[i]);
- fprintf (file, "\n");
- }
- }
- fprintf (file, "\n");
- }
- /* Dump all value ranges to stderr. */
- DEBUG_FUNCTION void
- debug_all_value_ranges (void)
- {
- dump_all_value_ranges (stderr);
- }
- /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
- create a new SSA name N and return the assertion assignment
- 'N = ASSERT_EXPR <V, V OP W>'. */
- static gimple
- build_assert_expr_for (tree cond, tree v)
- {
- tree a;
- gassign *assertion;
- gcc_assert (TREE_CODE (v) == SSA_NAME
- && COMPARISON_CLASS_P (cond));
- a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
- assertion = gimple_build_assign (NULL_TREE, a);
- /* The new ASSERT_EXPR, creates a new SSA name that replaces the
- operand of the ASSERT_EXPR. Create it so the new name and the old one
- are registered in the replacement table so that we can fix the SSA web
- after adding all the ASSERT_EXPRs. */
- create_new_def_for (v, assertion, NULL);
- return assertion;
- }
- /* Return false if EXPR is a predicate expression involving floating
- point values. */
- static inline bool
- fp_predicate (gimple stmt)
- {
- GIMPLE_CHECK (stmt, GIMPLE_COND);
- return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
- }
- /* If the range of values taken by OP can be inferred after STMT executes,
- return the comparison code (COMP_CODE_P) and value (VAL_P) that
- describes the inferred range. Return true if a range could be
- inferred. */
- static bool
- infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
- {
- *val_p = NULL_TREE;
- *comp_code_p = ERROR_MARK;
- /* Do not attempt to infer anything in names that flow through
- abnormal edges. */
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
- return false;
- /* Similarly, don't infer anything from statements that may throw
- exceptions. ??? Relax this requirement? */
- if (stmt_could_throw_p (stmt))
- return false;
- /* If STMT is the last statement of a basic block with no normal
- successors, there is no point inferring anything about any of its
- operands. We would not be able to find a proper insertion point
- for the assertion, anyway. */
- if (stmt_ends_bb_p (stmt))
- {
- edge_iterator ei;
- edge e;
- FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
- if (!(e->flags & EDGE_ABNORMAL))
- break;
- if (e == NULL)
- return false;
- }
- if (infer_nonnull_range (stmt, op, true, true))
- {
- *val_p = build_int_cst (TREE_TYPE (op), 0);
- *comp_code_p = NE_EXPR;
- return true;
- }
- return false;
- }
- void dump_asserts_for (FILE *, tree);
- void debug_asserts_for (tree);
- void dump_all_asserts (FILE *);
- void debug_all_asserts (void);
- /* Dump all the registered assertions for NAME to FILE. */
- void
- dump_asserts_for (FILE *file, tree name)
- {
- assert_locus_t loc;
- fprintf (file, "Assertions to be inserted for ");
- print_generic_expr (file, name, 0);
- fprintf (file, "\n");
- loc = asserts_for[SSA_NAME_VERSION (name)];
- while (loc)
- {
- fprintf (file, "\t");
- print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
- fprintf (file, "\n\tBB #%d", loc->bb->index);
- if (loc->e)
- {
- fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
- loc->e->dest->index);
- dump_edge_info (file, loc->e, dump_flags, 0);
- }
- fprintf (file, "\n\tPREDICATE: ");
- print_generic_expr (file, name, 0);
- fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
- print_generic_expr (file, loc->val, 0);
- fprintf (file, "\n\n");
- loc = loc->next;
- }
- fprintf (file, "\n");
- }
- /* Dump all the registered assertions for NAME to stderr. */
- DEBUG_FUNCTION void
- debug_asserts_for (tree name)
- {
- dump_asserts_for (stderr, name);
- }
- /* Dump all the registered assertions for all the names to FILE. */
- void
- dump_all_asserts (FILE *file)
- {
- unsigned i;
- bitmap_iterator bi;
- fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
- EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
- dump_asserts_for (file, ssa_name (i));
- fprintf (file, "\n");
- }
- /* Dump all the registered assertions for all the names to stderr. */
- DEBUG_FUNCTION void
- debug_all_asserts (void)
- {
- dump_all_asserts (stderr);
- }
- /* If NAME doesn't have an ASSERT_EXPR registered for asserting
- 'EXPR COMP_CODE VAL' at a location that dominates block BB or
- E->DEST, then register this location as a possible insertion point
- for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
- BB, E and SI provide the exact insertion point for the new
- ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
- on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
- BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
- must not be NULL. */
- static void
- register_new_assert_for (tree name, tree expr,
- enum tree_code comp_code,
- tree val,
- basic_block bb,
- edge e,
- gimple_stmt_iterator si)
- {
- assert_locus_t n, loc, last_loc;
- basic_block dest_bb;
- gcc_checking_assert (bb == NULL || e == NULL);
- if (e == NULL)
- gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
- && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
- /* Never build an assert comparing against an integer constant with
- TREE_OVERFLOW set. This confuses our undefined overflow warning
- machinery. */
- if (TREE_OVERFLOW_P (val))
- val = drop_tree_overflow (val);
- /* The new assertion A will be inserted at BB or E. We need to
- determine if the new location is dominated by a previously
- registered location for A. If we are doing an edge insertion,
- assume that A will be inserted at E->DEST. Note that this is not
- necessarily true.
- If E is a critical edge, it will be split. But even if E is
- split, the new block will dominate the same set of blocks that
- E->DEST dominates.
- The reverse, however, is not true, blocks dominated by E->DEST
- will not be dominated by the new block created to split E. So,
- if the insertion location is on a critical edge, we will not use
- the new location to move another assertion previously registered
- at a block dominated by E->DEST. */
- dest_bb = (bb) ? bb : e->dest;
- /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
- VAL at a block dominating DEST_BB, then we don't need to insert a new
- one. Similarly, if the same assertion already exists at a block
- dominated by DEST_BB and the new location is not on a critical
- edge, then update the existing location for the assertion (i.e.,
- move the assertion up in the dominance tree).
- Note, this is implemented as a simple linked list because there
- should not be more than a handful of assertions registered per
- name. If this becomes a performance problem, a table hashed by
- COMP_CODE and VAL could be implemented. */
- loc = asserts_for[SSA_NAME_VERSION (name)];
- last_loc = loc;
- while (loc)
- {
- if (loc->comp_code == comp_code
- && (loc->val == val
- || operand_equal_p (loc->val, val, 0))
- && (loc->expr == expr
- || operand_equal_p (loc->expr, expr, 0)))
- {
- /* If E is not a critical edge and DEST_BB
- dominates the existing location for the assertion, move
- the assertion up in the dominance tree by updating its
- location information. */
- if ((e == NULL || !EDGE_CRITICAL_P (e))
- && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
- {
- loc->bb = dest_bb;
- loc->e = e;
- loc->si = si;
- return;
- }
- }
- /* Update the last node of the list and move to the next one. */
- last_loc = loc;
- loc = loc->next;
- }
- /* If we didn't find an assertion already registered for
- NAME COMP_CODE VAL, add a new one at the end of the list of
- assertions associated with NAME. */
- n = XNEW (struct assert_locus_d);
- n->bb = dest_bb;
- n->e = e;
- n->si = si;
- n->comp_code = comp_code;
- n->val = val;
- n->expr = expr;
- n->next = NULL;
- if (last_loc)
- last_loc->next = n;
- else
- asserts_for[SSA_NAME_VERSION (name)] = n;
- bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
- }
- /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
- Extract a suitable test code and value and store them into *CODE_P and
- *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
- If no extraction was possible, return FALSE, otherwise return TRUE.
- If INVERT is true, then we invert the result stored into *CODE_P. */
- static bool
- extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
- tree cond_op0, tree cond_op1,
- bool invert, enum tree_code *code_p,
- tree *val_p)
- {
- enum tree_code comp_code;
- tree val;
- /* Otherwise, we have a comparison of the form NAME COMP VAL
- or VAL COMP NAME. */
- if (name == cond_op1)
- {
- /* If the predicate is of the form VAL COMP NAME, flip
- COMP around because we need to register NAME as the
- first operand in the predicate. */
- comp_code = swap_tree_comparison (cond_code);
- val = cond_op0;
- }
- else
- {
- /* The comparison is of the form NAME COMP VAL, so the
- comparison code remains unchanged. */
- comp_code = cond_code;
- val = cond_op1;
- }
- /* Invert the comparison code as necessary. */
- if (invert)
- comp_code = invert_tree_comparison (comp_code, 0);
- /* VRP does not handle float types. */
- if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
- return false;
- /* Do not register always-false predicates.
- FIXME: this works around a limitation in fold() when dealing with
- enumerations. Given 'enum { N1, N2 } x;', fold will not
- fold 'if (x > N2)' to 'if (0)'. */
- if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
- && INTEGRAL_TYPE_P (TREE_TYPE (val)))
- {
- tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
- tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
- if (comp_code == GT_EXPR
- && (!max
- || compare_values (val, max) == 0))
- return false;
- if (comp_code == LT_EXPR
- && (!min
- || compare_values (val, min) == 0))
- return false;
- }
- *code_p = comp_code;
- *val_p = val;
- return true;
- }
- /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
- (otherwise return VAL). VAL and MASK must be zero-extended for
- precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
- (to transform signed values into unsigned) and at the end xor
- SGNBIT back. */
- static wide_int
- masked_increment (const wide_int &val_in, const wide_int &mask,
- const wide_int &sgnbit, unsigned int prec)
- {
- wide_int bit = wi::one (prec), res;
- unsigned int i;
- wide_int val = val_in ^ sgnbit;
- for (i = 0; i < prec; i++, bit += bit)
- {
- res = mask;
- if ((res & bit) == 0)
- continue;
- res = bit - 1;
- res = (val + bit).and_not (res);
- res &= mask;
- if (wi::gtu_p (res, val))
- return res ^ sgnbit;
- }
- return val ^ sgnbit;
- }
- /* Try to register an edge assertion for SSA name NAME on edge E for
- the condition COND contributing to the conditional jump pointed to by BSI.
- Invert the condition COND if INVERT is true. */
- static void
- register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
- enum tree_code cond_code,
- tree cond_op0, tree cond_op1, bool invert)
- {
- tree val;
- enum tree_code comp_code;
- if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
- cond_op0,
- cond_op1,
- invert, &comp_code, &val))
- return;
- /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
- reachable from E. */
- if (live_on_edge (e, name)
- && !has_single_use (name))
- register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
- /* In the case of NAME <= CST and NAME being defined as
- NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
- and NAME2 <= CST - CST2. We can do the same for NAME > CST.
- This catches range and anti-range tests. */
- if ((comp_code == LE_EXPR
- || comp_code == GT_EXPR)
- && TREE_CODE (val) == INTEGER_CST
- && TYPE_UNSIGNED (TREE_TYPE (val)))
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
- tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
- /* Extract CST2 from the (optional) addition. */
- if (is_gimple_assign (def_stmt)
- && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- cst2 = gimple_assign_rhs2 (def_stmt);
- if (TREE_CODE (name2) == SSA_NAME
- && TREE_CODE (cst2) == INTEGER_CST)
- def_stmt = SSA_NAME_DEF_STMT (name2);
- }
- /* Extract NAME2 from the (optional) sign-changing cast. */
- if (gimple_assign_cast_p (def_stmt))
- {
- if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
- && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
- && (TYPE_PRECISION (gimple_expr_type (def_stmt))
- == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
- name3 = gimple_assign_rhs1 (def_stmt);
- }
- /* If name3 is used later, create an ASSERT_EXPR for it. */
- if (name3 != NULL_TREE
- && TREE_CODE (name3) == SSA_NAME
- && (cst2 == NULL_TREE
- || TREE_CODE (cst2) == INTEGER_CST)
- && INTEGRAL_TYPE_P (TREE_TYPE (name3))
- && live_on_edge (e, name3)
- && !has_single_use (name3))
- {
- tree tmp;
- /* Build an expression for the range test. */
- tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
- if (cst2 != NULL_TREE)
- tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name3, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
- register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
- }
- /* If name2 is used later, create an ASSERT_EXPR for it. */
- if (name2 != NULL_TREE
- && TREE_CODE (name2) == SSA_NAME
- && TREE_CODE (cst2) == INTEGER_CST
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && live_on_edge (e, name2)
- && !has_single_use (name2))
- {
- tree tmp;
- /* Build an expression for the range test. */
- tmp = name2;
- if (TREE_TYPE (name) != TREE_TYPE (name2))
- tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
- if (cst2 != NULL_TREE)
- tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name2, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
- register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
- }
- }
- /* In the case of post-in/decrement tests like if (i++) ... and uses
- of the in/decremented value on the edge the extra name we want to
- assert for is not on the def chain of the name compared. Instead
- it is in the set of use stmts. */
- if ((comp_code == NE_EXPR
- || comp_code == EQ_EXPR)
- && TREE_CODE (val) == INTEGER_CST)
- {
- imm_use_iterator ui;
- gimple use_stmt;
- FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
- {
- /* Cut off to use-stmts that are in the predecessor. */
- if (gimple_bb (use_stmt) != e->src)
- continue;
- if (!is_gimple_assign (use_stmt))
- continue;
- enum tree_code code = gimple_assign_rhs_code (use_stmt);
- if (code != PLUS_EXPR
- && code != MINUS_EXPR)
- continue;
- tree cst = gimple_assign_rhs2 (use_stmt);
- if (TREE_CODE (cst) != INTEGER_CST)
- continue;
- tree name2 = gimple_assign_lhs (use_stmt);
- if (live_on_edge (e, name2))
- {
- cst = int_const_binop (code, val, cst);
- register_new_assert_for (name2, name2, comp_code, cst,
- NULL, e, bsi);
- }
- }
- }
-
- if (TREE_CODE_CLASS (comp_code) == tcc_comparison
- && TREE_CODE (val) == INTEGER_CST)
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
- tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
- tree val2 = NULL_TREE;
- unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
- wide_int mask = wi::zero (prec);
- unsigned int nprec = prec;
- enum tree_code rhs_code = ERROR_MARK;
- if (is_gimple_assign (def_stmt))
- rhs_code = gimple_assign_rhs_code (def_stmt);
- /* Add asserts for NAME cmp CST and NAME being defined
- as NAME = (int) NAME2. */
- if (!TYPE_UNSIGNED (TREE_TYPE (val))
- && (comp_code == LE_EXPR || comp_code == LT_EXPR
- || comp_code == GT_EXPR || comp_code == GE_EXPR)
- && gimple_assign_cast_p (def_stmt))
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- if (CONVERT_EXPR_CODE_P (rhs_code)
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && TYPE_UNSIGNED (TREE_TYPE (name2))
- && prec == TYPE_PRECISION (TREE_TYPE (name2))
- && (comp_code == LE_EXPR || comp_code == GT_EXPR
- || !tree_int_cst_equal (val,
- TYPE_MIN_VALUE (TREE_TYPE (val))))
- && live_on_edge (e, name2)
- && !has_single_use (name2))
- {
- tree tmp, cst;
- enum tree_code new_comp_code = comp_code;
- cst = fold_convert (TREE_TYPE (name2),
- TYPE_MIN_VALUE (TREE_TYPE (val)));
- /* Build an expression for the range test. */
- tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
- cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
- fold_convert (TREE_TYPE (name2), val));
- if (comp_code == LT_EXPR || comp_code == GE_EXPR)
- {
- new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
- cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
- build_int_cst (TREE_TYPE (name2), 1));
- }
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name2, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
- register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
- e, bsi);
- }
- }
- /* Add asserts for NAME cmp CST and NAME being defined as
- NAME = NAME2 >> CST2.
- Extract CST2 from the right shift. */
- if (rhs_code == RSHIFT_EXPR)
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- cst2 = gimple_assign_rhs2 (def_stmt);
- if (TREE_CODE (name2) == SSA_NAME
- && tree_fits_uhwi_p (cst2)
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
- && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
- && live_on_edge (e, name2)
- && !has_single_use (name2))
- {
- mask = wi::mask (tree_to_uhwi (cst2), false, prec);
- val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
- }
- }
- if (val2 != NULL_TREE
- && TREE_CODE (val2) == INTEGER_CST
- && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
- TREE_TYPE (val),
- val2, cst2), val))
- {
- enum tree_code new_comp_code = comp_code;
- tree tmp, new_val;
- tmp = name2;
- if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
- {
- if (!TYPE_UNSIGNED (TREE_TYPE (val)))
- {
- tree type = build_nonstandard_integer_type (prec, 1);
- tmp = build1 (NOP_EXPR, type, name2);
- val2 = fold_convert (type, val2);
- }
- tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
- new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
- new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
- }
- else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
- {
- wide_int minval
- = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
- new_val = val2;
- if (minval == new_val)
- new_val = NULL_TREE;
- }
- else
- {
- wide_int maxval
- = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
- mask |= val2;
- if (mask == maxval)
- new_val = NULL_TREE;
- else
- new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
- }
- if (new_val)
- {
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name2, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
- register_new_assert_for (name2, tmp, new_comp_code, new_val,
- NULL, e, bsi);
- }
- }
- /* Add asserts for NAME cmp CST and NAME being defined as
- NAME = NAME2 & CST2.
- Extract CST2 from the and.
