1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287 |
- /* Optimization of PHI nodes by converting them into straightline code.
- Copyright (C) 2004-2015 Free Software Foundation, Inc.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 3, or (at your option) any
- later version.
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "hash-table.h"
- #include "tm.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "tree.h"
- #include "fold-const.h"
- #include "stor-layout.h"
- #include "flags.h"
- #include "tm_p.h"
- #include "predict.h"
- #include "hard-reg-set.h"
- #include "function.h"
- #include "dominance.h"
- #include "cfg.h"
- #include "cfganal.h"
- #include "basic-block.h"
- #include "tree-ssa-alias.h"
- #include "internal-fn.h"
- #include "gimple-expr.h"
- #include "is-a.h"
- #include "gimple.h"
- #include "gimplify.h"
- #include "gimple-iterator.h"
- #include "gimplify-me.h"
- #include "gimple-ssa.h"
- #include "tree-cfg.h"
- #include "tree-phinodes.h"
- #include "ssa-iterators.h"
- #include "stringpool.h"
- #include "tree-ssanames.h"
- #include "hashtab.h"
- #include "rtl.h"
- #include "statistics.h"
- #include "real.h"
- #include "fixed-value.h"
- #include "insn-config.h"
- #include "expmed.h"
- #include "dojump.h"
- #include "explow.h"
- #include "calls.h"
- #include "emit-rtl.h"
- #include "varasm.h"
- #include "stmt.h"
- #include "expr.h"
- #include "tree-dfa.h"
- #include "tree-pass.h"
- #include "langhooks.h"
- #include "domwalk.h"
- #include "cfgloop.h"
- #include "tree-data-ref.h"
- #include "gimple-pretty-print.h"
- #include "insn-codes.h"
- #include "optabs.h"
- #include "tree-scalar-evolution.h"
- #include "tree-inline.h"
- #ifndef HAVE_conditional_move
- #define HAVE_conditional_move (0)
- #endif
- static unsigned int tree_ssa_phiopt_worker (bool, bool);
- static bool conditional_replacement (basic_block, basic_block,
- edge, edge, gphi *, tree, tree);
- static int value_replacement (basic_block, basic_block,
- edge, edge, gimple, tree, tree);
- static bool minmax_replacement (basic_block, basic_block,
- edge, edge, gimple, tree, tree);
- static bool abs_replacement (basic_block, basic_block,
- edge, edge, gimple, tree, tree);
- static bool cond_store_replacement (basic_block, basic_block, edge, edge,
- hash_set<tree> *);
- static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
- static hash_set<tree> * get_non_trapping ();
- static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
- static void hoist_adjacent_loads (basic_block, basic_block,
- basic_block, basic_block);
- static bool gate_hoist_loads (void);
- /* This pass tries to transform conditional stores into unconditional
- ones, enabling further simplifications with the simpler then and else
- blocks. In particular it replaces this:
- bb0:
- if (cond) goto bb2; else goto bb1;
- bb1:
- *p = RHS;
- bb2:
- with
- bb0:
- if (cond) goto bb1; else goto bb2;
- bb1:
- condtmp' = *p;
- bb2:
- condtmp = PHI <RHS, condtmp'>
- *p = condtmp;
- This transformation can only be done under several constraints,
- documented below. It also replaces:
- bb0:
- if (cond) goto bb2; else goto bb1;
- bb1:
- *p = RHS1;
- goto bb3;
- bb2:
- *p = RHS2;
- bb3:
- with
- bb0:
- if (cond) goto bb3; else goto bb1;
- bb1:
- bb3:
- condtmp = PHI <RHS1, RHS2>
- *p = condtmp; */
- static unsigned int
- tree_ssa_cs_elim (void)
- {
- unsigned todo;
- /* ??? We are not interested in loop related info, but the following
- will create it, ICEing as we didn't init loops with pre-headers.
- An interfacing issue of find_data_references_in_bb. */
- loop_optimizer_init (LOOPS_NORMAL);
- scev_initialize ();
- todo = tree_ssa_phiopt_worker (true, false);
- scev_finalize ();
- loop_optimizer_finalize ();
- return todo;
- }
- /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
- static gphi *
- single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
- {
- gimple_stmt_iterator i;
- gphi *phi = NULL;
- if (gimple_seq_singleton_p (seq))
- return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
- for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
- {
- gphi *p = as_a <gphi *> (gsi_stmt (i));
- /* If the PHI arguments are equal then we can skip this PHI. */
- if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
- gimple_phi_arg_def (p, e1->dest_idx)))
- continue;
- /* If we already have a PHI that has the two edge arguments are
- different, then return it is not a singleton for these PHIs. */
- if (phi)
- return NULL;
- phi = p;
- }
- return phi;
- }
- /* The core routine of conditional store replacement and normal
- phi optimizations. Both share much of the infrastructure in how
- to match applicable basic block patterns. DO_STORE_ELIM is true
- when we want to do conditional store replacement, false otherwise.
- DO_HOIST_LOADS is true when we want to hoist adjacent loads out
- of diamond control flow patterns, false otherwise. */
- static unsigned int
- tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
- {
- basic_block bb;
- basic_block *bb_order;
- unsigned n, i;
- bool cfgchanged = false;
- hash_set<tree> *nontrap = 0;
- if (do_store_elim)
- /* Calculate the set of non-trapping memory accesses. */
- nontrap = get_non_trapping ();
- /* Search every basic block for COND_EXPR we may be able to optimize.
- We walk the blocks in order that guarantees that a block with
- a single predecessor is processed before the predecessor.
