12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465 |
- /* Vectorizer Specific Loop Manipulations
- Copyright (C) 2003-2015 Free Software Foundation, Inc.
- Contributed by Dorit Naishlos <dorit@il.ibm.com>
- and Ira Rosen <irar@il.ibm.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "dumpfile.h"
- #include "tm.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "tree.h"
- #include "fold-const.h"
- #include "predict.h"
- #include "hard-reg-set.h"
- #include "input.h"
- #include "function.h"
- #include "dominance.h"
- #include "cfg.h"
- #include "cfganal.h"
- #include "basic-block.h"
- #include "gimple-pretty-print.h"
- #include "tree-ssa-alias.h"
- #include "internal-fn.h"
- #include "gimple-expr.h"
- #include "is-a.h"
- #include "gimple.h"
- #include "gimplify.h"
- #include "gimple-iterator.h"
- #include "gimplify-me.h"
- #include "gimple-ssa.h"
- #include "tree-cfg.h"
- #include "tree-phinodes.h"
- #include "ssa-iterators.h"
- #include "stringpool.h"
- #include "tree-ssanames.h"
- #include "tree-ssa-loop-manip.h"
- #include "tree-into-ssa.h"
- #include "tree-ssa.h"
- #include "tree-pass.h"
- #include "cfgloop.h"
- #include "diagnostic-core.h"
- #include "tree-scalar-evolution.h"
- #include "tree-vectorizer.h"
- #include "langhooks.h"
- /*************************************************************************
- Simple Loop Peeling Utilities
- Utilities to support loop peeling for vectorization purposes.
- *************************************************************************/
- /* Renames the use *OP_P. */
- static void
- rename_use_op (use_operand_p op_p)
- {
- tree new_name;
- if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
- return;
- new_name = get_current_def (USE_FROM_PTR (op_p));
- /* Something defined outside of the loop. */
- if (!new_name)
- return;
- /* An ordinary ssa name defined in the loop. */
- SET_USE (op_p, new_name);
- }
- /* Renames the variables in basic block BB. */
- static void
- rename_variables_in_bb (basic_block bb)
- {
- gimple stmt;
- use_operand_p use_p;
- ssa_op_iter iter;
- edge e;
- edge_iterator ei;
- struct loop *loop = bb->loop_father;
- for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- stmt = gsi_stmt (gsi);
- FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
- rename_use_op (use_p);
- }
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- if (!flow_bb_inside_loop_p (loop, e->src))
- continue;
- for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
- gsi_next (&gsi))
- rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
- }
- }
- typedef struct
- {
- tree from, to;
- basic_block bb;
- } adjust_info;
- /* A stack of values to be adjusted in debug stmts. We have to
- process them LIFO, so that the closest substitution applies. If we
- processed them FIFO, without the stack, we might substitute uses
- with a PHI DEF that would soon become non-dominant, and when we got
- to the suitable one, it wouldn't have anything to substitute any
- more. */
- static vec<adjust_info, va_heap> adjust_vec;
- /* Adjust any debug stmts that referenced AI->from values to use the
- loop-closed AI->to, if the references are dominated by AI->bb and
- not by the definition of AI->from. */
- static void
- adjust_debug_stmts_now (adjust_info *ai)
- {
- basic_block bbphi = ai->bb;
- tree orig_def = ai->from;
- tree new_def = ai->to;
- imm_use_iterator imm_iter;
- gimple stmt;
- basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
- gcc_assert (dom_info_available_p (CDI_DOMINATORS));
- /* Adjust any debug stmts that held onto non-loop-closed
- references. */
- FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
- {
- use_operand_p use_p;
- basic_block bbuse;
- if (!is_gimple_debug (stmt))
- continue;
- gcc_assert (gimple_debug_bind_p (stmt));
- bbuse = gimple_bb (stmt);
- if ((bbuse == bbphi
- || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
- && !(bbuse == bbdef
- || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
- {
- if (new_def)
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, new_def);
- else
- {
- gimple_debug_bind_reset_value (stmt);
- update_stmt (stmt);
- }
- }
- }
- }
- /* Adjust debug stmts as scheduled before. */
- static void
- adjust_vec_debug_stmts (void)
- {
- if (!MAY_HAVE_DEBUG_STMTS)
- return;
- gcc_assert (adjust_vec.exists ());
- while (!adjust_vec.is_empty ())
- {
- adjust_debug_stmts_now (&adjust_vec.last ());
- adjust_vec.pop ();
- }
- adjust_vec.release ();
- }
- /* Adjust any debug stmts that referenced FROM values to use the
- loop-closed TO, if the references are dominated by BB and not by
- the definition of FROM. If adjust_vec is non-NULL, adjustments
- will be postponed until adjust_vec_debug_stmts is called. */
- static void
- adjust_debug_stmts (tree from, tree to, basic_block bb)
- {
- adjust_info ai;
- if (MAY_HAVE_DEBUG_STMTS
- && TREE_CODE (from) == SSA_NAME
- && ! SSA_NAME_IS_DEFAULT_DEF (from)
- && ! virtual_operand_p (from))
- {
- ai.from = from;
- ai.to = to;
- ai.bb = bb;
- if (adjust_vec.exists ())
- adjust_vec.safe_push (ai);
- else
- adjust_debug_stmts_now (&ai);
- }
- }
- /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
- to adjust any debug stmts that referenced the old phi arg,
- presumably non-loop-closed references left over from other
- transformations. */
- static void
- adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
- {
- tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
- SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
- if (MAY_HAVE_DEBUG_STMTS)
- adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
- gimple_bb (update_phi));
- }
- /* Update PHI nodes for a guard of the LOOP.
- Input:
- - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
- controls whether LOOP is to be executed. GUARD_EDGE is the edge that
- originates from the guard-bb, skips LOOP and reaches the (unique) exit
- bb of LOOP. This loop-exit-bb is an empty bb with one successor.
- We denote this bb NEW_MERGE_BB because before the guard code was added
- it had a single predecessor (the LOOP header), and now it became a merge
- point of two paths - the path that ends with the LOOP exit-edge, and
- the path that ends with GUARD_EDGE.
- - NEW_EXIT_BB: New basic block that is added by this function between LOOP
- and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
- ===> The CFG before the guard-code was added:
- LOOP_header_bb:
- loop_body
- if (exit_loop) goto update_bb
- else goto LOOP_header_bb
- update_bb:
- ==> The CFG after the guard-code was added:
- guard_bb:
- if (LOOP_guard_condition) goto new_merge_bb
- else goto LOOP_header_bb
- LOOP_header_bb:
- loop_body
- if (exit_loop_condition) goto new_merge_bb
- else goto LOOP_header_bb
- new_merge_bb:
- goto update_bb
- update_bb:
- ==> The CFG after this function:
- guard_bb:
- if (LOOP_guard_condition) goto new_merge_bb
- else goto LOOP_header_bb
- LOOP_header_bb:
- loop_body
- if (exit_loop_condition) goto new_exit_bb
- else goto LOOP_header_bb
- new_exit_bb:
- new_merge_bb:
- goto update_bb
- update_bb:
- This function:
- 1. creates and updates the relevant phi nodes to account for the new
- incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
- 1.1. Create phi nodes at NEW_MERGE_BB.
- 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
- UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
- 2. preserves loop-closed-ssa-form by creating the required phi nodes
- at the exit of LOOP (i.e, in NEW_EXIT_BB).
- There are two flavors to this function:
- slpeel_update_phi_nodes_for_guard1:
- Here the guard controls whether we enter or skip LOOP, where LOOP is a
- prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
- for variables that have phis in the loop header.
- slpeel_update_phi_nodes_for_guard2:
- Here the guard controls whether we enter or skip LOOP, where LOOP is an
- epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
- for variables that have phis in the loop exit.
- I.E., the overall structure is:
- loop1_preheader_bb:
- guard1 (goto loop1/merge1_bb)
- loop1
- loop1_exit_bb:
- guard2 (goto merge1_bb/merge2_bb)
- merge1_bb
- loop2
- loop2_exit_bb
- merge2_bb
- next_bb
- slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
- loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
- that have phis in loop1->header).
- slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
- loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
- that have phis in next_bb). It also adds some of these phis to
- loop1_exit_bb.
- slpeel_update_phi_nodes_for_guard1 is always called before
- slpeel_update_phi_nodes_for_guard2. They are both needed in order
- to create correct data-flow and loop-closed-ssa-form.
- Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
- that change between iterations of a loop (and therefore have a phi-node
- at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
- phis for variables that are used out of the loop (and therefore have
- loop-closed exit phis). Some variables may be both updated between
- iterations and used after the loop. This is why in loop1_exit_bb we
- may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
- and exit phis (created by slpeel_update_phi_nodes_for_guard2).
- - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
- an original loop. i.e., we have:
- orig_loop
- guard_bb (goto LOOP/new_merge)
- new_loop <-- LOOP
- new_exit
- new_merge
- next_bb
- If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
- have:
- new_loop
- guard_bb (goto LOOP/new_merge)
- orig_loop <-- LOOP
- new_exit
- new_merge
- next_bb
- The SSA names defined in the original loop have a current
- reaching definition that that records the corresponding new
- ssa-name used in the new duplicated loop copy.
- */
- /* Function slpeel_update_phi_nodes_for_guard1
- Input:
- - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
- - DEFS - a bitmap of ssa names to mark new names for which we recorded
- information.
- In the context of the overall structure, we have:
- loop1_preheader_bb:
- guard1 (goto loop1/merge1_bb)
- LOOP-> loop1
- loop1_exit_bb:
- guard2 (goto merge1_bb/merge2_bb)
- merge1_bb
- loop2
- loop2_exit_bb
- merge2_bb
- next_bb
- For each name updated between loop iterations (i.e - for each name that has
- an entry (loop-header) phi in LOOP) we create a new phi in:
- 1. merge1_bb (to account for the edge from guard1)
- 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
- */
- static void
- slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
- bool is_new_loop, basic_block *new_exit_bb)
- {
- gphi *orig_phi, *new_phi;
- gphi *update_phi, *update_phi2;
- tree guard_arg, loop_arg;
- basic_block new_merge_bb = guard_edge->dest;
- edge e = EDGE_SUCC (new_merge_bb, 0);
- basic_block update_bb = e->dest;
- basic_block orig_bb = loop->header;
- edge new_exit_e;
- tree current_new_name;
- gphi_iterator gsi_orig, gsi_update;
- /* Create new bb between loop and new_merge_bb. */
- *new_exit_bb = split_edge (single_exit (loop));
- new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
- for (gsi_orig = gsi_start_phis (orig_bb),
- gsi_update = gsi_start_phis (update_bb);
- !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
- gsi_next (&gsi_orig), gsi_next (&gsi_update))
- {
- source_location loop_locus, guard_locus;
- tree new_res;
- orig_phi = gsi_orig.phi ();
- update_phi = gsi_update.phi ();
- /** 1. Handle new-merge-point phis **/
- /* 1.1. Generate new phi node in NEW_MERGE_BB: */
- new_res = copy_ssa_name (PHI_RESULT (orig_phi));
- new_phi = create_phi_node (new_res, new_merge_bb);
- /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
- of LOOP. Set the two phi args in NEW_PHI for these edges: */
- loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
- loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
- EDGE_SUCC (loop->latch,
- 0));
- guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
- guard_locus
- = gimple_phi_arg_location_from_edge (orig_phi,
- loop_preheader_edge (loop));
- add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
- add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
- /* 1.3. Update phi in successor block. */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
- || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
- adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
- update_phi2 = new_phi;
- /** 2. Handle loop-closed-ssa-form phis **/
- if (virtual_operand_p (PHI_RESULT (orig_phi)))
- continue;
- /* 2.1. Generate new phi node in NEW_EXIT_BB: */
- new_res = copy_ssa_name (PHI_RESULT (orig_phi));
- new_phi = create_phi_node (new_res, *new_exit_bb);
- /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
- add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
- /* 2.3. Update phi in successor of NEW_EXIT_BB: */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
- adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
- PHI_RESULT (new_phi));
- /* 2.4. Record the newly created name with set_current_def.
- We want to find a name such that
- name = get_current_def (orig_loop_name)
- and to set its current definition as follows:
- set_current_def (name, new_phi_name)
- If LOOP is a new loop then loop_arg is already the name we're
- looking for. If LOOP is the original loop, then loop_arg is
- the orig_loop_name and the relevant name is recorded in its
- current reaching definition. */
- if (is_new_loop)
- current_new_name = loop_arg;
- else
- {
- current_new_name = get_current_def (loop_arg);
- /* current_def is not available only if the variable does not
- change inside the loop, in which case we also don't care
- about recording a current_def for it because we won't be
- trying to create loop-exit-phis for it. */
- if (!current_new_name)
- continue;
- }
- tree new_name = get_current_def (current_new_name);
- /* Because of peeled_chrec optimization it is possible that we have
- set this earlier. Verify the PHI has the same value. */
- if (new_name)
- {
- gimple phi = SSA_NAME_DEF_STMT (new_name);
- gcc_assert (gimple_code (phi) == GIMPLE_PHI
- && gimple_bb (phi) == *new_exit_bb
- && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
- == loop_arg));
- continue;
- }
- set_current_def (current_new_name, PHI_RESULT (new_phi));
- }
- }
- /* Function slpeel_update_phi_nodes_for_guard2
- Input:
- - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
- In the context of the overall structure, we have:
- loop1_preheader_bb:
- guard1 (goto loop1/merge1_bb)
- loop1
- loop1_exit_bb:
- guard2 (goto merge1_bb/merge2_bb)
- merge1_bb
- LOOP-> loop2
- loop2_exit_bb
- merge2_bb
- next_bb
- For each name used out side the loop (i.e - for each name that has an exit
- phi in next_bb) we create a new phi in:
- 1. merge2_bb (to account for the edge from guard_bb)
- 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
- 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
- if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
- */
- static void
- slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
- bool is_new_loop, basic_block *new_exit_bb)
- {
- gphi *orig_phi, *new_phi;
- gphi *update_phi, *update_phi2;
- tree guard_arg, loop_arg;
- basic_block new_merge_bb = guard_edge->dest;
- edge e = EDGE_SUCC (new_merge_bb, 0);
- basic_block update_bb = e->dest;
- edge new_exit_e;
- tree orig_def, orig_def_new_name;
- tree new_name, new_name2;
- tree arg;
- gphi_iterator gsi;
- /* Create new bb between loop and new_merge_bb. */
- *new_exit_bb = split_edge (single_exit (loop));
- new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
- for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- tree new_res;
- update_phi = gsi.phi ();
- orig_phi = update_phi;
- orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
- /* This loop-closed-phi actually doesn't represent a use
- out of the loop - the phi arg is a constant. */
- if (TREE_CODE (orig_def) != SSA_NAME)
- continue;
- orig_def_new_name = get_current_def (orig_def);
- arg = NULL_TREE;
- /** 1. Handle new-merge-point phis **/
- /* 1.1. Generate new phi node in NEW_MERGE_BB: */
- new_res = copy_ssa_name (PHI_RESULT (orig_phi));
- new_phi = create_phi_node (new_res, new_merge_bb);
- /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
- of LOOP. Set the two PHI args in NEW_PHI for these edges: */
- new_name = orig_def;
- new_name2 = NULL_TREE;
- if (orig_def_new_name)
- {
- new_name = orig_def_new_name;
- /* Some variables have both loop-entry-phis and loop-exit-phis.
- Such variables were given yet newer names by phis placed in
- guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
- new_name2 = get_current_def (get_current_def (orig_name)). */
- new_name2 = get_current_def (new_name);
- }
- if (is_new_loop)
- {
- guard_arg = orig_def;
- loop_arg = new_name;
- }
- else
- {
- guard_arg = new_name;
- loop_arg = orig_def;
- }
- if (new_name2)
- guard_arg = new_name2;
- add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
- add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
- /* 1.3. Update phi in successor block. */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
- adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
- update_phi2 = new_phi;
- /** 2. Handle loop-closed-ssa-form phis **/
- /* 2.1. Generate new phi node in NEW_EXIT_BB: */
- new_res = copy_ssa_name (PHI_RESULT (orig_phi));
- new_phi = create_phi_node (new_res, *new_exit_bb);
- /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
- add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
- /* 2.3. Update phi in successor of NEW_EXIT_BB: */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
- adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
- PHI_RESULT (new_phi));
- /** 3. Handle loop-closed-ssa-form phis for first loop **/
- /* 3.1. Find the relevant names that need an exit-phi in
- GUARD_BB, i.e. names for which
- slpeel_update_phi_nodes_for_guard1 had not already created a
- phi node. This is the case for names that are used outside
- the loop (and therefore need an exit phi) but are not updated
- across loop iterations (and therefore don't have a
- loop-header-phi).