- Also handle
- NAME = (unsigned) NAME2;
- casts where NAME's type is unsigned and has smaller precision
- than NAME2's type as if it was NAME = NAME2 & MASK. */
- names[0] = NULL_TREE;
- names[1] = NULL_TREE;
- cst2 = NULL_TREE;
- if (rhs_code == BIT_AND_EXPR
- || (CONVERT_EXPR_CODE_P (rhs_code)
- && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
- && TYPE_UNSIGNED (TREE_TYPE (val))
- && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
- > prec))
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- if (rhs_code == BIT_AND_EXPR)
- cst2 = gimple_assign_rhs2 (def_stmt);
- else
- {
- cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
- nprec = TYPE_PRECISION (TREE_TYPE (name2));
- }
- if (TREE_CODE (name2) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && TREE_CODE (cst2) == INTEGER_CST
- && !integer_zerop (cst2)
- && (nprec > 1
- || TYPE_UNSIGNED (TREE_TYPE (val))))
- {
- gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
- if (gimple_assign_cast_p (def_stmt2))
- {
- names[1] = gimple_assign_rhs1 (def_stmt2);
- if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
- || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
- || (TYPE_PRECISION (TREE_TYPE (name2))
- != TYPE_PRECISION (TREE_TYPE (names[1])))
- || !live_on_edge (e, names[1])
- || has_single_use (names[1]))
- names[1] = NULL_TREE;
- }
- if (live_on_edge (e, name2)
- && !has_single_use (name2))
- names[0] = name2;
- }
- }
- if (names[0] || names[1])
- {
- wide_int minv, maxv, valv, cst2v;
- wide_int tem, sgnbit;
- bool valid_p = false, valn, cst2n;
- enum tree_code ccode = comp_code;
- valv = wide_int::from (val, nprec, UNSIGNED);
- cst2v = wide_int::from (cst2, nprec, UNSIGNED);
- valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
- cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
- /* If CST2 doesn't have most significant bit set,
- but VAL is negative, we have comparison like
- if ((x & 0x123) > -4) (always true). Just give up. */
- if (!cst2n && valn)
- ccode = ERROR_MARK;
- if (cst2n)
- sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
- else
- sgnbit = wi::zero (nprec);
- minv = valv & cst2v;
- switch (ccode)
- {
- case EQ_EXPR:
- /* Minimum unsigned value for equality is VAL & CST2
- (should be equal to VAL, otherwise we probably should
- have folded the comparison into false) and
- maximum unsigned value is VAL | ~CST2. */
- maxv = valv | ~cst2v;
- valid_p = true;
- break;
- case NE_EXPR:
- tem = valv | ~cst2v;
- /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
- if (valv == 0)
- {
- cst2n = false;
- sgnbit = wi::zero (nprec);
- goto gt_expr;
- }
- /* If (VAL | ~CST2) is all ones, handle it as
- (X & CST2) < VAL. */
- if (tem == -1)
- {
- cst2n = false;
- valn = false;
- sgnbit = wi::zero (nprec);
- goto lt_expr;
- }
- if (!cst2n && wi::neg_p (cst2v))
- sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
- if (sgnbit != 0)
- {
- if (valv == sgnbit)
- {
- cst2n = true;
- valn = true;
- goto gt_expr;
- }
- if (tem == wi::mask (nprec - 1, false, nprec))
- {
- cst2n = true;
- goto lt_expr;
- }
- if (!cst2n)
- sgnbit = wi::zero (nprec);
- }
- break;
- case GE_EXPR:
- /* Minimum unsigned value for >= if (VAL & CST2) == VAL
- is VAL and maximum unsigned value is ~0. For signed
- comparison, if CST2 doesn't have most significant bit
- set, handle it similarly. If CST2 has MSB set,
- the minimum is the same, and maximum is ~0U/2. */
- if (minv != valv)
- {
- /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
- VAL. */
- minv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (minv == valv)
- break;
- }
- maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
- valid_p = true;
- break;
- case GT_EXPR:
- gt_expr:
- /* Find out smallest MINV where MINV > VAL
- && (MINV & CST2) == MINV, if any. If VAL is signed and
- CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
- minv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (minv == valv)
- break;
- maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
- valid_p = true;
- break;
- case LE_EXPR:
- /* Minimum unsigned value for <= is 0 and maximum
- unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
- Otherwise, find smallest VAL2 where VAL2 > VAL
- && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
- as maximum.
- For signed comparison, if CST2 doesn't have most
- significant bit set, handle it similarly. If CST2 has
- MSB set, the maximum is the same and minimum is INT_MIN. */
- if (minv == valv)
- maxv = valv;
- else
- {
- maxv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (maxv == valv)
- break;
- maxv -= 1;
- }
- maxv |= ~cst2v;
- minv = sgnbit;
- valid_p = true;
- break;
- case LT_EXPR:
- lt_expr:
- /* Minimum unsigned value for < is 0 and maximum
- unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
- Otherwise, find smallest VAL2 where VAL2 > VAL
- && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
- as maximum.
- For signed comparison, if CST2 doesn't have most
- significant bit set, handle it similarly. If CST2 has
- MSB set, the maximum is the same and minimum is INT_MIN. */
- if (minv == valv)
- {
- if (valv == sgnbit)
- break;
- maxv = valv;
- }
- else
- {
- maxv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (maxv == valv)
- break;
- }
- maxv -= 1;
- maxv |= ~cst2v;
- minv = sgnbit;
- valid_p = true;
- break;
- default:
- break;
- }
- if (valid_p
- && (maxv - minv) != -1)
- {
- tree tmp, new_val, type;
- int i;
- for (i = 0; i < 2; i++)
- if (names[i])
- {
- wide_int maxv2 = maxv;
- tmp = names[i];
- type = TREE_TYPE (names[i]);
- if (!TYPE_UNSIGNED (type))
- {
- type = build_nonstandard_integer_type (nprec, 1);
- tmp = build1 (NOP_EXPR, type, names[i]);
- }
- if (minv != 0)
- {
- tmp = build2 (PLUS_EXPR, type, tmp,
- wide_int_to_tree (type, -minv));
- maxv2 = maxv - minv;
- }
- new_val = wide_int_to_tree (type, maxv2);
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, names[i], 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
- register_new_assert_for (names[i], tmp, LE_EXPR,
- new_val, NULL, e, bsi);
- }
- }
- }
- }
- }
- /* OP is an operand of a truth value expression which is known to have
- a particular value. Register any asserts for OP and for any
- operands in OP's defining statement.
- If CODE is EQ_EXPR, then we want to register OP is zero (false),
- if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
- static void
- register_edge_assert_for_1 (tree op, enum tree_code code,
- edge e, gimple_stmt_iterator bsi)
- {
- gimple op_def;
- tree val;
- enum tree_code rhs_code;
- /* We only care about SSA_NAMEs. */
- if (TREE_CODE (op) != SSA_NAME)
- return;
- /* We know that OP will have a zero or nonzero value. If OP is used
- more than once go ahead and register an assert for OP. */
- if (live_on_edge (e, op)
- && !has_single_use (op))
- {
- val = build_int_cst (TREE_TYPE (op), 0);
- register_new_assert_for (op, op, code, val, NULL, e, bsi);
- }
- /* Now look at how OP is set. If it's set from a comparison,
- a truth operation or some bit operations, then we may be able
- to register information about the operands of that assignment. */
- op_def = SSA_NAME_DEF_STMT (op);
- if (gimple_code (op_def) != GIMPLE_ASSIGN)
- return;
- rhs_code = gimple_assign_rhs_code (op_def);
- if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
- {
- bool invert = (code == EQ_EXPR ? true : false);
- tree op0 = gimple_assign_rhs1 (op_def);
- tree op1 = gimple_assign_rhs2 (op_def);
- if (TREE_CODE (op0) == SSA_NAME)
- register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
- if (TREE_CODE (op1) == SSA_NAME)
- register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
- }
- else if ((code == NE_EXPR
- && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
- || (code == EQ_EXPR
- && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
- {
- /* Recurse on each operand. */
- tree op0 = gimple_assign_rhs1 (op_def);
- tree op1 = gimple_assign_rhs2 (op_def);
- if (TREE_CODE (op0) == SSA_NAME
- && has_single_use (op0))
- register_edge_assert_for_1 (op0, code, e, bsi);
- if (TREE_CODE (op1) == SSA_NAME
- && has_single_use (op1))
- register_edge_assert_for_1 (op1, code, e, bsi);
- }
- else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
- && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
- {
- /* Recurse, flipping CODE. */
- code = invert_tree_comparison (code, false);
- register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
- }
- else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
- {
- /* Recurse through the copy. */
- register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
- }
- else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
- {
- /* Recurse through the type conversion, unless it is a narrowing
- conversion or conversion from non-integral type. */
- tree rhs = gimple_assign_rhs1 (op_def);
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
- && (TYPE_PRECISION (TREE_TYPE (rhs))
- <= TYPE_PRECISION (TREE_TYPE (op))))
- register_edge_assert_for_1 (rhs, code, e, bsi);
- }
- }
- /* Try to register an edge assertion for SSA name NAME on edge E for
- the condition COND contributing to the conditional jump pointed to by
- SI. */
- static void
- register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
- enum tree_code cond_code, tree cond_op0,
- tree cond_op1)
- {
- tree val;
- enum tree_code comp_code;
- bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
- /* Do not attempt to infer anything in names that flow through
- abnormal edges. */
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
- return;
- if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
- cond_op0, cond_op1,
- is_else_edge,
- &comp_code, &val))
- return;
- /* Register ASSERT_EXPRs for name. */
- register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
- cond_op1, is_else_edge);
- /* If COND is effectively an equality test of an SSA_NAME against
- the value zero or one, then we may be able to assert values
- for SSA_NAMEs which flow into COND. */
- /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
- statement of NAME we can assert both operands of the BIT_AND_EXPR
- have nonzero value. */
- if (((comp_code == EQ_EXPR && integer_onep (val))
- || (comp_code == NE_EXPR && integer_zerop (val))))
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
- if (is_gimple_assign (def_stmt)
- && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
- {
- tree op0 = gimple_assign_rhs1 (def_stmt);
- tree op1 = gimple_assign_rhs2 (def_stmt);
- register_edge_assert_for_1 (op0, NE_EXPR, e, si);
- register_edge_assert_for_1 (op1, NE_EXPR, e, si);
- }
- }
- /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
- statement of NAME we can assert both operands of the BIT_IOR_EXPR
- have zero value. */
- if (((comp_code == EQ_EXPR && integer_zerop (val))
- || (comp_code == NE_EXPR && integer_onep (val))))
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
- /* For BIT_IOR_EXPR only if NAME == 0 both operands have
- necessarily zero value, or if type-precision is one. */
- if (is_gimple_assign (def_stmt)
- && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
- && (TYPE_PRECISION (TREE_TYPE (name)) == 1
- || comp_code == EQ_EXPR)))
- {
- tree op0 = gimple_assign_rhs1 (def_stmt);
- tree op1 = gimple_assign_rhs2 (def_stmt);
- register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
- register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
- }
- }
- }
- /* Determine whether the outgoing edges of BB should receive an
- ASSERT_EXPR for each of the operands of BB's LAST statement.
- The last statement of BB must be a COND_EXPR.
- If any of the sub-graphs rooted at BB have an interesting use of
- the predicate operands, an assert location node is added to the
- list of assertions for the corresponding operands. */
- static void
- find_conditional_asserts (basic_block bb, gcond *last)
- {
- gimple_stmt_iterator bsi;
- tree op;
- edge_iterator ei;
- edge e;
- ssa_op_iter iter;
- bsi = gsi_for_stmt (last);
- /* Look for uses of the operands in each of the sub-graphs
- rooted at BB. We need to check each of the outgoing edges
- separately, so that we know what kind of ASSERT_EXPR to
- insert. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (e->dest == bb)
- continue;
- /* Register the necessary assertions for each operand in the
- conditional predicate. */
- FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
- register_edge_assert_for (op, e, bsi,
- gimple_cond_code (last),
- gimple_cond_lhs (last),
- gimple_cond_rhs (last));
- }
- }
- struct case_info
- {
- tree expr;
- basic_block bb;
- };
- /* Compare two case labels sorting first by the destination bb index
- and then by the case value. */
- static int
- compare_case_labels (const void *p1, const void *p2)
- {
- const struct case_info *ci1 = (const struct case_info *) p1;
- const struct case_info *ci2 = (const struct case_info *) p2;
- int idx1 = ci1->bb->index;
- int idx2 = ci2->bb->index;
- if (idx1 < idx2)
- return -1;
- else if (idx1 == idx2)
- {
- /* Make sure the default label is first in a group. */
- if (!CASE_LOW (ci1->expr))
- return -1;
- else if (!CASE_LOW (ci2->expr))
- return 1;
- else
- return tree_int_cst_compare (CASE_LOW (ci1->expr),
- CASE_LOW (ci2->expr));
- }
- else
- return 1;
- }
- /* Determine whether the outgoing edges of BB should receive an
- ASSERT_EXPR for each of the operands of BB's LAST statement.
- The last statement of BB must be a SWITCH_EXPR.
- If any of the sub-graphs rooted at BB have an interesting use of
- the predicate operands, an assert location node is added to the
- list of assertions for the corresponding operands. */
- static void
- find_switch_asserts (basic_block bb, gswitch *last)
- {
- gimple_stmt_iterator bsi;
- tree op;
- edge e;
- struct case_info *ci;
- size_t n = gimple_switch_num_labels (last);
- #if GCC_VERSION >= 4000
- unsigned int idx;
- #else
- /* Work around GCC 3.4 bug (PR 37086). */
- volatile unsigned int idx;
- #endif
- bsi = gsi_for_stmt (last);
- op = gimple_switch_index (last);
- if (TREE_CODE (op) != SSA_NAME)
- return;
- /* Build a vector of case labels sorted by destination label. */
- ci = XNEWVEC (struct case_info, n);
- for (idx = 0; idx < n; ++idx)
- {
- ci[idx].expr = gimple_switch_label (last, idx);
- ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
- }
- qsort (ci, n, sizeof (struct case_info), compare_case_labels);
- for (idx = 0; idx < n; ++idx)
- {
- tree min, max;
- tree cl = ci[idx].expr;
- basic_block cbb = ci[idx].bb;
- min = CASE_LOW (cl);
- max = CASE_HIGH (cl);
- /* If there are multiple case labels with the same destination
- we need to combine them to a single value range for the edge. */
- if (idx + 1 < n && cbb == ci[idx + 1].bb)
- {
- /* Skip labels until the last of the group. */
- do {
- ++idx;
- } while (idx < n && cbb == ci[idx].bb);
- --idx;
- /* Pick up the maximum of the case label range. */
- if (CASE_HIGH (ci[idx].expr))
- max = CASE_HIGH (ci[idx].expr);
- else
- max = CASE_LOW (ci[idx].expr);
- }
- /* Nothing to do if the range includes the default label until we
- can register anti-ranges. */
- if (min == NULL_TREE)
- continue;
- /* Find the edge to register the assert expr on. */
- e = find_edge (bb, cbb);
- /* Register the necessary assertions for the operand in the
- SWITCH_EXPR. */
- register_edge_assert_for (op, e, bsi,
- max ? GE_EXPR : EQ_EXPR,
- op, fold_convert (TREE_TYPE (op), min));
- if (max)
- register_edge_assert_for (op, e, bsi, LE_EXPR, op,
- fold_convert (TREE_TYPE (op), max));
- }
- XDELETEVEC (ci);
- }
- /* Traverse all the statements in block BB looking for statements that
- may generate useful assertions for the SSA names in their operand.
- If a statement produces a useful assertion A for name N_i, then the
- list of assertions already generated for N_i is scanned to
- determine if A is actually needed.
- If N_i already had the assertion A at a location dominating the
- current location, then nothing needs to be done. Otherwise, the
- new location for A is recorded instead.
- 1- For every statement S in BB, all the variables used by S are
- added to bitmap FOUND_IN_SUBGRAPH.
- 2- If statement S uses an operand N in a way that exposes a known
- value range for N, then if N was not already generated by an
- ASSERT_EXPR, create a new assert location for N. For instance,
- if N is a pointer and the statement dereferences it, we can
- assume that N is not NULL.
- 3- COND_EXPRs are a special case of #2. We can derive range
- information from the predicate but need to insert different
- ASSERT_EXPRs for each of the sub-graphs rooted at the
- conditional block. If the last statement of BB is a conditional
- expression of the form 'X op Y', then
- a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
- b) If the conditional is the only entry point to the sub-graph
- corresponding to the THEN_CLAUSE, recurse into it. On
- return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
- an ASSERT_EXPR is added for the corresponding variable.
- c) Repeat step (b) on the ELSE_CLAUSE.
- d) Mark X and Y in FOUND_IN_SUBGRAPH.
- For instance,
- if (a == 9)
- b = a;
- else
- b = c + 1;
- In this case, an assertion on the THEN clause is useful to
- determine that 'a' is always 9 on that edge. However, an assertion
- on the ELSE clause would be unnecessary.
- 4- If BB does not end in a conditional expression, then we recurse
- into BB's dominator children.
- At the end of the recursive traversal, every SSA name will have a
- list of locations where ASSERT_EXPRs should be added. When a new
- location for name N is found, it is registered by calling
- register_new_assert_for. That function keeps track of all the
- registered assertions to prevent adding unnecessary assertions.
- For instance, if a pointer P_4 is dereferenced more than once in a
- dominator tree, only the location dominating all the dereference of
- P_4 will receive an ASSERT_EXPR. */
- static void
- find_assert_locations_1 (basic_block bb, sbitmap live)
- {
- gimple last;
- last = last_stmt (bb);
- /* If BB's last statement is a conditional statement involving integer
- operands, determine if we need to add ASSERT_EXPRs. */
- if (last
- && gimple_code (last) == GIMPLE_COND
- && !fp_predicate (last)
- && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
- find_conditional_asserts (bb, as_a <gcond *> (last));
- /* If BB's last statement is a switch statement involving integer
- operands, determine if we need to add ASSERT_EXPRs. */
- if (last
- && gimple_code (last) == GIMPLE_SWITCH
- && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
- find_switch_asserts (bb, as_a <gswitch *> (last));
- /* Traverse all the statements in BB marking used names and looking
- for statements that may infer assertions for their used operands. */
- for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
- gsi_prev (&si))
- {
- gimple stmt;
- tree op;
- ssa_op_iter i;
- stmt = gsi_stmt (si);
- if (is_gimple_debug (stmt))
- continue;
- /* See if we can derive an assertion for any of STMT's operands. */
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
- {
- tree value;
- enum tree_code comp_code;
- /* If op is not live beyond this stmt, do not bother to insert
- asserts for it. */
- if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
- continue;
- /* If OP is used in such a way that we can infer a value
- range for it, and we don't find a previous assertion for
- it, create a new assertion location node for OP. */
- if (infer_value_range (stmt, op, &comp_code, &value))
- {
- /* If we are able to infer a nonzero value range for OP,
- then walk backwards through the use-def chain to see if OP
- was set via a typecast.