- This ensures that we collapse inner ifs before visiting the
- outer ones, and also that we do not try to visit a removed
- block. */
- bb_order = single_pred_before_succ_order ();
- n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
- for (i = 0; i < n; i++)
- {
- gimple cond_stmt;
- gphi *phi;
- basic_block bb1, bb2;
- edge e1, e2;
- tree arg0, arg1;
- bb = bb_order[i];
- cond_stmt = last_stmt (bb);
- /* Check to see if the last statement is a GIMPLE_COND. */
- if (!cond_stmt
- || gimple_code (cond_stmt) != GIMPLE_COND)
- continue;
- e1 = EDGE_SUCC (bb, 0);
- bb1 = e1->dest;
- e2 = EDGE_SUCC (bb, 1);
- bb2 = e2->dest;
- /* We cannot do the optimization on abnormal edges. */
- if ((e1->flags & EDGE_ABNORMAL) != 0
- || (e2->flags & EDGE_ABNORMAL) != 0)
- continue;
- /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
- if (EDGE_COUNT (bb1->succs) == 0
- || bb2 == NULL
- || EDGE_COUNT (bb2->succs) == 0)
- continue;
- /* Find the bb which is the fall through to the other. */
- if (EDGE_SUCC (bb1, 0)->dest == bb2)
- ;
- else if (EDGE_SUCC (bb2, 0)->dest == bb1)
- {
- basic_block bb_tmp = bb1;
- edge e_tmp = e1;
- bb1 = bb2;
- bb2 = bb_tmp;
- e1 = e2;
- e2 = e_tmp;
- }
- else if (do_store_elim
- && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
- {
- basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
- if (!single_succ_p (bb1)
- || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
- || !single_succ_p (bb2)
- || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
- || EDGE_COUNT (bb3->preds) != 2)
- continue;
- if (cond_if_else_store_replacement (bb1, bb2, bb3))
- cfgchanged = true;
- continue;
- }
- else if (do_hoist_loads
- && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
- {
- basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
- if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
- && single_succ_p (bb1)
- && single_succ_p (bb2)
- && single_pred_p (bb1)
- && single_pred_p (bb2)
- && EDGE_COUNT (bb->succs) == 2
- && EDGE_COUNT (bb3->preds) == 2
- /* If one edge or the other is dominant, a conditional move
- is likely to perform worse than the well-predicted branch. */
- && !predictable_edge_p (EDGE_SUCC (bb, 0))
- && !predictable_edge_p (EDGE_SUCC (bb, 1)))
- hoist_adjacent_loads (bb, bb1, bb2, bb3);
- continue;
- }
- else
- continue;
- e1 = EDGE_SUCC (bb1, 0);
- /* Make sure that bb1 is just a fall through. */
- if (!single_succ_p (bb1)
- || (e1->flags & EDGE_FALLTHRU) == 0)
- continue;
- /* Also make sure that bb1 only have one predecessor and that it
- is bb. */
- if (!single_pred_p (bb1)
- || single_pred (bb1) != bb)
- continue;
- if (do_store_elim)
- {
- /* bb1 is the middle block, bb2 the join block, bb the split block,
- e1 the fallthrough edge from bb1 to bb2. We can't do the
- optimization if the join block has more than two predecessors. */
- if (EDGE_COUNT (bb2->preds) > 2)
- continue;
- if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
- cfgchanged = true;
- }
- else
- {
- gimple_seq phis = phi_nodes (bb2);
- gimple_stmt_iterator gsi;
- bool candorest = true;
- /* Value replacement can work with more than one PHI
- so try that first. */
- for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- phi = as_a <gphi *> (gsi_stmt (gsi));
- arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
- arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
- if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
- {
- candorest = false;
- cfgchanged = true;
- break;
- }
- }
- if (!candorest)
- continue;
- phi = single_non_singleton_phi_for_edges (phis, e1, e2);
- if (!phi)
- continue;
- arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
- arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
- /* Something is wrong if we cannot find the arguments in the PHI
- node. */
- gcc_assert (arg0 != NULL && arg1 != NULL);
- /* Do the replacement of conditional if it can be done. */
- if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
- cfgchanged = true;
- else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
- cfgchanged = true;
- else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
- cfgchanged = true;
- }
- }
- free (bb_order);
- if (do_store_elim)
- delete nontrap;
- /* If the CFG has changed, we should cleanup the CFG. */
- if (cfgchanged && do_store_elim)
- {
- /* In cond-store replacement we have added some loads on edges
- and new VOPS (as we moved the store, and created a load). */
- gsi_commit_edge_inserts ();
- return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
- }
- else if (cfgchanged)
- return TODO_cleanup_cfg;
- return 0;
- }
- /* Replace PHI node element whose edge is E in block BB with variable NEW.
- Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
- is known to have two edges, one of which must reach BB). */
- static void
- replace_phi_edge_with_variable (basic_block cond_block,
- edge e, gimple phi, tree new_tree)
- {
- basic_block bb = gimple_bb (phi);
- basic_block block_to_remove;
- gimple_stmt_iterator gsi;
- /* Change the PHI argument to new. */
- SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
- /* Remove the empty basic block. */
- if (EDGE_SUCC (cond_block, 0)->dest == bb)
- {
- EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
- EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
- EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
- EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
- block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
- }
- else
- {
- EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
- EDGE_SUCC (cond_block, 1)->flags
- &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
- EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
- EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
- block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
- }
- delete_basic_block (block_to_remove);
- /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
- gsi = gsi_last_bb (cond_block);
- gsi_remove (&gsi, true);
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
- cond_block->index,
- bb->index);
- }
- /* The function conditional_replacement does the main work of doing the
- conditional replacement. Return true if the replacement is done.
- Otherwise return false.