- slpeel_update_phi_nodes_for_guard1 is responsible for
- creating loop-exit phis in GUARD_BB for names that have a
- loop-header-phi. When such a phi is created we also record
- the new name in its current definition. If this new name
- exists, then guard_arg was set to this new name (see 1.2
- above). Therefore, if guard_arg is not this new name, this
- is an indication that an exit-phi in GUARD_BB was not yet
- created, so we take care of it here. */
- if (guard_arg == new_name2)
- continue;
- arg = guard_arg;
- /* 3.2. Generate new phi node in GUARD_BB: */
- new_res = copy_ssa_name (PHI_RESULT (orig_phi));
- new_phi = create_phi_node (new_res, guard_edge->src);
- /* 3.3. GUARD_BB has one incoming edge: */
- gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
- add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
- UNKNOWN_LOCATION);
- /* 3.4. Update phi in successor of GUARD_BB: */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
- == guard_arg);
- adjust_phi_and_debug_stmts (update_phi2, guard_edge,
- PHI_RESULT (new_phi));
- }
- }
- /* Make the LOOP iterate NITERS times. This is done by adding a new IV
- that starts at zero, increases by one and its limit is NITERS.
- Assumption: the exit-condition of LOOP is the last stmt in the loop. */
- void
- slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
- {
- tree indx_before_incr, indx_after_incr;
- gcond *cond_stmt;
- gcond *orig_cond;
- edge exit_edge = single_exit (loop);
- gimple_stmt_iterator loop_cond_gsi;
- gimple_stmt_iterator incr_gsi;
- bool insert_after;
- tree init = build_int_cst (TREE_TYPE (niters), 0);
- tree step = build_int_cst (TREE_TYPE (niters), 1);
- source_location loop_loc;
- enum tree_code code;
- orig_cond = get_loop_exit_condition (loop);
- gcc_assert (orig_cond);
- loop_cond_gsi = gsi_for_stmt (orig_cond);
- standard_iv_increment_position (loop, &incr_gsi, &insert_after);
- create_iv (init, step, NULL_TREE, loop,
- &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
- indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
- true, NULL_TREE, true,
- GSI_SAME_STMT);
- niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
- true, GSI_SAME_STMT);
- code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
- cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
- NULL_TREE);
- gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
- /* Remove old loop exit test: */
- gsi_remove (&loop_cond_gsi, true);
- free_stmt_vec_info (orig_cond);
- loop_loc = find_loop_location (loop);
- if (dump_enabled_p ())
- {
- if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
- dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
- LOCATION_LINE (loop_loc));
- dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
- dump_printf (MSG_NOTE, "\n");
- }
- loop->nb_iterations = niters;
- }
- /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
- For all PHI arguments in FROM->dest and TO->dest from those
- edges ensure that TO->dest PHI arguments have current_def
- to that in from. */
- static void
- slpeel_duplicate_current_defs_from_edges (edge from, edge to)
- {
- gimple_stmt_iterator gsi_from, gsi_to;
- for (gsi_from = gsi_start_phis (from->dest),
- gsi_to = gsi_start_phis (to->dest);
- !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
- gsi_next (&gsi_from), gsi_next (&gsi_to))
- {
- gimple from_phi = gsi_stmt (gsi_from);
- gimple to_phi = gsi_stmt (gsi_to);
- tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
- tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
- if (TREE_CODE (from_arg) == SSA_NAME
- && TREE_CODE (to_arg) == SSA_NAME
- && get_current_def (to_arg) == NULL_TREE)
- set_current_def (to_arg, get_current_def (from_arg));
- }
- }
- /* Given LOOP this function generates a new copy of it and puts it
- on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
- non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
- basic blocks from SCALAR_LOOP instead of LOOP, but to either the
- entry or exit of LOOP. */
- struct loop *
- slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
- struct loop *scalar_loop, edge e)
- {
- struct loop *new_loop;
- basic_block *new_bbs, *bbs;
- bool at_exit;
- bool was_imm_dom;
- basic_block exit_dest;
- edge exit, new_exit;
- exit = single_exit (loop);
- at_exit = (e == exit);
- if (!at_exit && e != loop_preheader_edge (loop))
- return NULL;
- if (scalar_loop == NULL)
- scalar_loop = loop;
- bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
- get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
- /* Check whether duplication is possible. */
- if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
- {
- free (bbs);
- return NULL;
- }
- /* Generate new loop structure. */
- new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
- duplicate_subloops (scalar_loop, new_loop);
- exit_dest = exit->dest;
- was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
- exit_dest) == loop->header ?
- true : false);
- /* Also copy the pre-header, this avoids jumping through hoops to
- duplicate the loop entry PHI arguments. Create an empty
- pre-header unconditionally for this. */
- basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
- edge entry_e = single_pred_edge (preheader);
- bbs[scalar_loop->num_nodes] = preheader;
- new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
- exit = single_exit (scalar_loop);
- copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
- &exit, 1, &new_exit, NULL,
- e->src, true);
- exit = single_exit (loop);
- basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
- add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
- if (scalar_loop != loop)
- {
- /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
- SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
- but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
- the LOOP SSA_NAMEs (on the exit edge and edge from latch to
- header) to have current_def set, so copy them over. */
- slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
- exit);
- slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
- 0),
- EDGE_SUCC (loop->latch, 0));
- }
- if (at_exit) /* Add the loop copy at exit. */
- {
- if (scalar_loop != loop)
- {
- gphi_iterator gsi;
- new_exit = redirect_edge_and_branch (new_exit, exit_dest);
- for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
- tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
- location_t orig_locus
- = gimple_phi_arg_location_from_edge (phi, e);
- add_phi_arg (phi, orig_arg, new_exit, orig_locus);
- }
- }
- redirect_edge_and_branch_force (e, new_preheader);
- flush_pending_stmts (e);
- set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
- if (was_imm_dom)
- set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
- /* And remove the non-necessary forwarder again. Keep the other
- one so we have a proper pre-header for the loop at the exit edge. */
- redirect_edge_pred (single_succ_edge (preheader),
- single_pred (preheader));
- delete_basic_block (preheader);
- set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
- loop_preheader_edge (scalar_loop)->src);
- }
- else /* Add the copy at entry. */
- {
- if (scalar_loop != loop)
- {
- /* Remove the non-necessary forwarder of scalar_loop again. */
- redirect_edge_pred (single_succ_edge (preheader),
- single_pred (preheader));
- delete_basic_block (preheader);
- set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
- loop_preheader_edge (scalar_loop)->src);
- preheader = split_edge (loop_preheader_edge (loop));
- entry_e = single_pred_edge (preheader);
- }
- redirect_edge_and_branch_force (entry_e, new_preheader);
- flush_pending_stmts (entry_e);
- set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
- redirect_edge_and_branch_force (new_exit, preheader);
- flush_pending_stmts (new_exit);
- set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
- /* And remove the non-necessary forwarder again. Keep the other
- one so we have a proper pre-header for the loop at the exit edge. */
- redirect_edge_pred (single_succ_edge (new_preheader),
- single_pred (new_preheader));
- delete_basic_block (new_preheader);
- set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
- loop_preheader_edge (new_loop)->src);
- }
- for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
- rename_variables_in_bb (new_bbs[i]);
- if (scalar_loop != loop)
- {
- /* Update new_loop->header PHIs, so that on the preheader
- edge they are the ones from loop rather than scalar_loop. */
- gphi_iterator gsi_orig, gsi_new;
- edge orig_e = loop_preheader_edge (loop);
- edge new_e = loop_preheader_edge (new_loop);
- for (gsi_orig = gsi_start_phis (loop->header),
- gsi_new = gsi_start_phis (new_loop->header);
- !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
- gsi_next (&gsi_orig), gsi_next (&gsi_new))
- {
- gphi *orig_phi = gsi_orig.phi ();
- gphi *new_phi = gsi_new.phi ();
- tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
- location_t orig_locus
- = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
- add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
- }
- }
- free (new_bbs);
- free (bbs);
- #ifdef ENABLE_CHECKING
- verify_dominators (CDI_DOMINATORS);
- #endif
- return new_loop;
- }
- /* Given the condition statement COND, put it as the last statement
- of GUARD_BB; EXIT_BB is the basic block to skip the loop;
- Assumes that this is the single exit of the guarded loop.
- Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
- static edge
- slpeel_add_loop_guard (basic_block guard_bb, tree cond,
- gimple_seq cond_expr_stmt_list,
- basic_block exit_bb, basic_block dom_bb,
- int probability)
- {
- gimple_stmt_iterator gsi;
- edge new_e, enter_e;
- gcond *cond_stmt;
- gimple_seq gimplify_stmt_list = NULL;
- enter_e = EDGE_SUCC (guard_bb, 0);
- enter_e->flags &= ~EDGE_FALLTHRU;
- enter_e->flags |= EDGE_FALSE_VALUE;
- gsi = gsi_last_bb (guard_bb);
- cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
- NULL_TREE);
- if (gimplify_stmt_list)
- gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
- cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
- if (cond_expr_stmt_list)
- gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
- gsi = gsi_last_bb (guard_bb);
- gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
- /* Add new edge to connect guard block to the merge/loop-exit block. */
- new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
- new_e->count = guard_bb->count;
- new_e->probability = probability;
- new_e->count = apply_probability (enter_e->count, probability);
- enter_e->count -= new_e->count;
- enter_e->probability = inverse_probability (probability);
- set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
- return new_e;
- }
- /* This function verifies that the following restrictions apply to LOOP:
- (1) it is innermost
- (2) it consists of exactly 2 basic blocks - header, and an empty latch.
- (3) it is single entry, single exit
- (4) its exit condition is the last stmt in the header
- (5) E is the entry/exit edge of LOOP.
- */
- bool
- slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
- {
- edge exit_e = single_exit (loop);
- edge entry_e = loop_preheader_edge (loop);
- gcond *orig_cond = get_loop_exit_condition (loop);
- gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
- if (loop->inner
- /* All loops have an outer scope; the only case loop->outer is NULL is for
- the function itself. */
- || !loop_outer (loop)
- || loop->num_nodes != 2
- || !empty_block_p (loop->latch)
- || !single_exit (loop)
- /* Verify that new loop exit condition can be trivially modified. */
- || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
- || (e != exit_e && e != entry_e))
- return false;
- return true;
- }
- #ifdef ENABLE_CHECKING
- static void
- slpeel_verify_cfg_after_peeling (struct loop *first_loop,
- struct loop *second_loop)
- {
- basic_block loop1_exit_bb = single_exit (first_loop)->dest;
- basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
- basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
- /* A guard that controls whether the second_loop is to be executed or skipped
- is placed in first_loop->exit. first_loop->exit therefore has two
- successors - one is the preheader of second_loop, and the other is a bb
- after second_loop.
- */
- gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
- /* 1. Verify that one of the successors of first_loop->exit is the preheader
- of second_loop. */
- /* The preheader of new_loop is expected to have two predecessors:
- first_loop->exit and the block that precedes first_loop. */
- gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
- && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
- && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
- || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
- && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
- /* Verify that the other successor of first_loop->exit is after the
- second_loop. */
- /* TODO */
- }
- #endif
- /* If the run time cost model check determines that vectorization is
- not profitable and hence scalar loop should be generated then set
- FIRST_NITERS to prologue peeled iterations. This will allow all the
- iterations to be executed in the prologue peeled scalar loop. */
- static void
- set_prologue_iterations (basic_block bb_before_first_loop,
- tree *first_niters,
- struct loop *loop,
- unsigned int th,
- int probability)
- {
- edge e;
- basic_block cond_bb, then_bb;
- tree var, prologue_after_cost_adjust_name;
- gimple_stmt_iterator gsi;
- gphi *newphi;
- edge e_true, e_false, e_fallthru;
- gcond *cond_stmt;
- gimple_seq stmts = NULL;
- tree cost_pre_condition = NULL_TREE;
- tree scalar_loop_iters =
- unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
- e = single_pred_edge (bb_before_first_loop);
- cond_bb = split_edge (e);
- e = single_pred_edge (bb_before_first_loop);
- then_bb = split_edge (e);
- set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
- e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
- EDGE_FALSE_VALUE);
- set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
- e_true = EDGE_PRED (then_bb, 0);
- e_true->flags &= ~EDGE_FALLTHRU;
- e_true->flags |= EDGE_TRUE_VALUE;
- e_true->probability = probability;
- e_false->probability = inverse_probability (probability);
- e_true->count = apply_probability (cond_bb->count, probability);
- e_false->count = cond_bb->count - e_true->count;
- then_bb->frequency = EDGE_FREQUENCY (e_true);
- then_bb->count = e_true->count;
- e_fallthru = EDGE_SUCC (then_bb, 0);
- e_fallthru->count = then_bb->count;
- gsi = gsi_last_bb (cond_bb);
- cost_pre_condition =
- fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
- build_int_cst (TREE_TYPE (scalar_loop_iters), th));
- cost_pre_condition =
- force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
- NULL_TREE, false, GSI_CONTINUE_LINKING);
- cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
- NULL_TREE, NULL_TREE);
- gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
- var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
- "prologue_after_cost_adjust");
- prologue_after_cost_adjust_name =
- force_gimple_operand (scalar_loop_iters, &stmts, false, var);
- gsi = gsi_last_bb (then_bb);
- if (stmts)
- gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
- newphi = create_phi_node (var, bb_before_first_loop);
- add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
- UNKNOWN_LOCATION);
- add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
- *first_niters = PHI_RESULT (newphi);
- }
- /* Function slpeel_tree_peel_loop_to_edge.
- Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
- that is placed on the entry (exit) edge E of LOOP. After this transformation
- we have two loops one after the other - first-loop iterates FIRST_NITERS
- times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
- If the cost model indicates that it is profitable to emit a scalar
- loop instead of the vector one, then the prolog (epilog) loop will iterate
- for the entire unchanged scalar iterations of the loop.
- Input:
- - LOOP: the loop to be peeled.
- - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
- should be copied.
- - E: the exit or entry edge of LOOP.
- If it is the entry edge, we peel the first iterations of LOOP. In this
- case first-loop is LOOP, and second-loop is the newly created loop.
- If it is the exit edge, we peel the last iterations of LOOP. In this
- case, first-loop is the newly created loop, and second-loop is LOOP.
- - NITERS: the number of iterations that LOOP iterates.
- - FIRST_NITERS: the number of iterations that the first-loop should iterate.
- - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
- for updating the loop bound of the first-loop to FIRST_NITERS. If it
- is false, the caller of this function may want to take care of this
- (this can be useful if we don't want new stmts added to first-loop).
- - TH: cost model profitability threshold of iterations for vectorization.
- - CHECK_PROFITABILITY: specify whether cost model check has not occurred
- during versioning and hence needs to occur during
- prologue generation or whether cost model check
- has not occurred during prologue generation and hence
- needs to occur during epilogue generation.
- - BOUND1 is the upper bound on number of iterations of the first loop (if known)
- - BOUND2 is the upper bound on number of iterations of the second loop (if known)
- Output:
- The function returns a pointer to the new loop-copy, or NULL if it failed
- to perform the transformation.
- The function generates two if-then-else guards: one before the first loop,
- and the other before the second loop:
- The first guard is:
- if (FIRST_NITERS == 0) then skip the first loop,
- and go directly to the second loop.
- The second guard is:
- if (FIRST_NITERS == NITERS) then skip the second loop.
- If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
- then the generated condition is combined with COND_EXPR and the
- statements in COND_EXPR_STMT_LIST are emitted together with it.
- FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
- FORNOW the resulting code will not be in loop-closed-ssa form.
- */
- static struct loop *
- slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
- edge e, tree *first_niters,
- tree niters, bool update_first_loop_count,
- unsigned int th, bool check_profitability,
- tree cond_expr, gimple_seq cond_expr_stmt_list,
- int bound1, int bound2)
- {
- struct loop *new_loop = NULL, *first_loop, *second_loop;
- edge skip_e;
- tree pre_condition = NULL_TREE;
- basic_block bb_before_second_loop, bb_after_second_loop;
- basic_block bb_before_first_loop;
- basic_block bb_between_loops;
- basic_block new_exit_bb;
- gphi_iterator gsi;
- edge exit_e = single_exit (loop);
- source_location loop_loc;
- /* There are many aspects to how likely the first loop is going to be executed.
- Without histogram we can't really do good job. Simply set it to
- 2/3, so the first loop is not reordered to the end of function and
- the hot path through stays short. */
- int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
- int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
- int probability_of_second_loop;
- if (!slpeel_can_duplicate_loop_p (loop, e))
- return NULL;
- /* We might have a queued need to update virtual SSA form. As we
- delete the update SSA machinery below after doing a regular
- incremental SSA update during loop copying make sure we don't
- lose that fact.
- ??? Needing to update virtual SSA form by renaming is unfortunate
- but not all of the vectorizer code inserting new loads / stores
- properly assigns virtual operands to those statements. */
- update_ssa (TODO_update_ssa_only_virtuals);
-
- /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
- in the exit bb and rename all the uses after the loop. This simplifies
- the *guard[12] routines, which assume loop closed SSA form for all PHIs
- (but normally loop closed SSA form doesn't require virtual PHIs to be
- in the same form). Doing this early simplifies the checking what
- uses should be renamed. */
- for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
- if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
- {
- gphi *phi = gsi.phi ();
- for (gsi = gsi_start_phis (exit_e->dest);
- !gsi_end_p (gsi); gsi_next (&gsi))
- if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
- break;
- if (gsi_end_p (gsi))
- {
- tree new_vop = copy_ssa_name (PHI_RESULT (phi));
- gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
- tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
- imm_use_iterator imm_iter;
- gimple stmt;
- use_operand_p use_p;
- add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
- gimple_phi_set_result (new_phi, new_vop);
- FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
- if (stmt != new_phi && gimple_bb (stmt) != loop->header)
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, new_vop);
- }
- break;
- }
- /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
- Resulting CFG would be:
- first_loop:
- do {
- } while ...
- second_loop:
- do {
- } while ...
- orig_exit_bb:
- */
- if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
- e)))
- {
- loop_loc = find_loop_location (loop);
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
- "tree_duplicate_loop_to_edge_cfg failed.\n");
- return NULL;
- }
- if (MAY_HAVE_DEBUG_STMTS)
- {
- gcc_assert (!adjust_vec.exists ());
- adjust_vec.create (32);
- }
- if (e == exit_e)
- {
- /* NEW_LOOP was placed after LOOP. */
- first_loop = loop;
- second_loop = new_loop;
- }
- else
- {
- /* NEW_LOOP was placed before LOOP. */
- first_loop = new_loop;
- second_loop = loop;
- }
- /* 2. Add the guard code in one of the following ways:
- 2.a Add the guard that controls whether the first loop is executed.
- This occurs when this function is invoked for prologue or epilogue
- generation and when the cost model check can be done at compile time.
- Resulting CFG would be:
- bb_before_first_loop:
- if (FIRST_NITERS == 0) GOTO bb_before_second_loop
- GOTO first-loop
- first_loop:
- do {
- } while ...
- bb_before_second_loop:
- second_loop:
- do {
- } while ...
- orig_exit_bb:
- 2.b Add the cost model check that allows the prologue
- to iterate for the entire unchanged scalar
- iterations of the loop in the event that the cost
- model indicates that the scalar loop is more
- profitable than the vector one. This occurs when
- this function is invoked for prologue generation
- and the cost model check needs to be done at run
- time.
- Resulting CFG after prologue peeling would be:
- if (scalar_loop_iterations <= th)
- FIRST_NITERS = scalar_loop_iterations
- bb_before_first_loop:
- if (FIRST_NITERS == 0) GOTO bb_before_second_loop
- GOTO first-loop
- first_loop:
- do {
- } while ...
- bb_before_second_loop:
- second_loop:
- do {
- } while ...
- orig_exit_bb:
- 2.c Add the cost model check that allows the epilogue
- to iterate for the entire unchanged scalar
- iterations of the loop in the event that the cost
- model indicates that the scalar loop is more
- profitable than the vector one. This occurs when
- this function is invoked for epilogue generation
- and the cost model check needs to be done at run
- time. This check is combined with any pre-existing
- check in COND_EXPR to avoid versioning.
- Resulting CFG after prologue peeling would be:
- bb_before_first_loop:
- if ((scalar_loop_iterations <= th)
- ||
- FIRST_NITERS == 0) GOTO bb_before_second_loop
- GOTO first-loop
- first_loop:
- do {
- } while ...
- bb_before_second_loop:
- second_loop:
- do {
- } while ...
- orig_exit_bb:
- */
- bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
- /* Loop copying insterted a forwarder block for us here. */
- bb_before_second_loop = single_exit (first_loop)->dest;
- probability_of_second_loop = (inverse_probability (first_guard_probability)
- + combine_probabilities (second_guard_probability,
- first_guard_probability));
- /* Theoretically preheader edge of first loop and exit edge should have
- same frequencies. Loop exit probablities are however easy to get wrong.
- It is safer to copy value from original loop entry. */
- bb_before_second_loop->frequency
- = combine_probabilities (bb_before_first_loop->frequency,
- probability_of_second_loop);
- bb_before_second_loop->count
- = apply_probability (bb_before_first_loop->count,
- probability_of_second_loop);
- single_succ_edge (bb_before_second_loop)->count
- = bb_before_second_loop->count;
- /* Epilogue peeling. */
- if (!update_first_loop_count)
- {
- loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
- tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
- unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
- if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
- limit = limit + 1;
- if (check_profitability
- && th > limit)
- limit = th;
- pre_condition =
- fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
- build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
- if (cond_expr)
- {
- pre_condition =
- fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
- pre_condition,
- fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
- cond_expr));
- }
- }
- /* Prologue peeling. */
- else
- {
- if (check_profitability)
- set_prologue_iterations (bb_before_first_loop, first_niters,
- loop, th, first_guard_probability);
- pre_condition =
- fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
- build_int_cst (TREE_TYPE (*first_niters), 0));
- }
- skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
- cond_expr_stmt_list,
- bb_before_second_loop, bb_before_first_loop,
- inverse_probability (first_guard_probability));
- scale_loop_profile (first_loop, first_guard_probability,
- check_profitability && (int)th > bound1 ? th : bound1);
- slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
- first_loop == new_loop,
- &new_exit_bb);
- /* 3. Add the guard that controls whether the second loop is executed.
- Resulting CFG would be:
- bb_before_first_loop:
- if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
- GOTO first-loop
- first_loop:
- do {
- } while ...
- bb_between_loops:
- if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
- GOTO bb_before_second_loop
- bb_before_second_loop:
- second_loop:
- do {
- } while ...
- bb_after_second_loop:
- orig_exit_bb:
- */
- bb_between_loops = new_exit_bb;
- bb_after_second_loop = split_edge (single_exit (second_loop));
- pre_condition =
- fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
- skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
- bb_after_second_loop, bb_before_first_loop,
- inverse_probability (second_guard_probability));
- scale_loop_profile (second_loop, probability_of_second_loop, bound2);
- slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
- second_loop == new_loop, &new_exit_bb);
- /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
- */
- if (update_first_loop_count)
- slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
- delete_update_ssa ();
- adjust_vec_debug_stmts ();
- return new_loop;
- }
- /* Function vect_get_loop_location.
- Extract the location of the loop in the source code.
- If the loop is not well formed for vectorization, an estimated
- location is calculated.