- If so, then we can also infer a nonzero value range
- for the operand of the NOP_EXPR. */
- if (comp_code == NE_EXPR && integer_zerop (value))
- {
- tree t = op;
- gimple def_stmt = SSA_NAME_DEF_STMT (t);
- while (is_gimple_assign (def_stmt)
- && CONVERT_EXPR_CODE_P
- (gimple_assign_rhs_code (def_stmt))
- && TREE_CODE
- (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
- && POINTER_TYPE_P
- (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
- {
- t = gimple_assign_rhs1 (def_stmt);
- def_stmt = SSA_NAME_DEF_STMT (t);
- /* Note we want to register the assert for the
- operand of the NOP_EXPR after SI, not after the
- conversion. */
- if (! has_single_use (t))
- register_new_assert_for (t, t, comp_code, value,
- bb, NULL, si);
- }
- }
- register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
- }
- }
- /* Update live. */
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
- bitmap_set_bit (live, SSA_NAME_VERSION (op));
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
- bitmap_clear_bit (live, SSA_NAME_VERSION (op));
- }
- /* Traverse all PHI nodes in BB, updating live. */
- for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- use_operand_p arg_p;
- ssa_op_iter i;
- gphi *phi = si.phi ();
- tree res = gimple_phi_result (phi);
- if (virtual_operand_p (res))
- continue;
- FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
- {
- tree arg = USE_FROM_PTR (arg_p);
- if (TREE_CODE (arg) == SSA_NAME)
- bitmap_set_bit (live, SSA_NAME_VERSION (arg));
- }
- bitmap_clear_bit (live, SSA_NAME_VERSION (res));
- }
- }
- /* Do an RPO walk over the function computing SSA name liveness
- on-the-fly and deciding on assert expressions to insert. */
- static void
- find_assert_locations (void)
- {
- int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
- int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
- int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
- int rpo_cnt, i;
- live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
- rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
- for (i = 0; i < rpo_cnt; ++i)
- bb_rpo[rpo[i]] = i;
- /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
- the order we compute liveness and insert asserts we otherwise
- fail to insert asserts into the loop latch. */
- loop_p loop;
- FOR_EACH_LOOP (loop, 0)
- {
- i = loop->latch->index;
- unsigned int j = single_succ_edge (loop->latch)->dest_idx;
- for (gphi_iterator gsi = gsi_start_phis (loop->header);
- !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
- if (virtual_operand_p (gimple_phi_result (phi)))
- continue;
- tree arg = gimple_phi_arg_def (phi, j);
- if (TREE_CODE (arg) == SSA_NAME)
- {
- if (live[i] == NULL)
- {
- live[i] = sbitmap_alloc (num_ssa_names);
- bitmap_clear (live[i]);
- }
- bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
- }
- }
- }
- for (i = rpo_cnt - 1; i >= 0; --i)
- {
- basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
- edge e;
- edge_iterator ei;
- if (!live[rpo[i]])
- {
- live[rpo[i]] = sbitmap_alloc (num_ssa_names);
- bitmap_clear (live[rpo[i]]);
- }
- /* Process BB and update the live information with uses in
- this block. */
- find_assert_locations_1 (bb, live[rpo[i]]);
- /* Merge liveness into the predecessor blocks and free it. */
- if (!bitmap_empty_p (live[rpo[i]]))
- {
- int pred_rpo = i;
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- int pred = e->src->index;
- if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
- continue;
- if (!live[pred])
- {
- live[pred] = sbitmap_alloc (num_ssa_names);
- bitmap_clear (live[pred]);
- }
- bitmap_ior (live[pred], live[pred], live[rpo[i]]);
- if (bb_rpo[pred] < pred_rpo)
- pred_rpo = bb_rpo[pred];
- }
- /* Record the RPO number of the last visited block that needs
- live information from this block. */
- last_rpo[rpo[i]] = pred_rpo;
- }
- else
- {
- sbitmap_free (live[rpo[i]]);
- live[rpo[i]] = NULL;
- }
- /* We can free all successors live bitmaps if all their
- predecessors have been visited already. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (last_rpo[e->dest->index] == i
- && live[e->dest->index])
- {
- sbitmap_free (live[e->dest->index]);
- live[e->dest->index] = NULL;
- }
- }
- XDELETEVEC (rpo);
- XDELETEVEC (bb_rpo);
- XDELETEVEC (last_rpo);
- for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
- if (live[i])
- sbitmap_free (live[i]);
- XDELETEVEC (live);
- }
- /* Create an ASSERT_EXPR for NAME and insert it in the location
- indicated by LOC. Return true if we made any edge insertions. */
- static bool
- process_assert_insertions_for (tree name, assert_locus_t loc)
- {
- /* Build the comparison expression NAME_i COMP_CODE VAL. */
- gimple stmt;
- tree cond;
- gimple assert_stmt;
- edge_iterator ei;
- edge e;
- /* If we have X <=> X do not insert an assert expr for that. */
- if (loc->expr == loc->val)
- return false;
- cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
- assert_stmt = build_assert_expr_for (cond, name);
- if (loc->e)
- {
- /* We have been asked to insert the assertion on an edge. This
- is used only by COND_EXPR and SWITCH_EXPR assertions. */
- gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
- || (gimple_code (gsi_stmt (loc->si))
- == GIMPLE_SWITCH));
- gsi_insert_on_edge (loc->e, assert_stmt);
- return true;
- }
- /* Otherwise, we can insert right after LOC->SI iff the
- statement must not be the last statement in the block. */
- stmt = gsi_stmt (loc->si);
- if (!stmt_ends_bb_p (stmt))
- {
- gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
- return false;
- }
- /* If STMT must be the last statement in BB, we can only insert new
- assertions on the non-abnormal edge out of BB. Note that since
- STMT is not control flow, there may only be one non-abnormal edge
- out of BB. */
- FOR_EACH_EDGE (e, ei, loc->bb->succs)
- if (!(e->flags & EDGE_ABNORMAL))
- {
- gsi_insert_on_edge (e, assert_stmt);
- return true;
- }
- gcc_unreachable ();
- }
- /* Process all the insertions registered for every name N_i registered
- in NEED_ASSERT_FOR. The list of assertions to be inserted are
- found in ASSERTS_FOR[i]. */
- static void
- process_assert_insertions (void)
- {
- unsigned i;
- bitmap_iterator bi;
- bool update_edges_p = false;
- int num_asserts = 0;
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_all_asserts (dump_file);
- EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
- {
- assert_locus_t loc = asserts_for[i];
- gcc_assert (loc);
- while (loc)
- {
- assert_locus_t next = loc->next;
- update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
- free (loc);
- loc = next;
- num_asserts++;
- }
- }
- if (update_edges_p)
- gsi_commit_edge_inserts ();
- statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
- num_asserts);
- }
- /* Traverse the flowgraph looking for conditional jumps to insert range
- expressions. These range expressions are meant to provide information
- to optimizations that need to reason in terms of value ranges. They
- will not be expanded into RTL. For instance, given:
- x = ...
- y = ...
- if (x < y)
- y = x - 2;
- else
- x = y + 3;
- this pass will transform the code into:
- x = ...
- y = ...
- if (x < y)
- {
- x = ASSERT_EXPR <x, x < y>
- y = x - 2
- }
- else
- {
- y = ASSERT_EXPR <y, x >= y>
- x = y + 3
- }
- The idea is that once copy and constant propagation have run, other
- optimizations will be able to determine what ranges of values can 'x'
- take in different paths of the code, simply by checking the reaching
- definition of 'x'. */
- static void
- insert_range_assertions (void)
- {
- need_assert_for = BITMAP_ALLOC (NULL);
- asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
- calculate_dominance_info (CDI_DOMINATORS);
- find_assert_locations ();
- if (!bitmap_empty_p (need_assert_for))
- {
- process_assert_insertions ();
- update_ssa (TODO_update_ssa_no_phi);
- }
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
- dump_function_to_file (current_function_decl, dump_file, dump_flags);
- }
- free (asserts_for);
- BITMAP_FREE (need_assert_for);
- }
- /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
- and "struct" hacks. If VRP can determine that the
- array subscript is a constant, check if it is outside valid
- range. If the array subscript is a RANGE, warn if it is
- non-overlapping with valid range.
- IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
- static void
- check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
- {
- value_range_t* vr = NULL;
- tree low_sub, up_sub;
- tree low_bound, up_bound, up_bound_p1;
- tree base;
- if (TREE_NO_WARNING (ref))
- return;
- low_sub = up_sub = TREE_OPERAND (ref, 1);
- up_bound = array_ref_up_bound (ref);
- /* Can not check flexible arrays. */
- if (!up_bound
- || TREE_CODE (up_bound) != INTEGER_CST)
- return;
- /* Accesses to trailing arrays via pointers may access storage
- beyond the types array bounds. */
- base = get_base_address (ref);
- if ((warn_array_bounds < 2)
- && base && TREE_CODE (base) == MEM_REF)
- {
- tree cref, next = NULL_TREE;
- if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
- return;
- cref = TREE_OPERAND (ref, 0);
- if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
- for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
- next && TREE_CODE (next) != FIELD_DECL;
- next = DECL_CHAIN (next))
- ;
- /* If this is the last field in a struct type or a field in a
- union type do not warn. */
- if (!next)
- return;
- }
- low_bound = array_ref_low_bound (ref);
- up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
- build_int_cst (TREE_TYPE (up_bound), 1));
- if (TREE_CODE (low_sub) == SSA_NAME)
- {
- vr = get_value_range (low_sub);
- if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
- {
- low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
- up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
- }
- }
- if (vr && vr->type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (up_sub) == INTEGER_CST
- && tree_int_cst_lt (up_bound, up_sub)
- && TREE_CODE (low_sub) == INTEGER_CST
- && tree_int_cst_lt (low_sub, low_bound))
- {
- warning_at (location, OPT_Warray_bounds,
- "array subscript is outside array bounds");
- TREE_NO_WARNING (ref) = 1;
- }
- }
- else if (TREE_CODE (up_sub) == INTEGER_CST
- && (ignore_off_by_one
- ? (tree_int_cst_lt (up_bound, up_sub)
- && !tree_int_cst_equal (up_bound_p1, up_sub))
- : (tree_int_cst_lt (up_bound, up_sub)
- || tree_int_cst_equal (up_bound_p1, up_sub))))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is above array bounds");
- TREE_NO_WARNING (ref) = 1;
- }
- else if (TREE_CODE (low_sub) == INTEGER_CST
- && tree_int_cst_lt (low_sub, low_bound))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is below array bounds");
- TREE_NO_WARNING (ref) = 1;
- }
- }
- /* Searches if the expr T, located at LOCATION computes
- address of an ARRAY_REF, and call check_array_ref on it. */
- static void
- search_for_addr_array (tree t, location_t location)
- {
- while (TREE_CODE (t) == SSA_NAME)
- {
- gimple g = SSA_NAME_DEF_STMT (t);
- if (gimple_code (g) != GIMPLE_ASSIGN)
- return;
- if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
- != GIMPLE_SINGLE_RHS)
- return;
- t = gimple_assign_rhs1 (g);
- }
- /* We are only interested in addresses of ARRAY_REF's. */
- if (TREE_CODE (t) != ADDR_EXPR)
- return;
- /* Check each ARRAY_REFs in the reference chain. */
- do
- {
- if (TREE_CODE (t) == ARRAY_REF)
- check_array_ref (location, t, true /*ignore_off_by_one*/);
- t = TREE_OPERAND (t, 0);
- }
- while (handled_component_p (t));
- if (TREE_CODE (t) == MEM_REF
- && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
- && !TREE_NO_WARNING (t))
- {
- tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
- tree low_bound, up_bound, el_sz;
- offset_int idx;
- if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
- || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
- || !TYPE_DOMAIN (TREE_TYPE (tem)))
- return;
- low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
- up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
- el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
- if (!low_bound
- || TREE_CODE (low_bound) != INTEGER_CST
- || !up_bound
- || TREE_CODE (up_bound) != INTEGER_CST
- || !el_sz
- || TREE_CODE (el_sz) != INTEGER_CST)
- return;
- idx = mem_ref_offset (t);
- idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
- if (wi::lts_p (idx, 0))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is below array bounds");
- TREE_NO_WARNING (t) = 1;
- }
- else if (wi::gts_p (idx, (wi::to_offset (up_bound)
- - wi::to_offset (low_bound) + 1)))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is above array bounds");
- TREE_NO_WARNING (t) = 1;
- }
- }
- }
- /* walk_tree() callback that checks if *TP is
- an ARRAY_REF inside an ADDR_EXPR (in which an array
- subscript one outside the valid range is allowed). Call
- check_array_ref for each ARRAY_REF found. The location is
- passed in DATA. */
- static tree
- check_array_bounds (tree *tp, int *walk_subtree, void *data)
- {
- tree t = *tp;
- struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
- location_t location;
- if (EXPR_HAS_LOCATION (t))
- location = EXPR_LOCATION (t);
- else
- {
- location_t *locp = (location_t *) wi->info;
- location = *locp;
- }
- *walk_subtree = TRUE;
- if (TREE_CODE (t) == ARRAY_REF)
- check_array_ref (location, t, false /*ignore_off_by_one*/);
- if (TREE_CODE (t) == MEM_REF
- || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
- search_for_addr_array (TREE_OPERAND (t, 0), location);
- if (TREE_CODE (t) == ADDR_EXPR)
- *walk_subtree = FALSE;
- return NULL_TREE;
- }
- /* Walk over all statements of all reachable BBs and call check_array_bounds
- on them. */
- static void
- check_all_array_refs (void)
- {
- basic_block bb;
- gimple_stmt_iterator si;
- FOR_EACH_BB_FN (bb, cfun)
- {
- edge_iterator ei;
- edge e;
- bool executable = false;
- /* Skip blocks that were found to be unreachable. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- executable |= !!(e->flags & EDGE_EXECUTABLE);
- if (!executable)
- continue;
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- struct walk_stmt_info wi;
- if (!gimple_has_location (stmt))
- continue;
- if (is_gimple_call (stmt))
- {
- size_t i;
- size_t n = gimple_call_num_args (stmt);
- for (i = 0; i < n; i++)
- {
- tree arg = gimple_call_arg (stmt, i);
- search_for_addr_array (arg, gimple_location (stmt));
- }
- }
- else
- {
- memset (&wi, 0, sizeof (wi));
- wi.info = CONST_CAST (void *, (const void *)
- gimple_location_ptr (stmt));
- walk_gimple_op (gsi_stmt (si),
- check_array_bounds,
- &wi);
- }
- }
- }
- }
- /* Return true if all imm uses of VAR are either in STMT, or
- feed (optionally through a chain of single imm uses) GIMPLE_COND
- in basic block COND_BB. */
- static bool
- all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
- {
- use_operand_p use_p, use2_p;
- imm_use_iterator iter;
- FOR_EACH_IMM_USE_FAST (use_p, iter, var)
- if (USE_STMT (use_p) != stmt)
- {
- gimple use_stmt = USE_STMT (use_p), use_stmt2;
- if (is_gimple_debug (use_stmt))
- continue;
- while (is_gimple_assign (use_stmt)
- && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
- && single_imm_use (gimple_assign_lhs (use_stmt),
- &use2_p, &use_stmt2))
- use_stmt = use_stmt2;
- if (gimple_code (use_stmt) != GIMPLE_COND
- || gimple_bb (use_stmt) != cond_bb)
- return false;
- }
- return true;
- }
- /* Handle
- _4 = x_3 & 31;
- if (_4 != 0)
- goto <bb 6>;
- else
- goto <bb 7>;
- <bb 6>:
- __builtin_unreachable ();
- <bb 7>:
- x_5 = ASSERT_EXPR <x_3, ...>;
- If x_3 has no other immediate uses (checked by caller),
- var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
- from the non-zero bitmask. */
- static void
- maybe_set_nonzero_bits (basic_block bb, tree var)
- {
- edge e = single_pred_edge (bb);
- basic_block cond_bb = e->src;
- gimple stmt = last_stmt (cond_bb);
- tree cst;
- if (stmt == NULL
- || gimple_code (stmt) != GIMPLE_COND
- || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
- ? EQ_EXPR : NE_EXPR)
- || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
- || !integer_zerop (gimple_cond_rhs (stmt)))
- return;
- stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
- if (!is_gimple_assign (stmt)
- || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
- || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
- return;
- if (gimple_assign_rhs1 (stmt) != var)
- {
- gimple stmt2;
- if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
- return;
- stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
- if (!gimple_assign_cast_p (stmt2)
- || gimple_assign_rhs1 (stmt2) != var
- || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
- || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
- != TYPE_PRECISION (TREE_TYPE (var))))
- return;
- }
- cst = gimple_assign_rhs2 (stmt);
- set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
- }
- /* Convert range assertion expressions into the implied copies and
- copy propagate away the copies. Doing the trivial copy propagation
- here avoids the need to run the full copy propagation pass after
- VRP.
- FIXME, this will eventually lead to copy propagation removing the
- names that had useful range information attached to them. For
- instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
- then N_i will have the range [3, +INF].
- However, by converting the assertion into the implied copy
- operation N_i = N_j, we will then copy-propagate N_j into the uses
- of N_i and lose the range information. We may want to hold on to
- ASSERT_EXPRs a little while longer as the ranges could be used in
- things like jump threading.