- BB is the basic block where the replacement is going to be done on. ARG0
- is argument 0 from PHI. Likewise for ARG1. */
- static bool
- conditional_replacement (basic_block cond_bb, basic_block middle_bb,
- edge e0, edge e1, gphi *phi,
- tree arg0, tree arg1)
- {
- tree result;
- gimple stmt;
- gassign *new_stmt;
- tree cond;
- gimple_stmt_iterator gsi;
- edge true_edge, false_edge;
- tree new_var, new_var2;
- bool neg;
- /* FIXME: Gimplification of complex type is too hard for now. */
- /* We aren't prepared to handle vectors either (and it is a question
- if it would be worthwhile anyway). */
- if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
- || POINTER_TYPE_P (TREE_TYPE (arg0)))
- || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
- || POINTER_TYPE_P (TREE_TYPE (arg1))))
- return false;
- /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
- convert it to the conditional. */
- if ((integer_zerop (arg0) && integer_onep (arg1))
- || (integer_zerop (arg1) && integer_onep (arg0)))
- neg = false;
- else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
- || (integer_zerop (arg1) && integer_all_onesp (arg0)))
- neg = true;
- else
- return false;
- if (!empty_block_p (middle_bb))
- return false;
- /* At this point we know we have a GIMPLE_COND with two successors.
- One successor is BB, the other successor is an empty block which
- falls through into BB.
- There is a single PHI node at the join point (BB) and its arguments
- are constants (0, 1) or (0, -1).
- So, given the condition COND, and the two PHI arguments, we can
- rewrite this PHI into non-branching code:
- dest = (COND) or dest = COND'
- We use the condition as-is if the argument associated with the
- true edge has the value one or the argument associated with the
- false edge as the value zero. Note that those conditions are not
- the same since only one of the outgoing edges from the GIMPLE_COND
- will directly reach BB and thus be associated with an argument. */
- stmt = last_stmt (cond_bb);
- result = PHI_RESULT (phi);
- /* To handle special cases like floating point comparison, it is easier and
- less error-prone to build a tree and gimplify it on the fly though it is
- less efficient. */
- cond = fold_build2_loc (gimple_location (stmt),
- gimple_cond_code (stmt), boolean_type_node,
- gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
- /* We need to know which is the true edge and which is the false
- edge so that we know when to invert the condition below. */
- extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
- if ((e0 == true_edge && integer_zerop (arg0))
- || (e0 == false_edge && !integer_zerop (arg0))
- || (e1 == true_edge && integer_zerop (arg1))
- || (e1 == false_edge && !integer_zerop (arg1)))
- cond = fold_build1_loc (gimple_location (stmt),
- TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
- if (neg)
- {
- cond = fold_convert_loc (gimple_location (stmt),
- TREE_TYPE (result), cond);
- cond = fold_build1_loc (gimple_location (stmt),
- NEGATE_EXPR, TREE_TYPE (cond), cond);
- }
- /* Insert our new statements at the end of conditional block before the
- COND_STMT. */
- gsi = gsi_for_stmt (stmt);
- new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
- GSI_SAME_STMT);
- if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
- {
- source_location locus_0, locus_1;
- new_var2 = make_ssa_name (TREE_TYPE (result));
- new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
- gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
- new_var = new_var2;
- /* Set the locus to the first argument, unless is doesn't have one. */
- locus_0 = gimple_phi_arg_location (phi, 0);
- locus_1 = gimple_phi_arg_location (phi, 1);
- if (locus_0 == UNKNOWN_LOCATION)
- locus_0 = locus_1;
- gimple_set_location (new_stmt, locus_0);
- }
- replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
- /* Note that we optimized this PHI. */
- return true;
- }
- /* Update *ARG which is defined in STMT so that it contains the
- computed value if that seems profitable. Return true if the
- statement is made dead by that rewriting. */
- static bool
- jump_function_from_stmt (tree *arg, gimple stmt)
- {
- enum tree_code code = gimple_assign_rhs_code (stmt);
- if (code == ADDR_EXPR)
- {
- /* For arg = &p->i transform it to p, if possible. */
- tree rhs1 = gimple_assign_rhs1 (stmt);
- HOST_WIDE_INT offset;
- tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
- &offset);
- if (tem
- && TREE_CODE (tem) == MEM_REF
- && (mem_ref_offset (tem) + offset) == 0)
- {
- *arg = TREE_OPERAND (tem, 0);
- return true;
- }
- }
- /* TODO: Much like IPA-CP jump-functions we want to handle constant
- additions symbolically here, and we'd need to update the comparison
- code that compares the arg + cst tuples in our caller. For now the
- code above exactly handles the VEC_BASE pattern from vec.h. */
- return false;
- }
- /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
- of the form SSA_NAME NE 0.
- If RHS is fed by a simple EQ_EXPR comparison of two values, see if
- the two input values of the EQ_EXPR match arg0 and arg1.
- If so update *code and return TRUE. Otherwise return FALSE. */
- static bool
- rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
- enum tree_code *code, const_tree rhs)
- {
- /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
- statement. */
- if (TREE_CODE (rhs) == SSA_NAME)
- {
- gimple def1 = SSA_NAME_DEF_STMT (rhs);
- /* Verify the defining statement has an EQ_EXPR on the RHS. */
- if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
- {
- /* Finally verify the source operands of the EQ_EXPR are equal
- to arg0 and arg1. */
- tree op0 = gimple_assign_rhs1 (def1);
- tree op1 = gimple_assign_rhs2 (def1);
- if ((operand_equal_for_phi_arg_p (arg0, op0)
- && operand_equal_for_phi_arg_p (arg1, op1))
- || (operand_equal_for_phi_arg_p (arg0, op1)
- && operand_equal_for_phi_arg_p (arg1, op0)))
- {
- /* We will perform the optimization. */
- *code = gimple_assign_rhs_code (def1);
- return true;
- }
- }
- }
- return false;
- }
- /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
- Also return TRUE if arg0/arg1 are equal to the source arguments of a
- an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
- Return FALSE otherwise. */
- static bool
- operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
- enum tree_code *code, gimple cond)
- {
- gimple def;
- tree lhs = gimple_cond_lhs (cond);
- tree rhs = gimple_cond_rhs (cond);
- if ((operand_equal_for_phi_arg_p (arg0, lhs)
- && operand_equal_for_phi_arg_p (arg1, rhs))
- || (operand_equal_for_phi_arg_p (arg1, lhs)
- && operand_equal_for_phi_arg_p (arg0, rhs)))
- return true;
- /* Now handle more complex case where we have an EQ comparison
- which feeds a BIT_AND_EXPR which feeds COND.