- Return the loop location if succeed and NULL if not. */
- source_location
- find_loop_location (struct loop *loop)
- {
- gimple stmt = NULL;
- basic_block bb;
- gimple_stmt_iterator si;
- if (!loop)
- return UNKNOWN_LOCATION;
- stmt = get_loop_exit_condition (loop);
- if (stmt
- && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
- return gimple_location (stmt);
- /* If we got here the loop is probably not "well formed",
- try to estimate the loop location */
- if (!loop->header)
- return UNKNOWN_LOCATION;
- bb = loop->header;
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- stmt = gsi_stmt (si);
- if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
- return gimple_location (stmt);
- }
- return UNKNOWN_LOCATION;
- }
- /* Function vect_can_advance_ivs_p
- In case the number of iterations that LOOP iterates is unknown at compile
- time, an epilog loop will be generated, and the loop induction variables
- (IVs) will be "advanced" to the value they are supposed to take just before
- the epilog loop. Here we check that the access function of the loop IVs
- and the expression that represents the loop bound are simple enough.
- These restrictions will be relaxed in the future. */
- bool
- vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
- {
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block bb = loop->header;
- gimple phi;
- gphi_iterator gsi;
- /* Analyze phi functions of the loop header. */
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- tree evolution_part;
- phi = gsi.phi ();
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
- dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
- dump_printf (MSG_NOTE, "\n");
- }
- /* Skip virtual phi's. The data dependences that are associated with
- virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
- if (virtual_operand_p (PHI_RESULT (phi)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "virtual phi. skip.\n");
- continue;
- }
- /* Skip reduction phis. */
- if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduc phi. skip.\n");
- continue;
- }
- /* Analyze the evolution function. */
- evolution_part
- = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
- if (evolution_part == NULL_TREE)
- {
- if (dump_enabled_p ())
- dump_printf (MSG_MISSED_OPTIMIZATION,
- "No access function or evolution.\n");
- return false;
- }
- /* FORNOW: We do not transform initial conditions of IVs
- which evolution functions are a polynomial of degree >= 2. */
- if (tree_is_chrec (evolution_part))
- return false;
- }
- return true;
- }
- /* Function vect_update_ivs_after_vectorizer.
- "Advance" the induction variables of LOOP to the value they should take
- after the execution of LOOP. This is currently necessary because the
- vectorizer does not handle induction variables that are used after the
- loop. Such a situation occurs when the last iterations of LOOP are
- peeled, because:
- 1. We introduced new uses after LOOP for IVs that were not originally used
- after LOOP: the IVs of LOOP are now used by an epilog loop.
- 2. LOOP is going to be vectorized; this means that it will iterate N/VF
- times, whereas the loop IVs should be bumped N times.
- Input:
- - LOOP - a loop that is going to be vectorized. The last few iterations
- of LOOP were peeled.
- - NITERS - the number of iterations that LOOP executes (before it is
- vectorized). i.e, the number of times the ivs should be bumped.
- - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
- coming out from LOOP on which there are uses of the LOOP ivs
- (this is the path from LOOP->exit to epilog_loop->preheader).
- The new definitions of the ivs are placed in LOOP->exit.
- The phi args associated with the edge UPDATE_E in the bb
- UPDATE_E->dest are updated accordingly.
- Assumption 1: Like the rest of the vectorizer, this function assumes
- a single loop exit that has a single predecessor.
- Assumption 2: The phi nodes in the LOOP header and in update_bb are
- organized in the same order.
- Assumption 3: The access function of the ivs is simple enough (see
- vect_can_advance_ivs_p). This assumption will be relaxed in the future.
- Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
- coming out of LOOP on which the ivs of LOOP are used (this is the path
- that leads to the epilog loop; other paths skip the epilog loop). This
- path starts with the edge UPDATE_E, and its destination (denoted update_bb)
- needs to have its phis updated.
- */
- static void
- vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
- edge update_e)
- {
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block exit_bb = single_exit (loop)->dest;
- gphi *phi, *phi1;
- gphi_iterator gsi, gsi1;
- basic_block update_bb = update_e->dest;
- gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
- /* Make sure there exists a single-predecessor exit bb: */
- gcc_assert (single_pred_p (exit_bb));
- for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
- !gsi_end_p (gsi) && !gsi_end_p (gsi1);
- gsi_next (&gsi), gsi_next (&gsi1))
- {
- tree init_expr;
- tree step_expr, off;
- tree type;
- tree var, ni, ni_name;
- gimple_stmt_iterator last_gsi;
- stmt_vec_info stmt_info;
- phi = gsi.phi ();
- phi1 = gsi1.phi ();
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location,
- "vect_update_ivs_after_vectorizer: phi: ");
- dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
- dump_printf (MSG_NOTE, "\n");
- }
- /* Skip virtual phi's. */
- if (virtual_operand_p (PHI_RESULT (phi)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "virtual phi. skip.\n");
- continue;
- }
- /* Skip reduction phis. */
- stmt_info = vinfo_for_stmt (phi);
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduc phi. skip.\n");
- continue;
- }
- type = TREE_TYPE (gimple_phi_result (phi));
- step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
- step_expr = unshare_expr (step_expr);
- /* FORNOW: We do not support IVs whose evolution function is a polynomial
- of degree >= 2 or exponential. */
- gcc_assert (!tree_is_chrec (step_expr));
- init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
- off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
- fold_convert (TREE_TYPE (step_expr), niters),
- step_expr);
- if (POINTER_TYPE_P (type))
- ni = fold_build_pointer_plus (init_expr, off);
- else
- ni = fold_build2 (PLUS_EXPR, type,
- init_expr, fold_convert (type, off));
- var = create_tmp_var (type, "tmp");
- last_gsi = gsi_last_bb (exit_bb);
- ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
- true, GSI_SAME_STMT);
- /* Fix phi expressions in the successor bb. */
- adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
- }
- }
- /* Function vect_do_peeling_for_loop_bound
- Peel the last iterations of the loop represented by LOOP_VINFO.
- The peeled iterations form a new epilog loop. Given that the loop now
- iterates NITERS times, the new epilog loop iterates
- NITERS % VECTORIZATION_FACTOR times.
- The original loop will later be made to iterate
- NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
- COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
- test. */
- void
- vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
- tree ni_name, tree ratio_mult_vf_name,
- unsigned int th, bool check_profitability)
- {
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
- struct loop *new_loop;
- edge update_e;
- basic_block preheader;
- int loop_num;
- int max_iter;
- tree cond_expr = NULL_TREE;
- gimple_seq cond_expr_stmt_list = NULL;
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "=== vect_do_peeling_for_loop_bound ===\n");
- initialize_original_copy_tables ();
- loop_num = loop->num;
- new_loop
- = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
- &ratio_mult_vf_name, ni_name, false,
- th, check_profitability,
- cond_expr, cond_expr_stmt_list,
- 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
- gcc_assert (new_loop);
- gcc_assert (loop_num == loop->num);
- #ifdef ENABLE_CHECKING
- slpeel_verify_cfg_after_peeling (loop, new_loop);
- #endif
- /* A guard that controls whether the new_loop is to be executed or skipped
- is placed in LOOP->exit. LOOP->exit therefore has two successors - one
- is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
- is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
- is on the path where the LOOP IVs are used and need to be updated. */
- preheader = loop_preheader_edge (new_loop)->src;
- if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
- update_e = EDGE_PRED (preheader, 0);
- else
- update_e = EDGE_PRED (preheader, 1);
- /* Update IVs of original loop as if they were advanced
- by ratio_mult_vf_name steps. */
- vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
- /* For vectorization factor N, we need to copy last N-1 values in epilogue
- and this means N-2 loopback edge executions.
- PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
- will execute at least LOOP_VINFO_VECT_FACTOR times. */
- max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
- ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
- : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
- if (check_profitability)
- max_iter = MAX (max_iter, (int) th - 1);
- record_niter_bound (new_loop, max_iter, false, true);
- dump_printf (MSG_NOTE,
- "Setting upper bound of nb iterations for epilogue "
- "loop to %d\n", max_iter);
- /* After peeling we have to reset scalar evolution analyzer. */
- scev_reset ();
- free_original_copy_tables ();
- }
- /* Function vect_gen_niters_for_prolog_loop
- Set the number of iterations for the loop represented by LOOP_VINFO
- to the minimum between LOOP_NITERS (the original iteration count of the loop)
- and the misalignment of DR - the data reference recorded in
- LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
- this loop, the data reference DR will refer to an aligned location.