- The problem with keeping ASSERT_EXPRs around is that passes after
- VRP need to handle them appropriately.
- Another approach would be to make the range information a first
- class property of the SSA_NAME so that it can be queried from
- any pass. This is made somewhat more complex by the need for
- multiple ranges to be associated with one SSA_NAME. */
- static void
- remove_range_assertions (void)
- {
- basic_block bb;
- gimple_stmt_iterator si;
- /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
- a basic block preceeded by GIMPLE_COND branching to it and
- __builtin_trap, -1 if not yet checked, 0 otherwise. */
- int is_unreachable;
- /* Note that the BSI iterator bump happens at the bottom of the
- loop and no bump is necessary if we're removing the statement
- referenced by the current BSI. */
- FOR_EACH_BB_FN (bb, cfun)
- for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
- {
- gimple stmt = gsi_stmt (si);
- gimple use_stmt;
- if (is_gimple_assign (stmt)
- && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
- {
- tree lhs = gimple_assign_lhs (stmt);
- tree rhs = gimple_assign_rhs1 (stmt);
- tree var;
- tree cond = fold (ASSERT_EXPR_COND (rhs));
- use_operand_p use_p;
- imm_use_iterator iter;
- gcc_assert (cond != boolean_false_node);
- var = ASSERT_EXPR_VAR (rhs);
- gcc_assert (TREE_CODE (var) == SSA_NAME);
- if (!POINTER_TYPE_P (TREE_TYPE (lhs))
- && SSA_NAME_RANGE_INFO (lhs))
- {
- if (is_unreachable == -1)
- {
- is_unreachable = 0;
- if (single_pred_p (bb)
- && assert_unreachable_fallthru_edge_p
- (single_pred_edge (bb)))
- is_unreachable = 1;
- }
- /* Handle
- if (x_7 >= 10 && x_7 < 20)
- __builtin_unreachable ();
- x_8 = ASSERT_EXPR <x_7, ...>;
- if the only uses of x_7 are in the ASSERT_EXPR and
- in the condition. In that case, we can copy the
- range info from x_8 computed in this pass also
- for x_7. */
- if (is_unreachable
- && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
- single_pred (bb)))
- {
- set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
- SSA_NAME_RANGE_INFO (lhs)->get_min (),
- SSA_NAME_RANGE_INFO (lhs)->get_max ());
- maybe_set_nonzero_bits (bb, var);
- }
- }
- /* Propagate the RHS into every use of the LHS. */
- FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
- FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
- SET_USE (use_p, var);
- /* And finally, remove the copy, it is not needed. */
- gsi_remove (&si, true);
- release_defs (stmt);
- }
- else
- {
- if (!is_gimple_debug (gsi_stmt (si)))
- is_unreachable = 0;
- gsi_next (&si);
- }
- }
- }
- /* Return true if STMT is interesting for VRP. */
- static bool
- stmt_interesting_for_vrp (gimple stmt)
- {
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- tree res = gimple_phi_result (stmt);
- return (!virtual_operand_p (res)
- && (INTEGRAL_TYPE_P (TREE_TYPE (res))
- || POINTER_TYPE_P (TREE_TYPE (res))));
- }
- else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
- {
- tree lhs = gimple_get_lhs (stmt);
- /* In general, assignments with virtual operands are not useful
- for deriving ranges, with the obvious exception of calls to
- builtin functions. */
- if (lhs && TREE_CODE (lhs) == SSA_NAME
- && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- || POINTER_TYPE_P (TREE_TYPE (lhs)))
- && (is_gimple_call (stmt)
- || !gimple_vuse (stmt)))
- return true;
- else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
- switch (gimple_call_internal_fn (stmt))
- {
- case IFN_ADD_OVERFLOW:
- case IFN_SUB_OVERFLOW:
- case IFN_MUL_OVERFLOW:
- /* These internal calls return _Complex integer type,
- but are interesting to VRP nevertheless. */
- if (lhs && TREE_CODE (lhs) == SSA_NAME)
- return true;
- break;
- default:
- break;
- }
- }
- else if (gimple_code (stmt) == GIMPLE_COND
- || gimple_code (stmt) == GIMPLE_SWITCH)
- return true;
- return false;
- }
- /* Initialize local data structures for VRP. */
- static void
- vrp_initialize (void)
- {
- basic_block bb;
- values_propagated = false;
- num_vr_values = num_ssa_names;
- vr_value = XCNEWVEC (value_range_t *, num_vr_values);
- vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
- FOR_EACH_BB_FN (bb, cfun)
- {
- for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- gphi *phi = si.phi ();
- if (!stmt_interesting_for_vrp (phi))
- {
- tree lhs = PHI_RESULT (phi);
- set_value_range_to_varying (get_value_range (lhs));
- prop_set_simulate_again (phi, false);
- }
- else
- prop_set_simulate_again (phi, true);
- }
- for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- /* If the statement is a control insn, then we do not
- want to avoid simulating the statement once. Failure
- to do so means that those edges will never get added. */
- if (stmt_ends_bb_p (stmt))
- prop_set_simulate_again (stmt, true);
- else if (!stmt_interesting_for_vrp (stmt))
- {
- ssa_op_iter i;
- tree def;
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
- prop_set_simulate_again (stmt, false);
- }
- else
- prop_set_simulate_again (stmt, true);
- }
- }
- }
- /* Return the singleton value-range for NAME or NAME. */
- static inline tree
- vrp_valueize (tree name)
- {
- if (TREE_CODE (name) == SSA_NAME)
- {
- value_range_t *vr = get_value_range (name);
- if (vr->type == VR_RANGE
- && (vr->min == vr->max
- || operand_equal_p (vr->min, vr->max, 0)))
- return vr->min;
- }
- return name;
- }
- /* Return the singleton value-range for NAME if that is a constant
- but signal to not follow SSA edges. */
- static inline tree
- vrp_valueize_1 (tree name)
- {
- if (TREE_CODE (name) == SSA_NAME)
- {
- /* If the definition may be simulated again we cannot follow
- this SSA edge as the SSA propagator does not necessarily
- re-visit the use. */
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
- if (!gimple_nop_p (def_stmt)
- && prop_simulate_again_p (def_stmt))
- return NULL_TREE;
- value_range_t *vr = get_value_range (name);
- if (range_int_cst_singleton_p (vr))
- return vr->min;
- }
- return name;
- }
- /* Visit assignment STMT. If it produces an interesting range, record
- the SSA name in *OUTPUT_P. */
- static enum ssa_prop_result
- vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
- {
- tree def, lhs;
- ssa_op_iter iter;
- enum gimple_code code = gimple_code (stmt);
- lhs = gimple_get_lhs (stmt);
- /* We only keep track of ranges in integral and pointer types. */
- if (TREE_CODE (lhs) == SSA_NAME
- && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- /* It is valid to have NULL MIN/MAX values on a type. See
- build_range_type. */
- && TYPE_MIN_VALUE (TREE_TYPE (lhs))
- && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
- || POINTER_TYPE_P (TREE_TYPE (lhs))))
- {
- value_range_t new_vr = VR_INITIALIZER;
- /* Try folding the statement to a constant first. */
- tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
- vrp_valueize_1);
- if (tem && is_gimple_min_invariant (tem))
- set_value_range_to_value (&new_vr, tem, NULL);
- /* Then dispatch to value-range extracting functions. */
- else if (code == GIMPLE_CALL)
- extract_range_basic (&new_vr, stmt);
- else
- extract_range_from_assignment (&new_vr, as_a <gassign *> (stmt));
- if (update_value_range (lhs, &new_vr))
- {
- *output_p = lhs;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Found new range for ");
- print_generic_expr (dump_file, lhs, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, &new_vr);
- fprintf (dump_file, "\n");
- }
- if (new_vr.type == VR_VARYING)
- return SSA_PROP_VARYING;
- return SSA_PROP_INTERESTING;
- }
- return SSA_PROP_NOT_INTERESTING;
- }
- else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
- switch (gimple_call_internal_fn (stmt))
- {
- case IFN_ADD_OVERFLOW:
- case IFN_SUB_OVERFLOW:
- case IFN_MUL_OVERFLOW:
- /* These internal calls return _Complex integer type,
- which VRP does not track, but the immediate uses
- thereof might be interesting. */
- if (lhs && TREE_CODE (lhs) == SSA_NAME)
- {
- imm_use_iterator iter;
- use_operand_p use_p;
- enum ssa_prop_result res = SSA_PROP_VARYING;
- set_value_range_to_varying (get_value_range (lhs));
- FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
- {
- gimple use_stmt = USE_STMT (use_p);
- if (!is_gimple_assign (use_stmt))
- continue;
- enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
- if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
- continue;
- tree rhs1 = gimple_assign_rhs1 (use_stmt);
- tree use_lhs = gimple_assign_lhs (use_stmt);
- if (TREE_CODE (rhs1) != rhs_code
- || TREE_OPERAND (rhs1, 0) != lhs
- || TREE_CODE (use_lhs) != SSA_NAME
- || !stmt_interesting_for_vrp (use_stmt)
- || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
- || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
- || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
- continue;
- /* If there is a change in the value range for any of the
- REALPART_EXPR/IMAGPART_EXPR immediate uses, return
- SSA_PROP_INTERESTING. If there are any REALPART_EXPR
- or IMAGPART_EXPR immediate uses, but none of them have
- a change in their value ranges, return
- SSA_PROP_NOT_INTERESTING. If there are no
- {REAL,IMAG}PART_EXPR uses at all,
- return SSA_PROP_VARYING. */
- value_range_t new_vr = VR_INITIALIZER;
- extract_range_basic (&new_vr, use_stmt);
- value_range_t *old_vr = get_value_range (use_lhs);
- if (old_vr->type != new_vr.type
- || !vrp_operand_equal_p (old_vr->min, new_vr.min)
- || !vrp_operand_equal_p (old_vr->max, new_vr.max)
- || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
- res = SSA_PROP_INTERESTING;
- else
- res = SSA_PROP_NOT_INTERESTING;
- BITMAP_FREE (new_vr.equiv);
- if (res == SSA_PROP_INTERESTING)
- {
- *output_p = lhs;
- return res;
- }
- }
- return res;
- }
- break;
- default:
- break;
- }
- /* Every other statement produces no useful ranges. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
- return SSA_PROP_VARYING;
- }
- /* Helper that gets the value range of the SSA_NAME with version I
- or a symbolic range containing the SSA_NAME only if the value range
- is varying or undefined. */
- static inline value_range_t
- get_vr_for_comparison (int i)
- {
- value_range_t vr = *get_value_range (ssa_name (i));
- /* If name N_i does not have a valid range, use N_i as its own
- range. This allows us to compare against names that may
- have N_i in their ranges. */
- if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
- {
- vr.type = VR_RANGE;
- vr.min = ssa_name (i);
- vr.max = ssa_name (i);
- }
- return vr;
- }
- /* Compare all the value ranges for names equivalent to VAR with VAL
- using comparison code COMP. Return the same value returned by
- compare_range_with_value, including the setting of
- *STRICT_OVERFLOW_P. */
- static tree
- compare_name_with_value (enum tree_code comp, tree var, tree val,
- bool *strict_overflow_p)
- {
- bitmap_iterator bi;
- unsigned i;
- bitmap e;
- tree retval, t;
- int used_strict_overflow;
- bool sop;
- value_range_t equiv_vr;
- /* Get the set of equivalences for VAR. */
- e = get_value_range (var)->equiv;
- /* Start at -1. Set it to 0 if we do a comparison without relying
- on overflow, or 1 if all comparisons rely on overflow. */
- used_strict_overflow = -1;
- /* Compare vars' value range with val. */
- equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
- sop = false;
- retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
- if (retval)
- used_strict_overflow = sop ? 1 : 0;
- /* If the equiv set is empty we have done all work we need to do. */
- if (e == NULL)
- {
- if (retval
- && used_strict_overflow > 0)
- *strict_overflow_p = true;
- return retval;
- }
- EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
- {
- equiv_vr = get_vr_for_comparison (i);
- sop = false;
- t = compare_range_with_value (comp, &equiv_vr, val, &sop);
- if (t)
- {
- /* If we get different answers from different members
- of the equivalence set this check must be in a dead
- code region. Folding it to a trap representation
- would be correct here. For now just return don't-know. */
- if (retval != NULL
- && t != retval)
- {
- retval = NULL_TREE;
- break;
- }
- retval = t;
- if (!sop)
- used_strict_overflow = 0;
- else if (used_strict_overflow < 0)
- used_strict_overflow = 1;
- }
- }
- if (retval
- && used_strict_overflow > 0)
- *strict_overflow_p = true;
- return retval;
- }
- /* Given a comparison code COMP and names N1 and N2, compare all the
- ranges equivalent to N1 against all the ranges equivalent to N2
- to determine the value of N1 COMP N2. Return the same value
- returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
- whether we relied on an overflow infinity in the comparison. */
- static tree
- compare_names (enum tree_code comp, tree n1, tree n2,
- bool *strict_overflow_p)
- {
- tree t, retval;
- bitmap e1, e2;
- bitmap_iterator bi1, bi2;
- unsigned i1, i2;
- int used_strict_overflow;
- static bitmap_obstack *s_obstack = NULL;
- static bitmap s_e1 = NULL, s_e2 = NULL;
- /* Compare the ranges of every name equivalent to N1 against the
- ranges of every name equivalent to N2. */
- e1 = get_value_range (n1)->equiv;
- e2 = get_value_range (n2)->equiv;
- /* Use the fake bitmaps if e1 or e2 are not available. */
- if (s_obstack == NULL)
- {
- s_obstack = XNEW (bitmap_obstack);
- bitmap_obstack_initialize (s_obstack);
- s_e1 = BITMAP_ALLOC (s_obstack);
- s_e2 = BITMAP_ALLOC (s_obstack);
- }
- if (e1 == NULL)
- e1 = s_e1;
- if (e2 == NULL)
- e2 = s_e2;
- /* Add N1 and N2 to their own set of equivalences to avoid
- duplicating the body of the loop just to check N1 and N2
- ranges. */
- bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
- /* If the equivalence sets have a common intersection, then the two
- names can be compared without checking their ranges. */
- if (bitmap_intersect_p (e1, e2))
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
- ? boolean_true_node
- : boolean_false_node;
- }
- /* Start at -1. Set it to 0 if we do a comparison without relying
- on overflow, or 1 if all comparisons rely on overflow. */
- used_strict_overflow = -1;
- /* Otherwise, compare all the equivalent ranges. First, add N1 and
- N2 to their own set of equivalences to avoid duplicating the body
- of the loop just to check N1 and N2 ranges. */
- EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
- {
- value_range_t vr1 = get_vr_for_comparison (i1);
- t = retval = NULL_TREE;
- EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
- {
- bool sop = false;
- value_range_t vr2 = get_vr_for_comparison (i2);
- t = compare_ranges (comp, &vr1, &vr2, &sop);
- if (t)
- {
- /* If we get different answers from different members
- of the equivalence set this check must be in a dead
- code region. Folding it to a trap representation
- would be correct here. For now just return don't-know. */
- if (retval != NULL
- && t != retval)
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- return NULL_TREE;
- }
- retval = t;
- if (!sop)
- used_strict_overflow = 0;
- else if (used_strict_overflow < 0)
- used_strict_overflow = 1;
- }
- }
- if (retval)
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- if (used_strict_overflow > 0)
- *strict_overflow_p = true;
- return retval;
- }
- }
- /* None of the equivalent ranges are useful in computing this
- comparison. */
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- return NULL_TREE;
- }
- /* Helper function for vrp_evaluate_conditional_warnv. */
- static tree
- vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
- tree op0, tree op1,
- bool * strict_overflow_p)
- {
- value_range_t *vr0, *vr1;
- vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
- vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
- tree res = NULL_TREE;
- if (vr0 && vr1)
- res = compare_ranges (code, vr0, vr1, strict_overflow_p);
- if (!res && vr0)
- res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
- if (!res && vr1)
- res = (compare_range_with_value
- (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
- return res;
- }
- /* Helper function for vrp_evaluate_conditional_warnv. */
- static tree
- vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
- tree op1, bool use_equiv_p,
- bool *strict_overflow_p, bool *only_ranges)
- {
- tree ret;
- if (only_ranges)
- *only_ranges = true;
- /* We only deal with integral and pointer types. */
- if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
- && !POINTER_TYPE_P (TREE_TYPE (op0)))
- return NULL_TREE;
- if (use_equiv_p)
- {
- if (only_ranges
- && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
- (code, op0, op1, strict_overflow_p)))
- return ret;
- *only_ranges = false;
- if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
- return compare_names (code, op0, op1, strict_overflow_p);
- else if (TREE_CODE (op0) == SSA_NAME)
- return compare_name_with_value (code, op0, op1, strict_overflow_p);
- else if (TREE_CODE (op1) == SSA_NAME)
- return (compare_name_with_value
- (swap_tree_comparison (code), op1, op0, strict_overflow_p));
- }
- else
- return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
- strict_overflow_p);
- return NULL_TREE;
- }
- /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
- information. Return NULL if the conditional can not be evaluated.