- First verify that COND is of the form SSA_NAME NE 0. */
- if (*code != NE_EXPR || !integer_zerop (rhs)
- || TREE_CODE (lhs) != SSA_NAME)
- return false;
- /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
- def = SSA_NAME_DEF_STMT (lhs);
- if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
- return false;
- /* Now verify arg0/arg1 correspond to the source arguments of an
- EQ comparison feeding the BIT_AND_EXPR. */
-
- tree tmp = gimple_assign_rhs1 (def);
- if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
- return true;
- tmp = gimple_assign_rhs2 (def);
- if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
- return true;
- return false;
- }
- /* Returns true if ARG is a neutral element for operation CODE
- on the RIGHT side. */
- static bool
- neutral_element_p (tree_code code, tree arg, bool right)
- {
- switch (code)
- {
- case PLUS_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- return integer_zerop (arg);
- case LROTATE_EXPR:
- case RROTATE_EXPR:
- case LSHIFT_EXPR:
- case RSHIFT_EXPR:
- case MINUS_EXPR:
- case POINTER_PLUS_EXPR:
- return right && integer_zerop (arg);
- case MULT_EXPR:
- return integer_onep (arg);
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case EXACT_DIV_EXPR:
- return right && integer_onep (arg);
- case BIT_AND_EXPR:
- return integer_all_onesp (arg);
- default:
- return false;
- }
- }
- /* Returns true if ARG is an absorbing element for operation CODE. */
- static bool
- absorbing_element_p (tree_code code, tree arg)
- {
- switch (code)
- {
- case BIT_IOR_EXPR:
- return integer_all_onesp (arg);
- case MULT_EXPR:
- case BIT_AND_EXPR:
- return integer_zerop (arg);
- default:
- return false;
- }
- }
- /* The function value_replacement does the main work of doing the value
- replacement. Return non-zero if the replacement is done. Otherwise return
- 0. If we remove the middle basic block, return 2.
- BB is the basic block where the replacement is going to be done on. ARG0
- is argument 0 from the PHI. Likewise for ARG1. */
- static int
- value_replacement (basic_block cond_bb, basic_block middle_bb,
- edge e0, edge e1, gimple phi,
- tree arg0, tree arg1)
- {
- gimple_stmt_iterator gsi;
- gimple cond;
- edge true_edge, false_edge;
- enum tree_code code;
- bool emtpy_or_with_defined_p = true;
- /* If the type says honor signed zeros we cannot do this
- optimization. */
- if (HONOR_SIGNED_ZEROS (arg1))
- return 0;
- /* If there is a statement in MIDDLE_BB that defines one of the PHI
- arguments, then adjust arg0 or arg1. */
- gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
- while (!gsi_end_p (gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- tree lhs;
- gsi_next_nondebug (&gsi);
- if (!is_gimple_assign (stmt))
- {
- emtpy_or_with_defined_p = false;
- continue;
- }
- /* Now try to adjust arg0 or arg1 according to the computation
- in the statement. */
- lhs = gimple_assign_lhs (stmt);
- if (!(lhs == arg0
- && jump_function_from_stmt (&arg0, stmt))
- || (lhs == arg1
- && jump_function_from_stmt (&arg1, stmt)))
- emtpy_or_with_defined_p = false;
- }
- cond = last_stmt (cond_bb);
- code = gimple_cond_code (cond);
- /* This transformation is only valid for equality comparisons. */
- if (code != NE_EXPR && code != EQ_EXPR)
- return 0;
- /* We need to know which is the true edge and which is the false
- edge so that we know if have abs or negative abs. */
- extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
- /* At this point we know we have a COND_EXPR with two successors.
- One successor is BB, the other successor is an empty block which
- falls through into BB.
- The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
- There is a single PHI node at the join point (BB) with two arguments.
- We now need to verify that the two arguments in the PHI node match
- the two arguments to the equality comparison. */
- if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
- {
- edge e;
- tree arg;
- /* For NE_EXPR, we want to build an assignment result = arg where
- arg is the PHI argument associated with the true edge. For
- EQ_EXPR we want the PHI argument associated with the false edge. */
- e = (code == NE_EXPR ? true_edge : false_edge);
- /* Unfortunately, E may not reach BB (it may instead have gone to
- OTHER_BLOCK). If that is the case, then we want the single outgoing
- edge from OTHER_BLOCK which reaches BB and represents the desired
- path from COND_BLOCK. */
- if (e->dest == middle_bb)
- e = single_succ_edge (e->dest);
- /* Now we know the incoming edge to BB that has the argument for the
- RHS of our new assignment statement. */
- if (e0 == e)
- arg = arg0;
- else
- arg = arg1;
- /* If the middle basic block was empty or is defining the
- PHI arguments and this is a single phi where the args are different
- for the edges e0 and e1 then we can remove the middle basic block. */
- if (emtpy_or_with_defined_p
- && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
- e0, e1) == phi)
- {
- replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
- /* Note that we optimized this PHI. */
- return 2;
- }
- else
- {
- /* Replace the PHI arguments with arg. */
- SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
- SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "PHI ");
- print_generic_expr (dump_file, gimple_phi_result (phi), 0);
- fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
- cond_bb->index);
- print_generic_expr (dump_file, arg, 0);
- fprintf (dump_file, ".\n");
- }
- return 1;
- }
- }
- /* Now optimize (x != 0) ? x + y : y to just y.