- The following computation is generated:
- If the misalignment of DR is known at compile time:
- addr_mis = int mis = DR_MISALIGNMENT (dr);
- Else, compute address misalignment in bytes:
- addr_mis = addr & (vectype_align - 1)
- prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
- (elem_size = element type size; an element is the scalar element whose type
- is the inner type of the vectype)
- When the step of the data-ref in the loop is not 1 (as in interleaved data
- and SLP), the number of iterations of the prolog must be divided by the step
- (which is equal to the size of interleaved group).
- The above formulas assume that VF == number of elements in the vector. This
- may not hold when there are multiple-types in the loop.
- In this case, for some data-references in the loop the VF does not represent
- the number of elements that fit in the vector. Therefore, instead of VF we
- use TYPE_VECTOR_SUBPARTS. */
- static tree
- vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
- {
- struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree var;
- gimple_seq stmts;
- tree iters, iters_name;
- edge pe;
- basic_block new_bb;
- gimple dr_stmt = DR_STMT (dr);
- stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
- tree niters_type = TREE_TYPE (loop_niters);
- int nelements = TYPE_VECTOR_SUBPARTS (vectype);
- pe = loop_preheader_edge (loop);
- if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
- {
- int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "known peeling = %d.\n", npeel);
- iters = build_int_cst (niters_type, npeel);
- *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
- }
- else
- {
- gimple_seq new_stmts = NULL;
- bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
- tree offset = negative
- ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
- tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
- &new_stmts, offset, loop);
- tree type = unsigned_type_for (TREE_TYPE (start_addr));
- tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
- HOST_WIDE_INT elem_size =
- int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
- tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
- tree nelements_minus_1 = build_int_cst (type, nelements - 1);
- tree nelements_tree = build_int_cst (type, nelements);
- tree byte_misalign;
- tree elem_misalign;
- new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
- gcc_assert (!new_bb);
- /* Create: byte_misalign = addr & (vectype_align - 1) */
- byte_misalign =
- fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
- vectype_align_minus_1);
- /* Create: elem_misalign = byte_misalign / element_size */
- elem_misalign =
- fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
- /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
- if (negative)
- iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
- else
- iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
- iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
- iters = fold_convert (niters_type, iters);
- *bound = nelements;
- }
- /* Create: prolog_loop_niters = min (iters, loop_niters) */
- /* If the loop bound is known at compile time we already verified that it is
- greater than vf; since the misalignment ('iters') is at most vf, there's
- no need to generate the MIN_EXPR in this case. */
- if (TREE_CODE (loop_niters) != INTEGER_CST)
- iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location,
- "niters for prolog loop: ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
- dump_printf (MSG_NOTE, "\n");
- }
- var = create_tmp_var (niters_type, "prolog_loop_niters");
- stmts = NULL;
- iters_name = force_gimple_operand (iters, &stmts, false, var);
- /* Insert stmt on loop preheader edge. */
- if (stmts)
- {
- basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
- return iters_name;
- }
- /* Function vect_update_init_of_dr
- NITERS iterations were peeled from LOOP. DR represents a data reference
- in LOOP. This function updates the information recorded in DR to
- account for the fact that the first NITERS iterations had already been
- executed. Specifically, it updates the OFFSET field of DR. */
- static void
- vect_update_init_of_dr (struct data_reference *dr, tree niters)
- {
- tree offset = DR_OFFSET (dr);
- niters = fold_build2 (MULT_EXPR, sizetype,
- fold_convert (sizetype, niters),
- fold_convert (sizetype, DR_STEP (dr)));
- offset = fold_build2 (PLUS_EXPR, sizetype,
- fold_convert (sizetype, offset), niters);
- DR_OFFSET (dr) = offset;
- }
- /* Function vect_update_inits_of_drs
- NITERS iterations were peeled from the loop represented by LOOP_VINFO.
- This function updates the information recorded for the data references in
- the loop to account for the fact that the first NITERS iterations had
- already been executed. Specifically, it updates the initial_condition of
- the access_function of all the data_references in the loop. */
- static void
- vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
- {
- unsigned int i;
- vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- struct data_reference *dr;
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "=== vect_update_inits_of_dr ===\n");
- FOR_EACH_VEC_ELT (datarefs, i, dr)
- vect_update_init_of_dr (dr, niters);
- }
- /* Function vect_do_peeling_for_alignment
- Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
- 'niters' is set to the misalignment of one of the data references in the
- loop, thereby forcing it to refer to an aligned location at the beginning
- of the execution of this loop. The data reference for which we are
- peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
- void
- vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
- unsigned int th, bool check_profitability)
- {
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
- tree niters_of_prolog_loop;
- tree wide_prolog_niters;
- struct loop *new_loop;
- int max_iter;
- int bound = 0;
- if (dump_enabled_p ())
- dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
- "loop peeled for vectorization to enhance"
- " alignment\n");
- initialize_original_copy_tables ();
- gimple_seq stmts = NULL;
- gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
- niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
- ni_name,
- &bound);
- /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
- new_loop =
- slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
- loop_preheader_edge (loop),
- &niters_of_prolog_loop, ni_name, true,
- th, check_profitability, NULL_TREE, NULL,
- bound, 0);
- gcc_assert (new_loop);
- #ifdef ENABLE_CHECKING
- slpeel_verify_cfg_after_peeling (new_loop, loop);
- #endif
- /* For vectorization factor N, we need to copy at most N-1 values
- for alignment and this means N-2 loopback edge executions. */
- max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
- if (check_profitability)
- max_iter = MAX (max_iter, (int) th - 1);
- record_niter_bound (new_loop, max_iter, false, true);
- dump_printf (MSG_NOTE,
- "Setting upper bound of nb iterations for prologue "
- "loop to %d\n", max_iter);
- /* Update number of times loop executes. */
- LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
- TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
- LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
- TREE_TYPE (ni_name),
- LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
- if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
- wide_prolog_niters = niters_of_prolog_loop;
- else
- {
- gimple_seq seq = NULL;
- edge pe = loop_preheader_edge (loop);
- tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
- tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
- wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
- var);
- if (seq)
- {
- /* Insert stmt on loop preheader edge. */
- basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
- gcc_assert (!new_bb);
- }
- }
- /* Update the init conditions of the access functions of all data refs. */
- vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
- /* After peeling we have to reset scalar evolution analyzer. */
- scev_reset ();
- free_original_copy_tables ();
- }
- /* Function vect_create_cond_for_align_checks.
- Create a conditional expression that represents the alignment checks for
- all of data references (array element references) whose alignment must be
- checked at runtime.
- Input:
- COND_EXPR - input conditional expression. New conditions will be chained
- with logical AND operation.
- LOOP_VINFO - two fields of the loop information are used.
- LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
- LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
- Output:
- COND_EXPR_STMT_LIST - statements needed to construct the conditional
- expression.
- The returned value is the conditional expression to be used in the if
- statement that controls which version of the loop gets executed at runtime.
- The algorithm makes two assumptions:
- 1) The number of bytes "n" in a vector is a power of 2.