- The ranges of all the names equivalent with the operands in COND
- will be used when trying to compute the value. If the result is
- based on undefined signed overflow, issue a warning if
- appropriate. */
- static tree
- vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
- {
- bool sop;
- tree ret;
- bool only_ranges;
- /* Some passes and foldings leak constants with overflow flag set
- into the IL. Avoid doing wrong things with these and bail out. */
- if ((TREE_CODE (op0) == INTEGER_CST
- && TREE_OVERFLOW (op0))
- || (TREE_CODE (op1) == INTEGER_CST
- && TREE_OVERFLOW (op1)))
- return NULL_TREE;
- sop = false;
- ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
- &only_ranges);
- if (ret && sop)
- {
- enum warn_strict_overflow_code wc;
- const char* warnmsg;
- if (is_gimple_min_invariant (ret))
- {
- wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
- warnmsg = G_("assuming signed overflow does not occur when "
- "simplifying conditional to constant");
- }
- else
- {
- wc = WARN_STRICT_OVERFLOW_COMPARISON;
- warnmsg = G_("assuming signed overflow does not occur when "
- "simplifying conditional");
- }
- if (issue_strict_overflow_warning (wc))
- {
- location_t location;
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
- }
- }
- if (warn_type_limits
- && ret && only_ranges
- && TREE_CODE_CLASS (code) == tcc_comparison
- && TREE_CODE (op0) == SSA_NAME)
- {
- /* If the comparison is being folded and the operand on the LHS
- is being compared against a constant value that is outside of
- the natural range of OP0's type, then the predicate will
- always fold regardless of the value of OP0. If -Wtype-limits
- was specified, emit a warning. */
- tree type = TREE_TYPE (op0);
- value_range_t *vr0 = get_value_range (op0);
- if (vr0->type == VR_RANGE
- && INTEGRAL_TYPE_P (type)
- && vrp_val_is_min (vr0->min)
- && vrp_val_is_max (vr0->max)
- && is_gimple_min_invariant (op1))
- {
- location_t location;
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wtype_limits,
- integer_zerop (ret)
- ? G_("comparison always false "
- "due to limited range of data type")
- : G_("comparison always true "
- "due to limited range of data type"));
- }
- }
- return ret;
- }
- /* Visit conditional statement STMT. If we can determine which edge
- will be taken out of STMT's basic block, record it in
- *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
- SSA_PROP_VARYING. */
- static enum ssa_prop_result
- vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
- {
- tree val;
- bool sop;
- *taken_edge_p = NULL;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- tree use;
- ssa_op_iter i;
- fprintf (dump_file, "\nVisiting conditional with predicate: ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "\nWith known ranges\n");
- FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
- {
- fprintf (dump_file, "\t");
- print_generic_expr (dump_file, use, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
- }
- fprintf (dump_file, "\n");
- }
- /* Compute the value of the predicate COND by checking the known
- ranges of each of its operands.
- Note that we cannot evaluate all the equivalent ranges here
- because those ranges may not yet be final and with the current
- propagation strategy, we cannot determine when the value ranges
- of the names in the equivalence set have changed.
- For instance, given the following code fragment
- i_5 = PHI <8, i_13>
- ...
- i_14 = ASSERT_EXPR <i_5, i_5 != 0>
- if (i_14 == 1)
- ...
- Assume that on the first visit to i_14, i_5 has the temporary
- range [8, 8] because the second argument to the PHI function is
- not yet executable. We derive the range ~[0, 0] for i_14 and the
- equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
- the first time, since i_14 is equivalent to the range [8, 8], we
- determine that the predicate is always false.
- On the next round of propagation, i_13 is determined to be
- VARYING, which causes i_5 to drop down to VARYING. So, another
- visit to i_14 is scheduled. In this second visit, we compute the
- exact same range and equivalence set for i_14, namely ~[0, 0] and
- { i_5 }. But we did not have the previous range for i_5
- registered, so vrp_visit_assignment thinks that the range for
- i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
- is not visited again, which stops propagation from visiting
- statements in the THEN clause of that if().
- To properly fix this we would need to keep the previous range
- value for the names in the equivalence set. This way we would've
- discovered that from one visit to the other i_5 changed from
- range [8, 8] to VR_VARYING.
- However, fixing this apparent limitation may not be worth the
- additional checking. Testing on several code bases (GCC, DLV,
- MICO, TRAMP3D and SPEC2000) showed that doing this results in
- 4 more predicates folded in SPEC. */
- sop = false;
- val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
- gimple_cond_lhs (stmt),
- gimple_cond_rhs (stmt),
- false, &sop, NULL);
- if (val)
- {
- if (!sop)
- *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
- else
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "\nIgnoring predicate evaluation because "
- "it assumes that signed overflow is undefined");
- val = NULL_TREE;
- }
- }
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nPredicate evaluates to: ");
- if (val == NULL_TREE)
- fprintf (dump_file, "DON'T KNOW\n");
- else
- print_generic_stmt (dump_file, val, 0);
- }
- return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
- }
- /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
- that includes the value VAL. The search is restricted to the range
- [START_IDX, n - 1] where n is the size of VEC.
- If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
- returned.
- If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
- it is placed in IDX and false is returned.
- If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
- returned. */
- static bool
- find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
- {
- size_t n = gimple_switch_num_labels (stmt);
- size_t low, high;
- /* Find case label for minimum of the value range or the next one.
- At each iteration we are searching in [low, high - 1]. */
- for (low = start_idx, high = n; high != low; )
- {
- tree t;
- int cmp;
- /* Note that i != high, so we never ask for n. */
- size_t i = (high + low) / 2;
- t = gimple_switch_label (stmt, i);
- /* Cache the result of comparing CASE_LOW and val. */
- cmp = tree_int_cst_compare (CASE_LOW (t), val);
- if (cmp == 0)
- {
- /* Ranges cannot be empty. */
- *idx = i;
- return true;
- }
- else if (cmp > 0)
- high = i;
- else
- {
- low = i + 1;
- if (CASE_HIGH (t) != NULL
- && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
- {
- *idx = i;
- return true;
- }
- }
- }
- *idx = high;
- return false;
- }
- /* Searches the case label vector VEC for the range of CASE_LABELs that is used
- for values between MIN and MAX. The first index is placed in MIN_IDX. The
- last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
- then MAX_IDX < MIN_IDX.
- Returns true if the default label is not needed. */
- static bool
- find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
- size_t *max_idx)
- {
- size_t i, j;
- bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
- bool max_take_default = !find_case_label_index (stmt, i, max, &j);
- if (i == j
- && min_take_default
- && max_take_default)
- {
- /* Only the default case label reached.
- Return an empty range. */
- *min_idx = 1;
- *max_idx = 0;
- return false;
- }
- else
- {
- bool take_default = min_take_default || max_take_default;
- tree low, high;
- size_t k;
- if (max_take_default)
- j--;
- /* If the case label range is continuous, we do not need
- the default case label. Verify that. */
- high = CASE_LOW (gimple_switch_label (stmt, i));
- if (CASE_HIGH (gimple_switch_label (stmt, i)))
- high = CASE_HIGH (gimple_switch_label (stmt, i));
- for (k = i + 1; k <= j; ++k)
- {
- low = CASE_LOW (gimple_switch_label (stmt, k));
- if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
- {
- take_default = true;
- break;
- }
- high = low;
- if (CASE_HIGH (gimple_switch_label (stmt, k)))
- high = CASE_HIGH (gimple_switch_label (stmt, k));
- }
- *min_idx = i;
- *max_idx = j;
- return !take_default;
- }
- }
- /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
- used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
- MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
- Returns true if the default label is not needed. */
- static bool
- find_case_label_ranges (gswitch *stmt, value_range_t *vr, size_t *min_idx1,
- size_t *max_idx1, size_t *min_idx2,
- size_t *max_idx2)
- {
- size_t i, j, k, l;
- unsigned int n = gimple_switch_num_labels (stmt);
- bool take_default;
- tree case_low, case_high;
- tree min = vr->min, max = vr->max;
- gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
- take_default = !find_case_label_range (stmt, min, max, &i, &j);
- /* Set second range to emtpy. */
- *min_idx2 = 1;
- *max_idx2 = 0;
- if (vr->type == VR_RANGE)
- {
- *min_idx1 = i;
- *max_idx1 = j;
- return !take_default;
- }
- /* Set first range to all case labels. */
- *min_idx1 = 1;
- *max_idx1 = n - 1;
- if (i > j)
- return false;
- /* Make sure all the values of case labels [i , j] are contained in
- range [MIN, MAX]. */
- case_low = CASE_LOW (gimple_switch_label (stmt, i));
- case_high = CASE_HIGH (gimple_switch_label (stmt, j));
- if (tree_int_cst_compare (case_low, min) < 0)
- i += 1;
- if (case_high != NULL_TREE
- && tree_int_cst_compare (max, case_high) < 0)
- j -= 1;
- if (i > j)
- return false;
- /* If the range spans case labels [i, j], the corresponding anti-range spans
- the labels [1, i - 1] and [j + 1, n - 1]. */
- k = j + 1;
- l = n - 1;
- if (k > l)
- {
- k = 1;
- l = 0;
- }
- j = i - 1;
- i = 1;
- if (i > j)
- {
- i = k;
- j = l;
- k = 1;
- l = 0;
- }
- *min_idx1 = i;
- *max_idx1 = j;
- *min_idx2 = k;
- *max_idx2 = l;
- return false;
- }
- /* Visit switch statement STMT. If we can determine which edge
- will be taken out of STMT's basic block, record it in
- *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
- SSA_PROP_VARYING. */
- static enum ssa_prop_result
- vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
- {
- tree op, val;
- value_range_t *vr;
- size_t i = 0, j = 0, k, l;
- bool take_default;
- *taken_edge_p = NULL;
- op = gimple_switch_index (stmt);
- if (TREE_CODE (op) != SSA_NAME)
- return SSA_PROP_VARYING;
- vr = get_value_range (op);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting switch expression with operand ");
- print_generic_expr (dump_file, op, 0);
- fprintf (dump_file, " with known range ");
- dump_value_range (dump_file, vr);
- fprintf (dump_file, "\n");
- }
- if ((vr->type != VR_RANGE
- && vr->type != VR_ANTI_RANGE)
- || symbolic_range_p (vr))
- return SSA_PROP_VARYING;
- /* Find the single edge that is taken from the switch expression. */
- take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
- /* Check if the range spans no CASE_LABEL. If so, we only reach the default
- label */
- if (j < i)
- {
- gcc_assert (take_default);
- val = gimple_switch_default_label (stmt);
- }
- else
- {
- /* Check if labels with index i to j and maybe the default label
- are all reaching the same label. */
- val = gimple_switch_label (stmt, i);
- if (take_default
- && CASE_LABEL (gimple_switch_default_label (stmt))
- != CASE_LABEL (val))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " not a single destination for this "
- "range\n");
- return SSA_PROP_VARYING;
- }
- for (++i; i <= j; ++i)
- {
- if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " not a single destination for this "
- "range\n");
- return SSA_PROP_VARYING;
- }
- }
- for (; k <= l; ++k)
- {
- if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " not a single destination for this "
- "range\n");
- return SSA_PROP_VARYING;
- }
- }
- }
- *taken_edge_p = find_edge (gimple_bb (stmt),
- label_to_block (CASE_LABEL (val)));
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " will take edge to ");
- print_generic_stmt (dump_file, CASE_LABEL (val), 0);
- }
- return SSA_PROP_INTERESTING;
- }
- /* Evaluate statement STMT. If the statement produces a useful range,
- return SSA_PROP_INTERESTING and record the SSA name with the
- interesting range into *OUTPUT_P.
- If STMT is a conditional branch and we can determine its truth
- value, the taken edge is recorded in *TAKEN_EDGE_P.
- If STMT produces a varying value, return SSA_PROP_VARYING. */
- static enum ssa_prop_result
- vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
- {
- tree def;
- ssa_op_iter iter;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting statement:\n");
- print_gimple_stmt (dump_file, stmt, 0, dump_flags);
- }
- if (!stmt_interesting_for_vrp (stmt))
- gcc_assert (stmt_ends_bb_p (stmt));
- else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
- return vrp_visit_assignment_or_call (stmt, output_p);
- else if (gimple_code (stmt) == GIMPLE_COND)
- return vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
- else if (gimple_code (stmt) == GIMPLE_SWITCH)
- return vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
- /* All other statements produce nothing of interest for VRP, so mark
- their outputs varying and prevent further simulation. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
- return SSA_PROP_VARYING;
- }
- /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
- { VR1TYPE, VR0MIN, VR0MAX } and store the result
- in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
- possible such range. The resulting range is not canonicalized. */
- static void
- union_ranges (enum value_range_type *vr0type,
- tree *vr0min, tree *vr0max,
- enum value_range_type vr1type,
- tree vr1min, tree vr1max)
- {
- bool mineq = operand_equal_p (*vr0min, vr1min, 0);
- bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
- /* [] is vr0, () is vr1 in the following classification comments. */
- if (mineq && maxeq)
- {
- /* [( )] */
- if (*vr0type == vr1type)
- /* Nothing to do for equal ranges. */
- ;
- else if ((*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- || (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE))
- {
- /* For anti-range with range union the result is varying. */
- goto give_up;
- }
- else
- gcc_unreachable ();
- }
- else if (operand_less_p (*vr0max, vr1min) == 1
- || operand_less_p (vr1max, *vr0min) == 1)
- {
- /* [ ] ( ) or ( ) [ ]
- If the ranges have an empty intersection, result of the union
- operation is the anti-range or if both are anti-ranges
- it covers all. */
- if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- goto give_up;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- ;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- /* The result is the convex hull of both ranges. */
- if (operand_less_p (*vr0max, vr1min) == 1)
- {
- /* If the result can be an anti-range, create one. */
- if (TREE_CODE (*vr0max) == INTEGER_CST
- && TREE_CODE (vr1min) == INTEGER_CST
- && vrp_val_is_min (*vr0min)
- && vrp_val_is_max (vr1max))
- {
- tree min = int_const_binop (PLUS_EXPR,
- *vr0max,
- build_int_cst (TREE_TYPE (*vr0max), 1));
- tree max = int_const_binop (MINUS_EXPR,
- vr1min,
- build_int_cst (TREE_TYPE (vr1min), 1));
- if (!operand_less_p (max, min))
- {
- *vr0type = VR_ANTI_RANGE;
- *vr0min = min;
- *vr0max = max;
- }
- else
- *vr0max = vr1max;
- }
- else
- *vr0max = vr1max;
- }
- else
- {
- /* If the result can be an anti-range, create one. */
- if (TREE_CODE (vr1max) == INTEGER_CST
- && TREE_CODE (*vr0min) == INTEGER_CST
- && vrp_val_is_min (vr1min)
- && vrp_val_is_max (*vr0max))
- {
- tree min = int_const_binop (PLUS_EXPR,
- vr1max,
- build_int_cst (TREE_TYPE (vr1max), 1));
- tree max = int_const_binop (MINUS_EXPR,
- *vr0min,
- build_int_cst (TREE_TYPE (*vr0min), 1));
- if (!operand_less_p (max, min))
- {
- *vr0type = VR_ANTI_RANGE;
- *vr0min = min;
- *vr0max = max;
- }
- else
- *vr0min = vr1min;
- }
- else
- *vr0min = vr1min;
- }
- }
- else
- gcc_unreachable ();
- }
- else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
- && (mineq || operand_less_p (*vr0min, vr1min) == 1))
- {
- /* [ ( ) ] or [( ) ] or [ ( )] */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- /* Arbitrarily choose the right or left gap. */
- if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min,
- build_int_cst (TREE_TYPE (vr1min), 1));
- else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max,
- build_int_cst (TREE_TYPE (vr1max), 1));
- else
- goto give_up;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- /* The result covers everything. */
- goto give_up;
- else
- gcc_unreachable ();
- }
- else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
- && (mineq || operand_less_p (vr1min, *vr0min) == 1))
- {
- /* ( [ ] ) or ([ ] ) or ( [ ]) */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- ;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- *vr0type = VR_ANTI_RANGE;
- if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
- {
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
- build_int_cst (TREE_TYPE (*vr0min), 1));
- *vr0min = vr1min;
- }
- else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
- {
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
- build_int_cst (TREE_TYPE (*vr0max), 1));
- *vr0max = vr1max;
- }
- else
- goto give_up;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- /* The result covers everything. */
- goto give_up;
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (vr1min, *vr0max) == 1
- || operand_equal_p (vr1min, *vr0max, 0))
- && operand_less_p (*vr0min, vr1min) == 1
- && operand_less_p (*vr0max, vr1max) == 1)
- {
- /* [ ( ] ) or [ ]( ) */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- if (TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min,
- build_int_cst (TREE_TYPE (vr1min), 1));
- else
- goto give_up;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (*vr0max) == INTEGER_CST)
- {
- *vr0type = vr1type;
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
- build_int_cst (TREE_TYPE (*vr0max), 1));
- *vr0max = vr1max;
- }
- else
- goto give_up;
- }
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (*vr0min, vr1max) == 1
- || operand_equal_p (*vr0min, vr1max, 0))
- && operand_less_p (vr1min, *vr0min) == 1
- && operand_less_p (vr1max, *vr0max) == 1)
- {