- The following condition is too restrictive, there can easily be another
- stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
- gimple assign = last_and_only_stmt (middle_bb);
- if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
- || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
- || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
- && !POINTER_TYPE_P (TREE_TYPE (arg0))))
- return 0;
- /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
- if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
- return 0;
- /* Only transform if it removes the condition. */
- if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
- return 0;
- /* Size-wise, this is always profitable. */
- if (optimize_bb_for_speed_p (cond_bb)
- /* The special case is useless if it has a low probability. */
- && profile_status_for_fn (cfun) != PROFILE_ABSENT
- && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
- /* If assign is cheap, there is no point avoiding it. */
- && estimate_num_insns (assign, &eni_time_weights)
- >= 3 * estimate_num_insns (cond, &eni_time_weights))
- return 0;
- tree lhs = gimple_assign_lhs (assign);
- tree rhs1 = gimple_assign_rhs1 (assign);
- tree rhs2 = gimple_assign_rhs2 (assign);
- enum tree_code code_def = gimple_assign_rhs_code (assign);
- tree cond_lhs = gimple_cond_lhs (cond);
- tree cond_rhs = gimple_cond_rhs (cond);
- if (((code == NE_EXPR && e1 == false_edge)
- || (code == EQ_EXPR && e1 == true_edge))
- && arg0 == lhs
- && ((arg1 == rhs1
- && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
- && neutral_element_p (code_def, cond_rhs, true))
- || (arg1 == rhs2
- && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
- && neutral_element_p (code_def, cond_rhs, false))
- || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
- && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
- || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
- && absorbing_element_p (code_def, cond_rhs))))
- {
- gsi = gsi_for_stmt (cond);
- if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
- {
- /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
- def-stmt in:
- if (n_5 != 0)
- goto <bb 3>;
- else
- goto <bb 4>;
- <bb 3>:
- # RANGE [0, 4294967294]
- u_6 = n_5 + 4294967295;
- <bb 4>:
- # u_3 = PHI <u_6(3), 4294967295(2)> */
- SSA_NAME_RANGE_INFO (lhs) = NULL;
- SSA_NAME_ANTI_RANGE_P (lhs) = 0;
- /* If available, we can use VR of phi result at least. */
- tree phires = gimple_phi_result (phi);
- struct range_info_def *phires_range_info
- = SSA_NAME_RANGE_INFO (phires);
- if (phires_range_info)
- duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
- phires_range_info);
- }
- gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
- gsi_move_before (&gsi_from, &gsi);
- replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
- return 2;
- }
- return 0;
- }
- /* The function minmax_replacement does the main work of doing the minmax
- replacement. Return true if the replacement is done. Otherwise return
- false.
- BB is the basic block where the replacement is going to be done on. ARG0
- is argument 0 from the PHI. Likewise for ARG1. */
- static bool
- minmax_replacement (basic_block cond_bb, basic_block middle_bb,
- edge e0, edge e1, gimple phi,
- tree arg0, tree arg1)
- {
- tree result, type;
- gcond *cond;
- gassign *new_stmt;
- edge true_edge, false_edge;
- enum tree_code cmp, minmax, ass_code;
- tree smaller, larger, arg_true, arg_false;
- gimple_stmt_iterator gsi, gsi_from;
- type = TREE_TYPE (PHI_RESULT (phi));
- /* The optimization may be unsafe due to NaNs. */
- if (HONOR_NANS (type))
- return false;
- cond = as_a <gcond *> (last_stmt (cond_bb));
- cmp = gimple_cond_code (cond);
- /* This transformation is only valid for order comparisons. Record which
- operand is smaller/larger if the result of the comparison is true. */
- if (cmp == LT_EXPR || cmp == LE_EXPR)
- {
- smaller = gimple_cond_lhs (cond);
- larger = gimple_cond_rhs (cond);
- }
- else if (cmp == GT_EXPR || cmp == GE_EXPR)
- {
- smaller = gimple_cond_rhs (cond);
- larger = gimple_cond_lhs (cond);
- }
- else
- return false;
- /* We need to know which is the true edge and which is the false
- edge so that we know if have abs or negative abs. */
- extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
- /* Forward the edges over the middle basic block. */
- if (true_edge->dest == middle_bb)
- true_edge = EDGE_SUCC (true_edge->dest, 0);
- if (false_edge->dest == middle_bb)
- false_edge = EDGE_SUCC (false_edge->dest, 0);
- if (true_edge == e0)
- {
- gcc_assert (false_edge == e1);
- arg_true = arg0;
- arg_false = arg1;
- }
- else
- {
- gcc_assert (false_edge == e0);
- gcc_assert (true_edge == e1);
- arg_true = arg1;
- arg_false = arg0;
- }
- if (empty_block_p (middle_bb))
- {
- if (operand_equal_for_phi_arg_p (arg_true, smaller)
- && operand_equal_for_phi_arg_p (arg_false, larger))
- {
- /* Case
- if (smaller < larger)
- rslt = smaller;
- else
- rslt = larger; */
- minmax = MIN_EXPR;
- }
- else if (operand_equal_for_phi_arg_p (arg_false, smaller)
- && operand_equal_for_phi_arg_p (arg_true, larger))
- minmax = MAX_EXPR;
- else
- return false;
- }
- else
- {
- /* Recognize the following case, assuming d <= u:
- if (a <= u)
- b = MAX (a, d);
- x = PHI <b, u>
- This is equivalent to
- b = MAX (a, d);
- x = MIN (b, u); */
- gimple assign = last_and_only_stmt (middle_bb);
- tree lhs, op0, op1, bound;
- if (!assign
- || gimple_code (assign) != GIMPLE_ASSIGN)
- return false;
- lhs = gimple_assign_lhs (assign);
- ass_code = gimple_assign_rhs_code (assign);
- if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
- return false;
- op0 = gimple_assign_rhs1 (assign);
- op1 = gimple_assign_rhs2 (assign);
- if (true_edge->src == middle_bb)
- {
- /* We got here if the condition is true, i.e., SMALLER < LARGER. */
- if (!operand_equal_for_phi_arg_p (lhs, arg_true))
- return false;
- if (operand_equal_for_phi_arg_p (arg_false, larger))
- {
- /* Case
- if (smaller < larger)
- {
- r' = MAX_EXPR (smaller, bound)
- }
- r = PHI <r', larger> --> to be turned to MIN_EXPR. */
- if (ass_code != MAX_EXPR)
- return false;
- minmax = MIN_EXPR;
- if (operand_equal_for_phi_arg_p (op0, smaller))
- bound = op1;
- else if (operand_equal_for_phi_arg_p (op1, smaller))
- bound = op0;
- else
- return false;
- /* We need BOUND <= LARGER. */
- if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
- bound, larger)))
- return false;
- }
- else if (operand_equal_for_phi_arg_p (arg_false, smaller))
- {
- /* Case
- if (smaller < larger)
- {