- 2) An address "a" is aligned if a%n is zero and that this
- test can be done as a&(n-1) == 0. For example, for 16
- byte vectors the test is a&0xf == 0. */
- static void
- vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
- tree *cond_expr,
- gimple_seq *cond_expr_stmt_list)
- {
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- vec<gimple> may_misalign_stmts
- = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
- gimple ref_stmt;
- int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
- tree mask_cst;
- unsigned int i;
- tree int_ptrsize_type;
- char tmp_name[20];
- tree or_tmp_name = NULL_TREE;
- tree and_tmp_name;
- gimple and_stmt;
- tree ptrsize_zero;
- tree part_cond_expr;
- /* Check that mask is one less than a power of 2, i.e., mask is
- all zeros followed by all ones. */
- gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
- int_ptrsize_type = signed_type_for (ptr_type_node);
- /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
- of the first vector of the i'th data reference. */
- FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
- {
- gimple_seq new_stmt_list = NULL;
- tree addr_base;
- tree addr_tmp_name;
- tree new_or_tmp_name;
- gimple addr_stmt, or_stmt;
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
- bool negative = tree_int_cst_compare
- (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
- tree offset = negative
- ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
- /* create: addr_tmp = (int)(address_of_first_vector) */
- addr_base =
- vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
- offset, loop);
- if (new_stmt_list != NULL)
- gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
- sprintf (tmp_name, "addr2int%d", i);
- addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
- addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
- gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
- /* The addresses are OR together. */
- if (or_tmp_name != NULL_TREE)
- {
- /* create: or_tmp = or_tmp | addr_tmp */
- sprintf (tmp_name, "orptrs%d", i);
- new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
- or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
- or_tmp_name, addr_tmp_name);
- gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
- or_tmp_name = new_or_tmp_name;
- }
- else
- or_tmp_name = addr_tmp_name;
- } /* end for i */
- mask_cst = build_int_cst (int_ptrsize_type, mask);
- /* create: and_tmp = or_tmp & mask */
- and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
- and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
- or_tmp_name, mask_cst);
- gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
- /* Make and_tmp the left operand of the conditional test against zero.
- if and_tmp has a nonzero bit then some address is unaligned. */
- ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
- part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
- and_tmp_name, ptrsize_zero);
- if (*cond_expr)
- *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- *cond_expr, part_cond_expr);
- else
- *cond_expr = part_cond_expr;
- }
- /* Function vect_create_cond_for_alias_checks.
- Create a conditional expression that represents the run-time checks for
- overlapping of address ranges represented by a list of data references
- relations passed as input.
- Input:
- COND_EXPR - input conditional expression. New conditions will be chained
- with logical AND operation. If it is NULL, then the function
- is used to return the number of alias checks.
- LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
- to be checked.
- Output:
- COND_EXPR - conditional expression.
- The returned COND_EXPR is the conditional expression to be used in the if
- statement that controls which version of the loop gets executed at runtime.
- */
- void
- vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
- {
- vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
- LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
- tree part_cond_expr;
- /* Create expression
- ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
- || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
- &&
- ...
- &&
- ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
- || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
- if (comp_alias_ddrs.is_empty ())
- return;
- for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
- {
- const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
- const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
- tree segment_length_a = dr_a.seg_len;
- tree segment_length_b = dr_b.seg_len;
- tree addr_base_a
- = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
- tree addr_base_b
- = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location,
- "create runtime check for data references ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
- dump_printf (MSG_NOTE, " and ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
- dump_printf (MSG_NOTE, "\n");
- }
- tree seg_a_min = addr_base_a;
- tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
- /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
- bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
- [a, a+12) */
- if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
- {
- tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
- seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
- seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
- }
- tree seg_b_min = addr_base_b;
- tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
- if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
- {
- tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
- seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
- seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
- }
- part_cond_expr =
- fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
- fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
- fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
- if (*cond_expr)
- *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- *cond_expr, part_cond_expr);
- else
- *cond_expr = part_cond_expr;
- }
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "created %u versioning for alias checks.\n",
- comp_alias_ddrs.length ());
- comp_alias_ddrs.release ();
- }
- /* Function vect_loop_versioning.
- If the loop has data references that may or may not be aligned or/and
- has data reference relations whose independence was not proven then
- two versions of the loop need to be generated, one which is vectorized
- and one which isn't. A test is then generated to control which of the
- loops is executed. The test checks for the alignment of all of the
- data references that may or may not be aligned. An additional
- sequence of runtime tests is generated for each pairs of DDRs whose
- independence was not proven. The vectorized version of loop is
- executed only if both alias and alignment tests are passed.
- The test generated to check which version of loop is executed
- is modified to also check for profitability as indicated by the
- cost model initially.
- The versioning precondition(s) are placed in *COND_EXPR and
- *COND_EXPR_STMT_LIST. */
- void
- vect_loop_versioning (loop_vec_info loop_vinfo,
- unsigned int th, bool check_profitability)
- {
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
- basic_block condition_bb;
- gphi_iterator gsi;
- gimple_stmt_iterator cond_exp_gsi;
- basic_block merge_bb;
- basic_block new_exit_bb;
- edge new_exit_e, e;
- gphi *orig_phi, *new_phi;
- tree cond_expr = NULL_TREE;
- gimple_seq cond_expr_stmt_list = NULL;
- tree arg;
- unsigned prob = 4 * REG_BR_PROB_BASE / 5;
- gimple_seq gimplify_stmt_list = NULL;
- tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
- bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
- bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
- if (check_profitability)
- {
- cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
- build_int_cst (TREE_TYPE (scalar_loop_iters), th));
- cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
- is_gimple_condexpr, NULL_TREE);
- }
- if (version_align)
- vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
- &cond_expr_stmt_list);
- if (version_alias)
- vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
- cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
- is_gimple_condexpr, NULL_TREE);
- gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
- initialize_original_copy_tables ();
- if (scalar_loop)
- {
- edge scalar_e;
- basic_block preheader, scalar_preheader;
- /* We don't want to scale SCALAR_LOOP's frequencies, we need to
- scale LOOP's frequencies instead. */
- loop_version (scalar_loop, cond_expr, &condition_bb,
- prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
- scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
- /* CONDITION_BB was created above SCALAR_LOOP's preheader,
- while we need to move it above LOOP's preheader. */
- e = loop_preheader_edge (loop);
- scalar_e = loop_preheader_edge (scalar_loop);
- gcc_assert (empty_block_p (e->src)
- && single_pred_p (e->src));
- gcc_assert (empty_block_p (scalar_e->src)
- && single_pred_p (scalar_e->src));
- gcc_assert (single_pred_p (condition_bb));
- preheader = e->src;
- scalar_preheader = scalar_e->src;
- scalar_e = find_edge (condition_bb, scalar_preheader);
- e = single_pred_edge (preheader);
- redirect_edge_and_branch_force (single_pred_edge (condition_bb),
- scalar_preheader);
- redirect_edge_and_branch_force (scalar_e, preheader);
- redirect_edge_and_branch_force (e, condition_bb);
- set_immediate_dominator (CDI_DOMINATORS, condition_bb,
- single_pred (condition_bb));
- set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
- single_pred (scalar_preheader));
- set_immediate_dominator (CDI_DOMINATORS, preheader,
- condition_bb);
- }
- else
- loop_version (loop, cond_expr, &condition_bb,
- prob, prob, REG_BR_PROB_BASE - prob, true);
- if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
- && dump_enabled_p ())
- {
- if (version_alias)
- dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
- "loop versioned for vectorization because of "
- "possible aliasing\n");
- if (version_align)
- dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
- "loop versioned for vectorization to enhance "
- "alignment\n");
- }
- free_original_copy_tables ();
- /* Loop versioning violates an assumption we try to maintain during
- vectorization - that the loop exit block has a single predecessor.
- After versioning, the exit block of both loop versions is the same
- basic block (i.e. it has two predecessors). Just in order to simplify
- following transformations in the vectorizer, we fix this situation
- here by adding a new (empty) block on the exit-edge of the loop,
- with the proper loop-exit phis to maintain loop-closed-form.
- If loop versioning wasn't done from loop, but scalar_loop instead,
- merge_bb will have already just a single successor. */
- merge_bb = single_exit (loop)->dest;
- if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
- {
- gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
- new_exit_bb = split_edge (single_exit (loop));
- new_exit_e = single_exit (loop);
- e = EDGE_SUCC (new_exit_bb, 0);
- for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- tree new_res;
- orig_phi = gsi.phi ();
- new_res = copy_ssa_name (PHI_RESULT (orig_phi));
- new_phi = create_phi_node (new_res, new_exit_bb);
- arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
- add_phi_arg (new_phi, arg, new_exit_e,
- gimple_phi_arg_location_from_edge (orig_phi, e));
- adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
- }
- }
- /* End loop-exit-fixes after versioning. */
- if (cond_expr_stmt_list)
- {
- cond_exp_gsi = gsi_last_bb (condition_bb);
- gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
- GSI_SAME_STMT);
- }
- update_ssa (TODO_update_ssa);
- }
|