- /* ( [ ) ] or ( )[ ] */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- if (TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max,
- build_int_cst (TREE_TYPE (vr1max), 1));
- else
- goto give_up;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (*vr0min) == INTEGER_CST)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
- build_int_cst (TREE_TYPE (*vr0min), 1));
- }
- else
- goto give_up;
- }
- else
- gcc_unreachable ();
- }
- else
- goto give_up;
- return;
- give_up:
- *vr0type = VR_VARYING;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
- { VR1TYPE, VR0MIN, VR0MAX } and store the result
- in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
- possible such range. The resulting range is not canonicalized. */
- static void
- intersect_ranges (enum value_range_type *vr0type,
- tree *vr0min, tree *vr0max,
- enum value_range_type vr1type,
- tree vr1min, tree vr1max)
- {
- bool mineq = operand_equal_p (*vr0min, vr1min, 0);
- bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
- /* [] is vr0, () is vr1 in the following classification comments. */
- if (mineq && maxeq)
- {
- /* [( )] */
- if (*vr0type == vr1type)
- /* Nothing to do for equal ranges. */
- ;
- else if ((*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- || (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE))
- {
- /* For anti-range with range intersection the result is empty. */
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else
- gcc_unreachable ();
- }
- else if (operand_less_p (*vr0max, vr1min) == 1
- || operand_less_p (vr1max, *vr0min) == 1)
- {
- /* [ ] ( ) or ( ) [ ]
- If the ranges have an empty intersection, the result of the
- intersect operation is the range for intersecting an
- anti-range with a range or empty when intersecting two ranges. */
- if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- /* If the anti-ranges are adjacent to each other merge them. */
- if (TREE_CODE (*vr0max) == INTEGER_CST
- && TREE_CODE (vr1min) == INTEGER_CST
- && operand_less_p (*vr0max, vr1min) == 1
- && integer_onep (int_const_binop (MINUS_EXPR,
- vr1min, *vr0max)))
- *vr0max = vr1max;
- else if (TREE_CODE (vr1max) == INTEGER_CST
- && TREE_CODE (*vr0min) == INTEGER_CST
- && operand_less_p (vr1max, *vr0min) == 1
- && integer_onep (int_const_binop (MINUS_EXPR,
- *vr0min, vr1max)))
- *vr0min = vr1min;
- /* Else arbitrarily take VR0. */
- }
- }
- else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
- && (mineq || operand_less_p (*vr0min, vr1min) == 1))
- {
- /* [ ( ) ] or [( ) ] or [ ( )] */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- /* If both are ranges the result is the inner one. */
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- /* Choose the right gap if the left one is empty. */
- if (mineq)
- {
- if (TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max,
- build_int_cst (TREE_TYPE (vr1max), 1));
- else
- *vr0min = vr1max;
- }
- /* Choose the left gap if the right one is empty. */
- else if (maxeq)
- {
- if (TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min,
- build_int_cst (TREE_TYPE (vr1min), 1));
- else
- *vr0max = vr1min;
- }
- /* Choose the anti-range if the range is effectively varying. */
- else if (vrp_val_is_min (*vr0min)
- && vrp_val_is_max (*vr0max))
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- /* Else choose the range. */
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- /* If both are anti-ranges the result is the outer one. */
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- /* The intersection is empty. */
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else
- gcc_unreachable ();
- }
- else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
- && (mineq || operand_less_p (vr1min, *vr0min) == 1))
- {
- /* ( [ ] ) or ([ ] ) or ( [ ]) */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- /* Choose the inner range. */
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- /* Choose the right gap if the left is empty. */
- if (mineq)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
- build_int_cst (TREE_TYPE (*vr0max), 1));
- else
- *vr0min = *vr0max;
- *vr0max = vr1max;
- }
- /* Choose the left gap if the right is empty. */
- else if (maxeq)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
- build_int_cst (TREE_TYPE (*vr0min), 1));
- else
- *vr0max = *vr0min;
- *vr0min = vr1min;
- }
- /* Choose the anti-range if the range is effectively varying. */
- else if (vrp_val_is_min (vr1min)
- && vrp_val_is_max (vr1max))
- ;
- /* Else choose the range. */
- else
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- /* If both are anti-ranges the result is the outer one. */
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (vr1type == VR_ANTI_RANGE
- && *vr0type == VR_RANGE)
- {
- /* The intersection is empty. */
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (vr1min, *vr0max) == 1
- || operand_equal_p (vr1min, *vr0max, 0))
- && operand_less_p (*vr0min, vr1min) == 1)
- {
- /* [ ( ] ) or [ ]( ) */
- if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min,
- build_int_cst (TREE_TYPE (vr1min), 1));
- else
- *vr0max = vr1min;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
- build_int_cst (TREE_TYPE (*vr0max), 1));
- else
- *vr0min = *vr0max;
- *vr0max = vr1max;
- }
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (*vr0min, vr1max) == 1
- || operand_equal_p (*vr0min, vr1max, 0))
- && operand_less_p (vr1min, *vr0min) == 1)
- {
- /* ( [ ) ] or ( )[ ] */
- if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max,
- build_int_cst (TREE_TYPE (vr1max), 1));
- else
- *vr0min = vr1max;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
- build_int_cst (TREE_TYPE (*vr0min), 1));
- else
- *vr0max = *vr0min;
- *vr0min = vr1min;
- }
- else
- gcc_unreachable ();
- }
- /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
- result for the intersection. That's always a conservative
- correct estimate. */
- return;
- }
- /* Intersect the two value-ranges *VR0 and *VR1 and store the result
- in *VR0. This may not be the smallest possible such range. */
- static void
- vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
- {
- value_range_t saved;
- /* If either range is VR_VARYING the other one wins. */
- if (vr1->type == VR_VARYING)
- return;
- if (vr0->type == VR_VARYING)
- {
- copy_value_range (vr0, vr1);
- return;
- }
- /* When either range is VR_UNDEFINED the resulting range is
- VR_UNDEFINED, too. */
- if (vr0->type == VR_UNDEFINED)
- return;
- if (vr1->type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr0);
- return;
- }
- /* Save the original vr0 so we can return it as conservative intersection
- result when our worker turns things to varying. */
- saved = *vr0;
- intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
- vr1->type, vr1->min, vr1->max);
- /* Make sure to canonicalize the result though as the inversion of a
- VR_RANGE can still be a VR_RANGE. */
- set_and_canonicalize_value_range (vr0, vr0->type,
- vr0->min, vr0->max, vr0->equiv);
- /* If that failed, use the saved original VR0. */
- if (vr0->type == VR_VARYING)
- {
- *vr0 = saved;
- return;
- }
- /* If the result is VR_UNDEFINED there is no need to mess with
- the equivalencies. */
- if (vr0->type == VR_UNDEFINED)
- return;
- /* The resulting set of equivalences for range intersection is the union of
- the two sets. */
- if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
- bitmap_ior_into (vr0->equiv, vr1->equiv);
- else if (vr1->equiv && !vr0->equiv)
- bitmap_copy (vr0->equiv, vr1->equiv);
- }
- static void
- vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Intersecting\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\nand\n ");
- dump_value_range (dump_file, vr1);
- fprintf (dump_file, "\n");
- }
- vrp_intersect_ranges_1 (vr0, vr1);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "to\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\n");
- }
- }
- /* Meet operation for value ranges. Given two value ranges VR0 and
- VR1, store in VR0 a range that contains both VR0 and VR1. This
- may not be the smallest possible such range. */
- static void
- vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
- {
- value_range_t saved;
- if (vr0->type == VR_UNDEFINED)
- {
- set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
- return;
- }
- if (vr1->type == VR_UNDEFINED)
- {
- /* VR0 already has the resulting range. */
- return;
- }
- if (vr0->type == VR_VARYING)
- {
- /* Nothing to do. VR0 already has the resulting range. */
- return;
- }
- if (vr1->type == VR_VARYING)
- {
- set_value_range_to_varying (vr0);
- return;
- }
- saved = *vr0;
- union_ranges (&vr0->type, &vr0->min, &vr0->max,
- vr1->type, vr1->min, vr1->max);
- if (vr0->type == VR_VARYING)
- {
- /* Failed to find an efficient meet. Before giving up and setting
- the result to VARYING, see if we can at least derive a useful
- anti-range. FIXME, all this nonsense about distinguishing
- anti-ranges from ranges is necessary because of the odd
- semantics of range_includes_zero_p and friends. */
- if (((saved.type == VR_RANGE
- && range_includes_zero_p (saved.min, saved.max) == 0)
- || (saved.type == VR_ANTI_RANGE
- && range_includes_zero_p (saved.min, saved.max) == 1))
- && ((vr1->type == VR_RANGE
- && range_includes_zero_p (vr1->min, vr1->max) == 0)
- || (vr1->type == VR_ANTI_RANGE
- && range_includes_zero_p (vr1->min, vr1->max) == 1)))
- {
- set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
- /* Since this meet operation did not result from the meeting of
- two equivalent names, VR0 cannot have any equivalences. */
- if (vr0->equiv)
- bitmap_clear (vr0->equiv);
- return;
- }
- set_value_range_to_varying (vr0);
- return;
- }
- set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
- vr0->equiv);
- if (vr0->type == VR_VARYING)
- return;
- /* The resulting set of equivalences is always the intersection of
- the two sets. */
- if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
- bitmap_and_into (vr0->equiv, vr1->equiv);
- else if (vr0->equiv && !vr1->equiv)
- bitmap_clear (vr0->equiv);
- }
- static void
- vrp_meet (value_range_t *vr0, value_range_t *vr1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Meeting\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\nand\n ");
- dump_value_range (dump_file, vr1);
- fprintf (dump_file, "\n");
- }
- vrp_meet_1 (vr0, vr1);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "to\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\n");
- }
- }
- /* Visit all arguments for PHI node PHI that flow through executable
- edges. If a valid value range can be derived from all the incoming
- value ranges, set a new range for the LHS of PHI. */
- static enum ssa_prop_result
- vrp_visit_phi_node (gphi *phi)
- {
- size_t i;
- tree lhs = PHI_RESULT (phi);
- value_range_t *lhs_vr = get_value_range (lhs);
- value_range_t vr_result = VR_INITIALIZER;
- bool first = true;
- int edges, old_edges;
- struct loop *l;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting PHI node: ");
- print_gimple_stmt (dump_file, phi, 0, dump_flags);
- }
- edges = 0;
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- {
- edge e = gimple_phi_arg_edge (phi, i);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- " Argument #%d (%d -> %d %sexecutable)\n",
- (int) i, e->src->index, e->dest->index,
- (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
- }
- if (e->flags & EDGE_EXECUTABLE)
- {
- tree arg = PHI_ARG_DEF (phi, i);
- value_range_t vr_arg;
- ++edges;
- if (TREE_CODE (arg) == SSA_NAME)
- {
- vr_arg = *(get_value_range (arg));
- /* Do not allow equivalences or symbolic ranges to leak in from
- backedges. That creates invalid equivalencies.
- See PR53465 and PR54767. */
- if (e->flags & EDGE_DFS_BACK)
- {
- if (vr_arg.type == VR_RANGE
- || vr_arg.type == VR_ANTI_RANGE)
- {
- vr_arg.equiv = NULL;
- if (symbolic_range_p (&vr_arg))
- {
- vr_arg.type = VR_VARYING;
- vr_arg.min = NULL_TREE;
- vr_arg.max = NULL_TREE;
- }
- }
- }
- else
- {
- /* If the non-backedge arguments range is VR_VARYING then
- we can still try recording a simple equivalence. */
- if (vr_arg.type == VR_VARYING)
- {
- vr_arg.type = VR_RANGE;
- vr_arg.min = arg;
- vr_arg.max = arg;
- vr_arg.equiv = NULL;
- }
- }
- }
- else
- {
- if (TREE_OVERFLOW_P (arg))
- arg = drop_tree_overflow (arg);
- vr_arg.type = VR_RANGE;
- vr_arg.min = arg;
- vr_arg.max = arg;
- vr_arg.equiv = NULL;
- }
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\t");
- print_generic_expr (dump_file, arg, dump_flags);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, &vr_arg);
- fprintf (dump_file, "\n");
- }
- if (first)
- copy_value_range (&vr_result, &vr_arg);
- else
- vrp_meet (&vr_result, &vr_arg);
- first = false;
- if (vr_result.type == VR_VARYING)
- break;
- }
- }
- if (vr_result.type == VR_VARYING)
- goto varying;
- else if (vr_result.type == VR_UNDEFINED)
- goto update_range;
- old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
- vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
- /* To prevent infinite iterations in the algorithm, derive ranges
- when the new value is slightly bigger or smaller than the
- previous one. We don't do this if we have seen a new executable
- edge; this helps us avoid an overflow infinity for conditionals
- which are not in a loop. If the old value-range was VR_UNDEFINED
- use the updated range and iterate one more time. */
- if (edges > 0
- && gimple_phi_num_args (phi) > 1
- && edges == old_edges
- && lhs_vr->type != VR_UNDEFINED)
- {
- /* Compare old and new ranges, fall back to varying if the
- values are not comparable. */
- int cmp_min = compare_values (lhs_vr->min, vr_result.min);
- if (cmp_min == -2)
- goto varying;
- int cmp_max = compare_values (lhs_vr->max, vr_result.max);
- if (cmp_max == -2)
- goto varying;
- /* For non VR_RANGE or for pointers fall back to varying if
- the range changed. */
- if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
- || POINTER_TYPE_P (TREE_TYPE (lhs)))
- && (cmp_min != 0 || cmp_max != 0))
- goto varying;
- /* If the new minimum is larger than than the previous one
- retain the old value. If the new minimum value is smaller
- than the previous one and not -INF go all the way to -INF + 1.
- In the first case, to avoid infinite bouncing between different
- minimums, and in the other case to avoid iterating millions of
- times to reach -INF. Going to -INF + 1 also lets the following
- iteration compute whether there will be any overflow, at the
- expense of one additional iteration. */
- if (cmp_min < 0)
- vr_result.min = lhs_vr->min;
- else if (cmp_min > 0
- && !vrp_val_is_min (vr_result.min))
- vr_result.min
- = int_const_binop (PLUS_EXPR,
- vrp_val_min (TREE_TYPE (vr_result.min)),
- build_int_cst (TREE_TYPE (vr_result.min), 1));
- /* Similarly for the maximum value. */
- if (cmp_max > 0)
- vr_result.max = lhs_vr->max;
- else if (cmp_max < 0
- && !vrp_val_is_max (vr_result.max))
- vr_result.max
- = int_const_binop (MINUS_EXPR,
- vrp_val_max (TREE_TYPE (vr_result.min)),
- build_int_cst (TREE_TYPE (vr_result.min), 1));
- /* If we dropped either bound to +-INF then if this is a loop
- PHI node SCEV may known more about its value-range. */
- if ((cmp_min > 0 || cmp_min < 0
- || cmp_max < 0 || cmp_max > 0)
- && (l = loop_containing_stmt (phi))
- && l->header == gimple_bb (phi))
- adjust_range_with_scev (&vr_result, l, phi, lhs);
- /* If we will end up with a (-INF, +INF) range, set it to
- VARYING. Same if the previous max value was invalid for
- the type and we end up with vr_result.min > vr_result.max. */
- if ((vrp_val_is_max (vr_result.max)
- && vrp_val_is_min (vr_result.min))
- || compare_values (vr_result.min,
- vr_result.max) > 0)
- goto varying;
- }
- /* If the new range is different than the previous value, keep
- iterating. */
- update_range:
- if (update_value_range (lhs, &vr_result))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Found new range for ");
- print_generic_expr (dump_file, lhs, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, &vr_result);
- fprintf (dump_file, "\n");
- }
- if (vr_result.type == VR_VARYING)
- return SSA_PROP_VARYING;
- return SSA_PROP_INTERESTING;
- }
- /* Nothing changed, don't add outgoing edges. */
- return SSA_PROP_NOT_INTERESTING;
- /* No match found. Set the LHS to VARYING. */
- varying:
- set_value_range_to_varying (lhs_vr);
- return SSA_PROP_VARYING;
- }
- /* Simplify boolean operations if the source is known
- to be already a boolean. */
- static bool
- simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
- {
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree lhs, op0, op1;
- bool need_conversion;
- /* We handle only !=/== case here. */
- gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
- op0 = gimple_assign_rhs1 (stmt);
- if (!op_with_boolean_value_range_p (op0))
- return false;
- op1 = gimple_assign_rhs2 (stmt);
- if (!op_with_boolean_value_range_p (op1))
- return false;
- /* Reduce number of cases to handle to NE_EXPR. As there is no
- BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
- if (rhs_code == EQ_EXPR)
- {
- if (TREE_CODE (op1) == INTEGER_CST)
- op1 = int_const_binop (BIT_XOR_EXPR, op1,
- build_int_cst (TREE_TYPE (op1), 1));
- else
- return false;
- }
- lhs = gimple_assign_lhs (stmt);
- need_conversion
- = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
- /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
- if (need_conversion
- && !TYPE_UNSIGNED (TREE_TYPE (op0))
- && TYPE_PRECISION (TREE_TYPE (op0)) == 1
- && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
- return false;
- /* For A != 0 we can substitute A itself. */
- if (integer_zerop (op1))
- gimple_assign_set_rhs_with_ops (gsi,
- need_conversion
- ? NOP_EXPR : TREE_CODE (op0), op0);
- /* For A != B we substitute A ^ B. Either with conversion. */
- else if (need_conversion)
- {
- tree tem = make_ssa_name (TREE_TYPE (op0));
- gassign *newop
- = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
- gsi_insert_before (gsi, newop, GSI_SAME_STMT);
- gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
- }
- /* Or without. */
- else
- gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
- update_stmt (gsi_stmt (*gsi));
- return true;
- }
- /* Simplify a division or modulo operator to a right shift or
- bitwise and if the first operand is unsigned or is greater
- than zero and the second operand is an exact power of two.