- r' = MIN_EXPR (larger, bound)
- }
- r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
- if (ass_code != MIN_EXPR)
- return false;
- minmax = MAX_EXPR;
- if (operand_equal_for_phi_arg_p (op0, larger))
- bound = op1;
- else if (operand_equal_for_phi_arg_p (op1, larger))
- bound = op0;
- else
- return false;
- /* We need BOUND >= SMALLER. */
- if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
- bound, smaller)))
- return false;
- }
- else
- return false;
- }
- else
- {
- /* We got here if the condition is false, i.e., SMALLER > LARGER. */
- if (!operand_equal_for_phi_arg_p (lhs, arg_false))
- return false;
- if (operand_equal_for_phi_arg_p (arg_true, larger))
- {
- /* Case
- if (smaller > larger)
- {
- r' = MIN_EXPR (smaller, bound)
- }
- r = PHI <r', larger> --> to be turned to MAX_EXPR. */
- if (ass_code != MIN_EXPR)
- return false;
- minmax = MAX_EXPR;
- if (operand_equal_for_phi_arg_p (op0, smaller))
- bound = op1;
- else if (operand_equal_for_phi_arg_p (op1, smaller))
- bound = op0;
- else
- return false;
- /* We need BOUND >= LARGER. */
- if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
- bound, larger)))
- return false;
- }
- else if (operand_equal_for_phi_arg_p (arg_true, smaller))
- {
- /* Case
- if (smaller > larger)
- {
- r' = MAX_EXPR (larger, bound)
- }
- r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
- if (ass_code != MAX_EXPR)
- return false;
- minmax = MIN_EXPR;
- if (operand_equal_for_phi_arg_p (op0, larger))
- bound = op1;
- else if (operand_equal_for_phi_arg_p (op1, larger))
- bound = op0;
- else
- return false;
- /* We need BOUND <= SMALLER. */
- if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
- bound, smaller)))
- return false;
- }
- else
- return false;
- }
- /* Move the statement from the middle block. */
- gsi = gsi_last_bb (cond_bb);
- gsi_from = gsi_last_nondebug_bb (middle_bb);
- gsi_move_before (&gsi_from, &gsi);
- }
- /* Emit the statement to compute min/max. */
- result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
- new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
- gsi = gsi_last_bb (cond_bb);
- gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
- replace_phi_edge_with_variable (cond_bb, e1, phi, result);
- return true;
- }
- /* The function absolute_replacement does the main work of doing the absolute
- replacement. Return true if the replacement is done. Otherwise return
- false.
- bb is the basic block where the replacement is going to be done on. arg0
- is argument 0 from the phi. Likewise for arg1. */
- static bool
- abs_replacement (basic_block cond_bb, basic_block middle_bb,
- edge e0 ATTRIBUTE_UNUSED, edge e1,
- gimple phi, tree arg0, tree arg1)
- {
- tree result;
- gassign *new_stmt;
- gimple cond;
- gimple_stmt_iterator gsi;
- edge true_edge, false_edge;
- gimple assign;
- edge e;
- tree rhs, lhs;
- bool negate;
- enum tree_code cond_code;
- /* If the type says honor signed zeros we cannot do this
- optimization. */
- if (HONOR_SIGNED_ZEROS (arg1))
- return false;
- /* OTHER_BLOCK must have only one executable statement which must have the
- form arg0 = -arg1 or arg1 = -arg0. */
- assign = last_and_only_stmt (middle_bb);
- /* If we did not find the proper negation assignment, then we can not
- optimize. */
- if (assign == NULL)
- return false;
- /* If we got here, then we have found the only executable statement
- in OTHER_BLOCK. If it is anything other than arg = -arg1 or
- arg1 = -arg0, then we can not optimize. */
- if (gimple_code (assign) != GIMPLE_ASSIGN)
- return false;
- lhs = gimple_assign_lhs (assign);
- if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
- return false;
- rhs = gimple_assign_rhs1 (assign);
- /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
- if (!(lhs == arg0 && rhs == arg1)
- && !(lhs == arg1 && rhs == arg0))
- return false;
- cond = last_stmt (cond_bb);
- result = PHI_RESULT (phi);
- /* Only relationals comparing arg[01] against zero are interesting. */
- cond_code = gimple_cond_code (cond);
- if (cond_code != GT_EXPR && cond_code != GE_EXPR
- && cond_code != LT_EXPR && cond_code != LE_EXPR)
- return false;
- /* Make sure the conditional is arg[01] OP y. */
- if (gimple_cond_lhs (cond) != rhs)
- return false;
- if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
- ? real_zerop (gimple_cond_rhs (cond))
- : integer_zerop (gimple_cond_rhs (cond)))
- ;
- else
- return false;
- /* We need to know which is the true edge and which is the false
- edge so that we know if have abs or negative abs. */
- extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
- /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
- will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
- the false edge goes to OTHER_BLOCK. */
- if (cond_code == GT_EXPR || cond_code == GE_EXPR)
- e = true_edge;
- else
- e = false_edge;
- if (e->dest == middle_bb)
- negate = true;
- else
- negate = false;
- result = duplicate_ssa_name (result, NULL);
- if (negate)
- lhs = make_ssa_name (TREE_TYPE (result));
- else
- lhs = result;
- /* Build the modify expression with abs expression. */
- new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
- gsi = gsi_last_bb (cond_bb);
- gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
- if (negate)
- {
- /* Get the right GSI. We want to insert after the recently
- added ABS_EXPR statement (which we know is the first statement
- in the block. */
- new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
- gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
- }
- replace_phi_edge_with_variable (cond_bb, e1, phi, result);
- /* Note that we optimized this PHI. */
- return true;
- }
- /* Auxiliary functions to determine the set of memory accesses which
- can't trap because they are preceded by accesses to the same memory
- portion. We do that for MEM_REFs, so we only need to track
- the SSA_NAME of the pointer indirectly referenced. The algorithm
- simply is a walk over all instructions in dominator order. When
- we see an MEM_REF we determine if we've already seen a same
- ref anywhere up to the root of the dominator tree. If we do the
- current access can't trap. If we don't see any dominating access
- the current access might trap, but might also make later accesses
- non-trapping, so we remember it. We need to be careful with loads
- or stores, for instance a load might not trap, while a store would,
- so if we see a dominating read access this doesn't mean that a later
- write access would not trap. Hence we also need to differentiate the
- type of access(es) seen.