- For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
- into just op0 if op0's range is known to be a subset of
- [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
- modulo. */
- static bool
- simplify_div_or_mod_using_ranges (gimple stmt)
- {
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree val = NULL;
- tree op0 = gimple_assign_rhs1 (stmt);
- tree op1 = gimple_assign_rhs2 (stmt);
- value_range_t *vr = get_value_range (op0);
- if (rhs_code == TRUNC_MOD_EXPR
- && TREE_CODE (op1) == INTEGER_CST
- && tree_int_cst_sgn (op1) == 1
- && range_int_cst_p (vr)
- && tree_int_cst_lt (vr->max, op1))
- {
- if (TYPE_UNSIGNED (TREE_TYPE (op0))
- || tree_int_cst_sgn (vr->min) >= 0
- || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
- vr->min))
- {
- /* If op0 already has the range op0 % op1 has,
- then TRUNC_MOD_EXPR won't change anything. */
- gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
- gimple_assign_set_rhs_from_tree (&gsi, op0);
- update_stmt (stmt);
- return true;
- }
- }
- if (!integer_pow2p (op1))
- return false;
- if (TYPE_UNSIGNED (TREE_TYPE (op0)))
- {
- val = integer_one_node;
- }
- else
- {
- bool sop = false;
- val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
- if (val
- && sop
- && integer_onep (val)
- && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
- {
- location_t location;
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
- }
- }
- if (val && integer_onep (val))
- {
- tree t;
- if (rhs_code == TRUNC_DIV_EXPR)
- {
- t = build_int_cst (integer_type_node, tree_log2 (op1));
- gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
- gimple_assign_set_rhs1 (stmt, op0);
- gimple_assign_set_rhs2 (stmt, t);
- }
- else
- {
- t = build_int_cst (TREE_TYPE (op1), 1);
- t = int_const_binop (MINUS_EXPR, op1, t);
- t = fold_convert (TREE_TYPE (op0), t);
- gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
- gimple_assign_set_rhs1 (stmt, op0);
- gimple_assign_set_rhs2 (stmt, t);
- }
- update_stmt (stmt);
- return true;
- }
- return false;
- }
- /* If the operand to an ABS_EXPR is >= 0, then eliminate the
- ABS_EXPR. If the operand is <= 0, then simplify the
- ABS_EXPR into a NEGATE_EXPR. */
- static bool
- simplify_abs_using_ranges (gimple stmt)
- {
- tree val = NULL;
- tree op = gimple_assign_rhs1 (stmt);
- tree type = TREE_TYPE (op);
- value_range_t *vr = get_value_range (op);
- if (TYPE_UNSIGNED (type))
- {
- val = integer_zero_node;
- }
- else if (vr)
- {
- bool sop = false;
- val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
- if (!val)
- {
- sop = false;
- val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
- &sop);
- if (val)
- {
- if (integer_zerop (val))
- val = integer_one_node;
- else if (integer_onep (val))
- val = integer_zero_node;
- }
- }
- if (val
- && (integer_onep (val) || integer_zerop (val)))
- {
- if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
- {
- location_t location;
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying %<abs (X)%> to %<X%> or %<-X%>");
- }
- gimple_assign_set_rhs1 (stmt, op);
- if (integer_onep (val))
- gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
- else
- gimple_assign_set_rhs_code (stmt, SSA_NAME);
- update_stmt (stmt);
- return true;
- }
- }
- return false;
- }
- /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
- If all the bits that are being cleared by & are already
- known to be zero from VR, or all the bits that are being
- set by | are already known to be one from VR, the bit
- operation is redundant. */
- static bool
- simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
- {
- tree op0 = gimple_assign_rhs1 (stmt);
- tree op1 = gimple_assign_rhs2 (stmt);
- tree op = NULL_TREE;
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
- wide_int may_be_nonzero0, may_be_nonzero1;
- wide_int must_be_nonzero0, must_be_nonzero1;
- wide_int mask;
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- return false;
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *(get_value_range (op1));
- else if (is_gimple_min_invariant (op1))
- set_value_range_to_value (&vr1, op1, NULL);
- else
- return false;
- if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
- &must_be_nonzero0))
- return false;
- if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
- &must_be_nonzero1))
- return false;
- switch (gimple_assign_rhs_code (stmt))
- {
- case BIT_AND_EXPR:
- mask = may_be_nonzero0.and_not (must_be_nonzero1);
- if (mask == 0)
- {
- op = op0;
- break;
- }
- mask = may_be_nonzero1.and_not (must_be_nonzero0);
- if (mask == 0)
- {
- op = op1;
- break;
- }
- break;
- case BIT_IOR_EXPR:
- mask = may_be_nonzero0.and_not (must_be_nonzero1);
- if (mask == 0)
- {
- op = op1;
- break;
- }
- mask = may_be_nonzero1.and_not (must_be_nonzero0);
- if (mask == 0)
- {
- op = op0;
- break;
- }
- break;
- default:
- gcc_unreachable ();
- }
- if (op == NULL_TREE)
- return false;
- gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
- update_stmt (gsi_stmt (*gsi));
- return true;
- }
- /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
- a known value range VR.
- If there is one and only one value which will satisfy the
- conditional, then return that value. Else return NULL.
- If signed overflow must be undefined for the value to satisfy
- the conditional, then set *STRICT_OVERFLOW_P to true. */
- static tree
- test_for_singularity (enum tree_code cond_code, tree op0,
- tree op1, value_range_t *vr,
- bool *strict_overflow_p)
- {
- tree min = NULL;
- tree max = NULL;
- /* Extract minimum/maximum values which satisfy the
- the conditional as it was written. */
- if (cond_code == LE_EXPR || cond_code == LT_EXPR)
- {
- /* This should not be negative infinity; there is no overflow
- here. */
- min = TYPE_MIN_VALUE (TREE_TYPE (op0));
- max = op1;
- if (cond_code == LT_EXPR && !is_overflow_infinity (max))
- {
- tree one = build_int_cst (TREE_TYPE (op0), 1);
- max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
- if (EXPR_P (max))
- TREE_NO_WARNING (max) = 1;
- }
- }
- else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
- {
- /* This should not be positive infinity; there is no overflow
- here. */
- max = TYPE_MAX_VALUE (TREE_TYPE (op0));
- min = op1;
- if (cond_code == GT_EXPR && !is_overflow_infinity (min))
- {
- tree one = build_int_cst (TREE_TYPE (op0), 1);
- min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
- if (EXPR_P (min))
- TREE_NO_WARNING (min) = 1;
- }
- }
- /* Now refine the minimum and maximum values using any
- value range information we have for op0. */
- if (min && max)
- {
- if (compare_values (vr->min, min) == 1)
- min = vr->min;
- if (compare_values (vr->max, max) == -1)
- max = vr->max;
- /* If the new min/max values have converged to a single value,
- then there is only one value which can satisfy the condition,
- return that value. */
- if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
- {
- if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
- && is_overflow_infinity (vr->max))
- *strict_overflow_p = true;
- if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
- && is_overflow_infinity (vr->min))
- *strict_overflow_p = true;
- return min;
- }
- }
- return NULL;
- }
- /* Return whether the value range *VR fits in an integer type specified
- by PRECISION and UNSIGNED_P. */
- static bool
- range_fits_type_p (value_range_t *vr, unsigned dest_precision, signop dest_sgn)
- {
- tree src_type;
- unsigned src_precision;
- widest_int tem;
- signop src_sgn;
- /* We can only handle integral and pointer types. */
- src_type = TREE_TYPE (vr->min);
- if (!INTEGRAL_TYPE_P (src_type)
- && !POINTER_TYPE_P (src_type))
- return false;
- /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
- and so is an identity transform. */
- src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
- src_sgn = TYPE_SIGN (src_type);
- if ((src_precision < dest_precision
- && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
- || (src_precision == dest_precision && src_sgn == dest_sgn))
- return true;
- /* Now we can only handle ranges with constant bounds. */
- if (vr->type != VR_RANGE
- || TREE_CODE (vr->min) != INTEGER_CST
- || TREE_CODE (vr->max) != INTEGER_CST)
- return false;
- /* For sign changes, the MSB of the wide_int has to be clear.
- An unsigned value with its MSB set cannot be represented by
- a signed wide_int, while a negative value cannot be represented
- by an unsigned wide_int. */
- if (src_sgn != dest_sgn
- && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
- return false;
- /* Then we can perform the conversion on both ends and compare
- the result for equality. */
- tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
- if (tem != wi::to_widest (vr->min))
- return false;
- tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
- if (tem != wi::to_widest (vr->max))
- return false;
- return true;
- }
- /* Simplify a conditional using a relational operator to an equality
- test if the range information indicates only one value can satisfy
- the original conditional. */
- static bool
- simplify_cond_using_ranges (gcond *stmt)
- {
- tree op0 = gimple_cond_lhs (stmt);
- tree op1 = gimple_cond_rhs (stmt);
- enum tree_code cond_code = gimple_cond_code (stmt);
- if (cond_code != NE_EXPR
- && cond_code != EQ_EXPR
- && TREE_CODE (op0) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (op0))
- && is_gimple_min_invariant (op1))
- {
- value_range_t *vr = get_value_range (op0);
- /* If we have range information for OP0, then we might be
- able to simplify this conditional. */
- if (vr->type == VR_RANGE)
- {
- enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
- bool sop = false;
- tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
- if (new_tree
- && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
- {
- if (dump_file)
- {
- fprintf (dump_file, "Simplified relational ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, " into ");
- }
- gimple_cond_set_code (stmt, EQ_EXPR);
- gimple_cond_set_lhs (stmt, op0);
- gimple_cond_set_rhs (stmt, new_tree);
- update_stmt (stmt);
- if (dump_file)
- {
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "\n");
- }
- if (sop && issue_strict_overflow_warning (wc))
- {
- location_t location = input_location;
- if (gimple_has_location (stmt))
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying conditional");
- }
- return true;
- }
- /* Try again after inverting the condition. We only deal
- with integral types here, so no need to worry about
- issues with inverting FP comparisons. */
- sop = false;
- new_tree = test_for_singularity
- (invert_tree_comparison (cond_code, false),
- op0, op1, vr, &sop);
- if (new_tree
- && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
- {
- if (dump_file)
- {
- fprintf (dump_file, "Simplified relational ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, " into ");
- }
- gimple_cond_set_code (stmt, NE_EXPR);
- gimple_cond_set_lhs (stmt, op0);
- gimple_cond_set_rhs (stmt, new_tree);
- update_stmt (stmt);
- if (dump_file)
- {
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "\n");
- }
- if (sop && issue_strict_overflow_warning (wc))
- {
- location_t location = input_location;
- if (gimple_has_location (stmt))
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying conditional");
- }
- return true;
- }
- }
- }
- /* If we have a comparison of an SSA_NAME (OP0) against a constant,
- see if OP0 was set by a type conversion where the source of
- the conversion is another SSA_NAME with a range that fits
- into the range of OP0's type.
- If so, the conversion is redundant as the earlier SSA_NAME can be
- used for the comparison directly if we just massage the constant in the
- comparison. */
- if (TREE_CODE (op0) == SSA_NAME
- && TREE_CODE (op1) == INTEGER_CST)
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (op0);
- tree innerop;
- if (!is_gimple_assign (def_stmt)
- || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
- return false;
- innerop = gimple_assign_rhs1 (def_stmt);
- if (TREE_CODE (innerop) == SSA_NAME
- && !POINTER_TYPE_P (TREE_TYPE (innerop)))
- {
- value_range_t *vr = get_value_range (innerop);
- if (range_int_cst_p (vr)
- && range_fits_type_p (vr,
- TYPE_PRECISION (TREE_TYPE (op0)),
- TYPE_SIGN (TREE_TYPE (op0)))
- && int_fits_type_p (op1, TREE_TYPE (innerop))
- /* The range must not have overflowed, or if it did overflow
- we must not be wrapping/trapping overflow and optimizing
- with strict overflow semantics. */
- && ((!is_negative_overflow_infinity (vr->min)
- && !is_positive_overflow_infinity (vr->max))
- || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
- {
- /* If the range overflowed and the user has asked for warnings
- when strict overflow semantics were used to optimize code,
- issue an appropriate warning. */
- if (cond_code != EQ_EXPR && cond_code != NE_EXPR
- && (is_negative_overflow_infinity (vr->min)
- || is_positive_overflow_infinity (vr->max))
- && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
- {
- location_t location;
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying conditional");
- }
- tree newconst = fold_convert (TREE_TYPE (innerop), op1);
- gimple_cond_set_lhs (stmt, innerop);
- gimple_cond_set_rhs (stmt, newconst);
- return true;
- }
- }
- }
- return false;
- }
- /* Simplify a switch statement using the value range of the switch
- argument. */
- static bool
- simplify_switch_using_ranges (gswitch *stmt)
- {
- tree op = gimple_switch_index (stmt);
- value_range_t *vr;
- bool take_default;
- edge e;
- edge_iterator ei;
- size_t i = 0, j = 0, n, n2;
- tree vec2;
- switch_update su;
- size_t k = 1, l = 0;
- if (TREE_CODE (op) == SSA_NAME)
- {
- vr = get_value_range (op);
- /* We can only handle integer ranges. */
- if ((vr->type != VR_RANGE
- && vr->type != VR_ANTI_RANGE)
- || symbolic_range_p (vr))
- return false;
- /* Find case label for min/max of the value range. */
- take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
- }
- else if (TREE_CODE (op) == INTEGER_CST)
- {
- take_default = !find_case_label_index (stmt, 1, op, &i);
- if (take_default)
- {
- i = 1;
- j = 0;
- }
- else
- {
- j = i;
- }
- }
- else
- return false;
- n = gimple_switch_num_labels (stmt);
- /* Bail out if this is just all edges taken. */
- if (i == 1
- && j == n - 1
- && take_default)
- return false;
- /* Build a new vector of taken case labels. */
- vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
- n2 = 0;
- /* Add the default edge, if necessary. */
- if (take_default)
- TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
- for (; i <= j; ++i, ++n2)
- TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
- for (; k <= l; ++k, ++n2)
- TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
- /* Mark needed edges. */
- for (i = 0; i < n2; ++i)
- {
- e = find_edge (gimple_bb (stmt),
- label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
- e->aux = (void *)-1;
- }
- /* Queue not needed edges for later removal. */
- FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
- {
- if (e->aux == (void *)-1)
- {
- e->aux = NULL;
- continue;
- }
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "removing unreachable case label\n");
- }
- to_remove_edges.safe_push (e);
- e->flags &= ~EDGE_EXECUTABLE;
- }
- /* And queue an update for the stmt. */
- su.stmt = stmt;
- su.vec = vec2;
- to_update_switch_stmts.safe_push (su);
- return false;
- }
- /* Simplify an integral conversion from an SSA name in STMT. */
- static bool
- simplify_conversion_using_ranges (gimple stmt)
- {
- tree innerop, middleop, finaltype;
- gimple def_stmt;
- value_range_t *innervr;
- signop inner_sgn, middle_sgn, final_sgn;
- unsigned inner_prec, middle_prec, final_prec;
- widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
- finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
- if (!INTEGRAL_TYPE_P (finaltype))
- return false;
- middleop = gimple_assign_rhs1 (stmt);
- def_stmt = SSA_NAME_DEF_STMT (middleop);
- if (!is_gimple_assign (def_stmt)
- || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
- return false;
- innerop = gimple_assign_rhs1 (def_stmt);
- if (TREE_CODE (innerop) != SSA_NAME
- || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
- return false;
- /* Get the value-range of the inner operand. */
- innervr = get_value_range (innerop);
- if (innervr->type != VR_RANGE
- || TREE_CODE (innervr->min) != INTEGER_CST
- || TREE_CODE (innervr->max) != INTEGER_CST)
- return false;
- /* Simulate the conversion chain to check if the result is equal if
- the middle conversion is removed. */
- innermin = wi::to_widest (innervr->min);
- innermax = wi::to_widest (innervr->max);
- inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
- middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
- final_prec = TYPE_PRECISION (finaltype);
- /* If the first conversion is not injective, the second must not
- be widening. */
- if (wi::gtu_p (innermax - innermin,
- wi::mask <widest_int> (middle_prec, false))
- && middle_prec < final_prec)
- return false;
- /* We also want a medium value so that we can track the effect that
- narrowing conversions with sign change have. */
- inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
- if (inner_sgn == UNSIGNED)
- innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
- else
- innermed = 0;
- if (wi::cmp (innermin, innermed, inner_sgn) >= 0
- || wi::cmp (innermed, innermax, inner_sgn) >= 0)
- innermed = innermin;
- middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
- middlemin = wi::ext (innermin, middle_prec, middle_sgn);
- middlemed = wi::ext (innermed, middle_prec, middle_sgn);
- middlemax = wi::ext (innermax, middle_prec, middle_sgn);
- /* Require that the final conversion applied to both the original
- and the intermediate range produces the same result. */
- final_sgn = TYPE_SIGN (finaltype);
- if (wi::ext (middlemin, final_prec, final_sgn)
- != wi::ext (innermin, final_prec, final_sgn)
- || wi::ext (middlemed, final_prec, final_sgn)
- != wi::ext (innermed, final_prec, final_sgn)
- || wi::ext (middlemax, final_prec, final_sgn)
- != wi::ext (innermax, final_prec, final_sgn))
- return false;
- gimple_assign_set_rhs1 (stmt, innerop);
- update_stmt (stmt);
- return true;
- }
- /* Simplify a conversion from integral SSA name to float in STMT. */
- static bool
- simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
- {
- tree rhs1 = gimple_assign_rhs1 (stmt);
- value_range_t *vr = get_value_range (rhs1);
- machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
- machine_mode mode;
- tree tem;
- gassign *conv;
- /* We can only handle constant ranges. */
- if (vr->type != VR_RANGE
- || TREE_CODE (vr->min) != INTEGER_CST
- || TREE_CODE (vr->max) != INTEGER_CST)
- return false;
- /* First check if we can use a signed type in place of an unsigned. */
- if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
- && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
- != CODE_FOR_nothing)
- && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
- mode = TYPE_MODE (TREE_TYPE (rhs1));
- /* If we can do the conversion in the current input mode do nothing. */
- else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
- TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
- return false;
- /* Otherwise search for a mode we can use, starting from the narrowest
- integer mode available. */
- else
- {
- mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
- do
- {
- /* If we cannot do a signed conversion to float from mode
- or if the value-range does not fit in the signed type
- try with a wider mode. */
- if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
- && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
- break;
- mode = GET_MODE_WIDER_MODE (mode);
- /* But do not widen the input. Instead leave that to the
- optabs expansion code. */
- if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
- return false;
- }
- while (mode != VOIDmode);
- if (mode == VOIDmode)
- return false;
- }
- /* It works, insert a truncation or sign-change before the
- float conversion. */
- tem = make_ssa_name (build_nonstandard_integer_type
- (GET_MODE_PRECISION (mode), 0));
- conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
- gsi_insert_before (gsi, conv, GSI_SAME_STMT);
- gimple_assign_set_rhs1 (stmt, tem);
- update_stmt (stmt);
- return true;
- }
- /* Simplify an internal fn call using ranges if possible. */
- static bool
- simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
- {
- enum tree_code subcode;
- bool is_ubsan = false;
- bool ovf = false;
- switch (gimple_call_internal_fn (stmt))
- {
- case IFN_UBSAN_CHECK_ADD:
- subcode = PLUS_EXPR;
- is_ubsan = true;
- break;
- case IFN_UBSAN_CHECK_SUB:
- subcode = MINUS_EXPR;
- is_ubsan = true;
- break;
- case IFN_UBSAN_CHECK_MUL:
- subcode = MULT_EXPR;
- is_ubsan = true;
- break;
- case IFN_ADD_OVERFLOW:
- subcode = PLUS_EXPR;
- break;
- case IFN_SUB_OVERFLOW:
- subcode = MINUS_EXPR;
- break;
- case IFN_MUL_OVERFLOW:
- subcode = MULT_EXPR;
- break;
- default:
- return false;
- }
- tree op0 = gimple_call_arg (stmt, 0);
- tree op1 = gimple_call_arg (stmt, 1);
- tree type;
- if (is_ubsan)
- type = TREE_TYPE (op0);
- else if (gimple_call_lhs (stmt) == NULL_TREE)
- return false;
- else
- type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
- if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
- || (is_ubsan && ovf))
- return false;
- gimple g;
- location_t loc = gimple_location (stmt);
- if (is_ubsan)
- g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
- else
- {
- int prec = TYPE_PRECISION (type);
- tree utype = type;
- if (ovf
- || !useless_type_conversion_p (type, TREE_TYPE (op0))
- || !useless_type_conversion_p (type, TREE_TYPE (op1)))
- utype = build_nonstandard_integer_type (prec, 1);
- if (TREE_CODE (op0) == INTEGER_CST)
- op0 = fold_convert (utype, op0);
- else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
- {
- g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
- gimple_set_location (g, loc);
- gsi_insert_before (gsi, g, GSI_SAME_STMT);
- op0 = gimple_assign_lhs (g);
- }
- if (TREE_CODE (op1) == INTEGER_CST)
- op1 = fold_convert (utype, op1);
- else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
- {
- g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
- gimple_set_location (g, loc);
- gsi_insert_before (gsi, g, GSI_SAME_STMT);
- op1 = gimple_assign_lhs (g);
- }
- g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
- gimple_set_location (g, loc);
- gsi_insert_before (gsi, g, GSI_SAME_STMT);
- if (utype != type)
- {
- g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
- gimple_assign_lhs (g));
- gimple_set_location (g, loc);
- gsi_insert_before (gsi, g, GSI_SAME_STMT);
- }
- g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
- gimple_assign_lhs (g),
- build_int_cst (type, ovf));
- }
- gimple_set_location (g, loc);
- gsi_replace (gsi, g, false);
- return true;
- }
- /* Simplify STMT using ranges if possible. */
- static bool
- simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
- {
- gimple stmt = gsi_stmt (*gsi);
- if (is_gimple_assign (stmt))
- {
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree rhs1 = gimple_assign_rhs1 (stmt);
- switch (rhs_code)
- {
- case EQ_EXPR:
- case NE_EXPR:
- /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
- if the RHS is zero or one, and the LHS are known to be boolean
- values. */
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_truth_ops_using_ranges (gsi, stmt);
- break;
- /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
- and BIT_AND_EXPR respectively if the first operand is greater
- than zero and the second operand is an exact power of two.