- ??? We currently are very conservative and assume that a load might
- trap even if a store doesn't (write-only memory). This probably is
- overly conservative. */
- /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
- through it was seen, which would constitute a no-trap region for
- same accesses. */
- struct name_to_bb
- {
- unsigned int ssa_name_ver;
- unsigned int phase;
- bool store;
- HOST_WIDE_INT offset, size;
- basic_block bb;
- };
- /* Hashtable helpers. */
- struct ssa_names_hasher : typed_free_remove <name_to_bb>
- {
- typedef name_to_bb value_type;
- typedef name_to_bb compare_type;
- static inline hashval_t hash (const value_type *);
- static inline bool equal (const value_type *, const compare_type *);
- };
- /* Used for quick clearing of the hash-table when we see calls.
- Hash entries with phase < nt_call_phase are invalid. */
- static unsigned int nt_call_phase;
- /* The hash function. */
- inline hashval_t
- ssa_names_hasher::hash (const value_type *n)
- {
- return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
- ^ (n->offset << 6) ^ (n->size << 3);
- }
- /* The equality function of *P1 and *P2. */
- inline bool
- ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
- {
- return n1->ssa_name_ver == n2->ssa_name_ver
- && n1->store == n2->store
- && n1->offset == n2->offset
- && n1->size == n2->size;
- }
- class nontrapping_dom_walker : public dom_walker
- {
- public:
- nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
- : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
- virtual void before_dom_children (basic_block);
- virtual void after_dom_children (basic_block);
- private:
- /* We see the expression EXP in basic block BB. If it's an interesting
- expression (an MEM_REF through an SSA_NAME) possibly insert the
- expression into the set NONTRAP or the hash table of seen expressions.
- STORE is true if this expression is on the LHS, otherwise it's on
- the RHS. */
- void add_or_mark_expr (basic_block, tree, bool);
- hash_set<tree> *m_nontrapping;
- /* The hash table for remembering what we've seen. */
- hash_table<ssa_names_hasher> m_seen_ssa_names;
- };
- /* Called by walk_dominator_tree, when entering the block BB. */
- void
- nontrapping_dom_walker::before_dom_children (basic_block bb)
- {
- edge e;
- edge_iterator ei;
- gimple_stmt_iterator gsi;
- /* If we haven't seen all our predecessors, clear the hash-table. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- if ((((size_t)e->src->aux) & 2) == 0)
- {
- nt_call_phase++;
- break;
- }
- /* Mark this BB as being on the path to dominator root and as visited. */
- bb->aux = (void*)(1 | 2);
- /* And walk the statements in order. */
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
- nt_call_phase++;
- else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
- {
- add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
- add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
- }
- }
- }
- /* Called by walk_dominator_tree, when basic block BB is exited. */
- void
- nontrapping_dom_walker::after_dom_children (basic_block bb)
- {
- /* This BB isn't on the path to dominator root anymore. */
- bb->aux = (void*)2;
- }
- /* We see the expression EXP in basic block BB. If it's an interesting
- expression (an MEM_REF through an SSA_NAME) possibly insert the
- expression into the set NONTRAP or the hash table of seen expressions.
- STORE is true if this expression is on the LHS, otherwise it's on
- the RHS. */
- void
- nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
- {
- HOST_WIDE_INT size;
- if (TREE_CODE (exp) == MEM_REF
- && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
- && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
- && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
- {
- tree name = TREE_OPERAND (exp, 0);
- struct name_to_bb map;
- name_to_bb **slot;
- struct name_to_bb *n2bb;
- basic_block found_bb = 0;
- /* Try to find the last seen MEM_REF through the same
- SSA_NAME, which can trap. */
- map.ssa_name_ver = SSA_NAME_VERSION (name);
- map.phase = 0;
- map.bb = 0;
- map.store = store;
- map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
- map.size = size;
- slot = m_seen_ssa_names.find_slot (&map, INSERT);
- n2bb = *slot;
- if (n2bb && n2bb->phase >= nt_call_phase)
- found_bb = n2bb->bb;
- /* If we've found a trapping MEM_REF, _and_ it dominates EXP
- (it's in a basic block on the path from us to the dominator root)
- then we can't trap. */
- if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
- {
- m_nontrapping->add (exp);
- }
- else
- {
- /* EXP might trap, so insert it into the hash table. */
- if (n2bb)
- {
- n2bb->phase = nt_call_phase;
- n2bb->bb = bb;
- }
- else
- {
- n2bb = XNEW (struct name_to_bb);
- n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
- n2bb->phase = nt_call_phase;
- n2bb->bb = bb;
- n2bb->store = store;
- n2bb->offset = map.offset;
- n2bb->size = size;
- *slot = n2bb;
- }
- }
- }
- }
- /* This is the entry point of gathering non trapping memory accesses.