- Also optimize TRUNC_MOD_EXPR away if the second operand is
- constant and the first operand already has the right value
- range. */
- case TRUNC_DIV_EXPR:
- case TRUNC_MOD_EXPR:
- if (TREE_CODE (rhs1) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_div_or_mod_using_ranges (stmt);
- break;
- /* Transform ABS (X) into X or -X as appropriate. */
- case ABS_EXPR:
- if (TREE_CODE (rhs1) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_abs_using_ranges (stmt);
- break;
- case BIT_AND_EXPR:
- case BIT_IOR_EXPR:
- /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
- if all the bits being cleared are already cleared or
- all the bits being set are already set. */
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_bit_ops_using_ranges (gsi, stmt);
- break;
- CASE_CONVERT:
- if (TREE_CODE (rhs1) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_conversion_using_ranges (stmt);
- break;
- case FLOAT_EXPR:
- if (TREE_CODE (rhs1) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_float_conversion_using_ranges (gsi, stmt);
- break;
- default:
- break;
- }
- }
- else if (gimple_code (stmt) == GIMPLE_COND)
- return simplify_cond_using_ranges (as_a <gcond *> (stmt));
- else if (gimple_code (stmt) == GIMPLE_SWITCH)
- return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
- else if (is_gimple_call (stmt)
- && gimple_call_internal_p (stmt))
- return simplify_internal_call_using_ranges (gsi, stmt);
- return false;
- }
- /* If the statement pointed by SI has a predicate whose value can be
- computed using the value range information computed by VRP, compute
- its value and return true. Otherwise, return false. */
- static bool
- fold_predicate_in (gimple_stmt_iterator *si)
- {
- bool assignment_p = false;
- tree val;
- gimple stmt = gsi_stmt (*si);
- if (is_gimple_assign (stmt)
- && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
- {
- assignment_p = true;
- val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- stmt);
- }
- else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
- val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
- gimple_cond_lhs (cond_stmt),
- gimple_cond_rhs (cond_stmt),
- stmt);
- else
- return false;
- if (val)
- {
- if (assignment_p)
- val = fold_convert (gimple_expr_type (stmt), val);
- if (dump_file)
- {
- fprintf (dump_file, "Folding predicate ");
- print_gimple_expr (dump_file, stmt, 0, 0);
- fprintf (dump_file, " to ");
- print_generic_expr (dump_file, val, 0);
- fprintf (dump_file, "\n");
- }
- if (is_gimple_assign (stmt))
- gimple_assign_set_rhs_from_tree (si, val);
- else
- {
- gcc_assert (gimple_code (stmt) == GIMPLE_COND);
- gcond *cond_stmt = as_a <gcond *> (stmt);
- if (integer_zerop (val))
- gimple_cond_make_false (cond_stmt);
- else if (integer_onep (val))
- gimple_cond_make_true (cond_stmt);
- else
- gcc_unreachable ();
- }
- return true;
- }
- return false;
- }
- /* Callback for substitute_and_fold folding the stmt at *SI. */
- static bool
- vrp_fold_stmt (gimple_stmt_iterator *si)
- {
- if (fold_predicate_in (si))
- return true;
- return simplify_stmt_using_ranges (si);
- }
- /* Stack of dest,src equivalency pairs that need to be restored after
- each attempt to thread a block's incoming edge to an outgoing edge.
- A NULL entry is used to mark the end of pairs which need to be
- restored. */
- static vec<tree> equiv_stack;
- /* A trivial wrapper so that we can present the generic jump threading
- code with a simple API for simplifying statements. STMT is the
- statement we want to simplify, WITHIN_STMT provides the location
- for any overflow warnings. */
- static tree
- simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
- {
- if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
- return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
- gimple_cond_lhs (cond_stmt),
- gimple_cond_rhs (cond_stmt),
- within_stmt);
- if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
- {
- value_range_t new_vr = VR_INITIALIZER;
- tree lhs = gimple_assign_lhs (assign_stmt);
- if (TREE_CODE (lhs) == SSA_NAME
- && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- || POINTER_TYPE_P (TREE_TYPE (lhs))))
- {
- extract_range_from_assignment (&new_vr, assign_stmt);
- if (range_int_cst_singleton_p (&new_vr))
- return new_vr.min;
- }
- }
- return NULL_TREE;
- }
- /* Blocks which have more than one predecessor and more than
- one successor present jump threading opportunities, i.e.,
- when the block is reached from a specific predecessor, we
- may be able to determine which of the outgoing edges will
- be traversed. When this optimization applies, we are able
- to avoid conditionals at runtime and we may expose secondary
- optimization opportunities.
- This routine is effectively a driver for the generic jump
- threading code. It basically just presents the generic code
- with edges that may be suitable for jump threading.
- Unlike DOM, we do not iterate VRP if jump threading was successful.
- While iterating may expose new opportunities for VRP, it is expected
- those opportunities would be very limited and the compile time cost
- to expose those opportunities would be significant.
- As jump threading opportunities are discovered, they are registered
- for later realization. */
- static void
- identify_jump_threads (void)
- {
- basic_block bb;
- gcond *dummy;
- int i;
- edge e;
- /* Ugh. When substituting values earlier in this pass we can
- wipe the dominance information. So rebuild the dominator
- information as we need it within the jump threading code. */
- calculate_dominance_info (CDI_DOMINATORS);
- /* We do not allow VRP information to be used for jump threading
- across a back edge in the CFG. Otherwise it becomes too
- difficult to avoid eliminating loop exit tests. Of course
- EDGE_DFS_BACK is not accurate at this time so we have to
- recompute it. */
- mark_dfs_back_edges ();
- /* Do not thread across edges we are about to remove. Just marking
- them as EDGE_DFS_BACK will do. */
- FOR_EACH_VEC_ELT (to_remove_edges, i, e)
- e->flags |= EDGE_DFS_BACK;
- /* Allocate our unwinder stack to unwind any temporary equivalences
- that might be recorded. */
- equiv_stack.create (20);
- /* To avoid lots of silly node creation, we create a single
- conditional and just modify it in-place when attempting to
- thread jumps. */
- dummy = gimple_build_cond (EQ_EXPR,
- integer_zero_node, integer_zero_node,
- NULL, NULL);
- /* Walk through all the blocks finding those which present a
- potential jump threading opportunity. We could set this up
- as a dominator walker and record data during the walk, but
- I doubt it's worth the effort for the classes of jump
- threading opportunities we are trying to identify at this
- point in compilation. */
- FOR_EACH_BB_FN (bb, cfun)
- {
- gimple last;
- /* If the generic jump threading code does not find this block
- interesting, then there is nothing to do. */
- if (! potentially_threadable_block (bb))
- continue;
- last = last_stmt (bb);
- /* We're basically looking for a switch or any kind of conditional with
- integral or pointer type arguments. Note the type of the second
- argument will be the same as the first argument, so no need to
- check it explicitly.
- We also handle the case where there are no statements in the
- block. This come up with forwarder blocks that are not
- optimized away because they lead to a loop header. But we do
- want to thread through them as we can sometimes thread to the
- loop exit which is obviously profitable. */
- if (!last
- || gimple_code (last) == GIMPLE_SWITCH
- || (gimple_code (last) == GIMPLE_COND
- && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
- && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
- || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
- && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
- || is_gimple_min_invariant (gimple_cond_rhs (last)))))
- {
- edge_iterator ei;
- /* We've got a block with multiple predecessors and multiple
- successors which also ends in a suitable conditional or
- switch statement. For each predecessor, see if we can thread
- it to a specific successor. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- /* Do not thread across back edges or abnormal edges
- in the CFG. */
- if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
- continue;
- thread_across_edge (dummy, e, true, &equiv_stack,
- simplify_stmt_for_jump_threading);
- }
- }
- }
- /* We do not actually update the CFG or SSA graphs at this point as
- ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
- handle ASSERT_EXPRs gracefully. */
- }
- /* We identified all the jump threading opportunities earlier, but could
- not transform the CFG at that time. This routine transforms the
- CFG and arranges for the dominator tree to be rebuilt if necessary.
- Note the SSA graph update will occur during the normal TODO
- processing by the pass manager. */
- static void
- finalize_jump_threads (void)
- {
- thread_through_all_blocks (false);
- equiv_stack.release ();
- }
- /* Traverse all the blocks folding conditionals with known ranges. */
- static void
- vrp_finalize (void)
- {
- size_t i;
- values_propagated = true;
- if (dump_file)
- {
- fprintf (dump_file, "\nValue ranges after VRP:\n\n");
- dump_all_value_ranges (dump_file);
- fprintf (dump_file, "\n");
- }
- substitute_and_fold (op_with_constant_singleton_value_range,
- vrp_fold_stmt, false);
- if (warn_array_bounds && first_pass_instance)
- check_all_array_refs ();
- /* We must identify jump threading opportunities before we release
- the datastructures built by VRP. */
- identify_jump_threads ();
- /* Set value range to non pointer SSA_NAMEs. */
- for (i = 0; i < num_vr_values; i++)
- if (vr_value[i])
- {
- tree name = ssa_name (i);
- if (!name
- || POINTER_TYPE_P (TREE_TYPE (name))
- || (vr_value[i]->type == VR_VARYING)
- || (vr_value[i]->type == VR_UNDEFINED))
- continue;
- if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
- && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
- && (vr_value[i]->type == VR_RANGE
- || vr_value[i]->type == VR_ANTI_RANGE))
- set_range_info (name, vr_value[i]->type, vr_value[i]->min,
- vr_value[i]->max);
- }
- /* Free allocated memory. */
- for (i = 0; i < num_vr_values; i++)
- if (vr_value[i])
- {
- BITMAP_FREE (vr_value[i]->equiv);
- free (vr_value[i]);
- }
- free (vr_value);
- free (vr_phi_edge_counts);
- /* So that we can distinguish between VRP data being available
- and not available. */
- vr_value = NULL;
- vr_phi_edge_counts = NULL;
- }
- /* Main entry point to VRP (Value Range Propagation). This pass is
- loosely based on J. R. C. Patterson, ``Accurate Static Branch
- Prediction by Value Range Propagation,'' in SIGPLAN Conference on
- Programming Language Design and Implementation, pp. 67-78, 1995.
- Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
- This is essentially an SSA-CCP pass modified to deal with ranges
- instead of constants.
- While propagating ranges, we may find that two or more SSA name
- have equivalent, though distinct ranges. For instance,
- 1 x_9 = p_3->a;
- 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
- 3 if (p_4 == q_2)
- 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
- 5 endif
- 6 if (q_2)
- In the code above, pointer p_5 has range [q_2, q_2], but from the
- code we can also determine that p_5 cannot be NULL and, if q_2 had
- a non-varying range, p_5's range should also be compatible with it.
- These equivalences are created by two expressions: ASSERT_EXPR and
- copy operations. Since p_5 is an assertion on p_4, and p_4 was the
- result of another assertion, then we can use the fact that p_5 and
- p_4 are equivalent when evaluating p_5's range.
- Together with value ranges, we also propagate these equivalences
- between names so that we can take advantage of information from
- multiple ranges when doing final replacement. Note that this
- equivalency relation is transitive but not symmetric.
- In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
- cannot assert that q_2 is equivalent to p_5 because q_2 may be used
- in contexts where that assertion does not hold (e.g., in line 6).
- TODO, the main difference between this pass and Patterson's is that
- we do not propagate edge probabilities. We only compute whether
- edges can be taken or not. That is, instead of having a spectrum
- of jump probabilities between 0 and 1, we only deal with 0, 1 and
- DON'T KNOW. In the future, it may be worthwhile to propagate
- probabilities to aid branch prediction. */
- static unsigned int
- execute_vrp (void)
- {
- int i;
- edge e;
- switch_update *su;
- loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
- rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
- scev_initialize ();
- /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
- Inserting assertions may split edges which will invalidate
- EDGE_DFS_BACK. */
- insert_range_assertions ();
- to_remove_edges.create (10);
- to_update_switch_stmts.create (5);
- threadedge_initialize_values ();
- /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
- mark_dfs_back_edges ();
- vrp_initialize ();
- ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
- vrp_finalize ();
- free_numbers_of_iterations_estimates ();
- /* ASSERT_EXPRs must be removed before finalizing jump threads
- as finalizing jump threads calls the CFG cleanup code which
- does not properly handle ASSERT_EXPRs. */
- remove_range_assertions ();
- /* If we exposed any new variables, go ahead and put them into
- SSA form now, before we handle jump threading. This simplifies
- interactions between rewriting of _DECL nodes into SSA form
- and rewriting SSA_NAME nodes into SSA form after block
- duplication and CFG manipulation. */
- update_ssa (TODO_update_ssa);
- finalize_jump_threads ();
- /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
- CFG in a broken state and requires a cfg_cleanup run. */
- FOR_EACH_VEC_ELT (to_remove_edges, i, e)
- remove_edge (e);
- /* Update SWITCH_EXPR case label vector. */
- FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
- {
- size_t j;
- size_t n = TREE_VEC_LENGTH (su->vec);
- tree label;
- gimple_switch_set_num_labels (su->stmt, n);
- for (j = 0; j < n; j++)
- gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
- /* As we may have replaced the default label with a regular one
- make sure to make it a real default label again. This ensures
- optimal expansion. */
- label = gimple_switch_label (su->stmt, 0);
- CASE_LOW (label) = NULL_TREE;
- CASE_HIGH (label) = NULL_TREE;
- }
- if (to_remove_edges.length () > 0)
- {
- free_dominance_info (CDI_DOMINATORS);
- loops_state_set (LOOPS_NEED_FIXUP);
- }
- to_remove_edges.release ();
- to_update_switch_stmts.release ();
- threadedge_finalize_values ();
- scev_finalize ();
- loop_optimizer_finalize ();
- return 0;
- }
- namespace {
- const pass_data pass_data_vrp =
- {
- GIMPLE_PASS, /* type */
- "vrp", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- TV_TREE_VRP, /* tv_id */
- PROP_ssa, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
- };
- class pass_vrp : public gimple_opt_pass
- {
- public:
- pass_vrp (gcc::context *ctxt)
- : gimple_opt_pass (pass_data_vrp, ctxt)
- {}
- /* opt_pass methods: */
- opt_pass * clone () { return new pass_vrp (m_ctxt); }
- virtual bool gate (function *) { return flag_tree_vrp != 0; }
- virtual unsigned int execute (function *) { return execute_vrp (); }
- }; // class pass_vrp
- } // anon namespace
- gimple_opt_pass *
- make_pass_vrp (gcc::context *ctxt)
- {
- return new pass_vrp (ctxt);
- }
|