- It will do a dominator walk over the whole function, and it will
- make use of the bb->aux pointers. It returns a set of trees
- (the MEM_REFs itself) which can't trap. */
- static hash_set<tree> *
- get_non_trapping (void)
- {
- nt_call_phase = 0;
- hash_set<tree> *nontrap = new hash_set<tree>;
- /* We're going to do a dominator walk, so ensure that we have
- dominance information. */
- calculate_dominance_info (CDI_DOMINATORS);
- nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
- .walk (cfun->cfg->x_entry_block_ptr);
- clear_aux_for_blocks ();
- return nontrap;
- }
- /* Do the main work of conditional store replacement. We already know
- that the recognized pattern looks like so:
- split:
- if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
- MIDDLE_BB:
- something
- fallthrough (edge E0)
- JOIN_BB:
- some more
- We check that MIDDLE_BB contains only one store, that that store
- doesn't trap (not via NOTRAP, but via checking if an access to the same
- memory location dominates us) and that the store has a "simple" RHS. */
- static bool
- cond_store_replacement (basic_block middle_bb, basic_block join_bb,
- edge e0, edge e1, hash_set<tree> *nontrap)
- {
- gimple assign = last_and_only_stmt (middle_bb);
- tree lhs, rhs, name, name2;
- gphi *newphi;
- gassign *new_stmt;
- gimple_stmt_iterator gsi;
- source_location locus;
- /* Check if middle_bb contains of only one store. */
- if (!assign
- || !gimple_assign_single_p (assign)
- || gimple_has_volatile_ops (assign))
- return false;
- locus = gimple_location (assign);
- lhs = gimple_assign_lhs (assign);
- rhs = gimple_assign_rhs1 (assign);
- if (TREE_CODE (lhs) != MEM_REF
- || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
- || !is_gimple_reg_type (TREE_TYPE (lhs)))
- return false;
- /* Prove that we can move the store down. We could also check
- TREE_THIS_NOTRAP here, but in that case we also could move stores,
- whose value is not available readily, which we want to avoid. */
- if (!nontrap->contains (lhs))
- return false;
- /* Now we've checked the constraints, so do the transformation:
- 1) Remove the single store. */
- gsi = gsi_for_stmt (assign);
- unlink_stmt_vdef (assign);
- gsi_remove (&gsi, true);
- release_defs (assign);
- /* 2) Insert a load from the memory of the store to the temporary
- on the edge which did not contain the store. */
- lhs = unshare_expr (lhs);
- name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
- new_stmt = gimple_build_assign (name, lhs);
- gimple_set_location (new_stmt, locus);
- gsi_insert_on_edge (e1, new_stmt);
- /* 3) Create a PHI node at the join block, with one argument
- holding the old RHS, and the other holding the temporary
- where we stored the old memory contents. */
- name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
- newphi = create_phi_node (name2, join_bb);
- add_phi_arg (newphi, rhs, e0, locus);
- add_phi_arg (newphi, name, e1, locus);
- lhs = unshare_expr (lhs);
- new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
- /* 4) Insert that PHI node. */
- gsi = gsi_after_labels (join_bb);
- if (gsi_end_p (gsi))
- {
- gsi = gsi_last_bb (join_bb);
- gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
- }
- else
- gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
- return true;
- }
- /* Do the main work of conditional store replacement. */
- static bool
- cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
- basic_block join_bb, gimple then_assign,
- gimple else_assign)
- {
- tree lhs_base, lhs, then_rhs, else_rhs, name;
- source_location then_locus, else_locus;
- gimple_stmt_iterator gsi;
- gphi *newphi;
- gassign *new_stmt;
- if (then_assign == NULL
- || !gimple_assign_single_p (then_assign)
- || gimple_clobber_p (then_assign)
- || gimple_has_volatile_ops (then_assign)
- || else_assign == NULL
- || !gimple_assign_single_p (else_assign)
- || gimple_clobber_p (else_assign)
- || gimple_has_volatile_ops (else_assign))
- return false;
- lhs = gimple_assign_lhs (then_assign);
- if (!is_gimple_reg_type (TREE_TYPE (lhs))
- || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
- return false;
- lhs_base = get_base_address (lhs);
- if (lhs_base == NULL_TREE
- || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
- return false;
- then_rhs = gimple_assign_rhs1 (then_assign);
- else_rhs = gimple_assign_rhs1 (else_assign);
- then_locus = gimple_location (then_assign);
- else_locus = gimple_location (else_assign);
- /* Now we've checked the constraints, so do the transformation:
- 1) Remove the stores. */
- gsi = gsi_for_stmt (then_assign);
- unlink_stmt_vdef (then_assign);
- gsi_remove (&gsi, true);
- release_defs (then_assign);
- gsi = gsi_for_stmt (else_assign);
- unlink_stmt_vdef (else_assign);
- gsi_remove (&gsi, true);
- release_defs (else_assign);
- /* 2) Create a PHI node at the join block, with one argument
- holding the old RHS, and the other holding the temporary
- where we stored the old memory contents. */
- name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
- newphi = create_phi_node (name, join_bb);
- add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
- add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
- new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
- /* 3) Insert that PHI node. */
- gsi = gsi_after_labels (join_bb);
- if (gsi_end_p (gsi))
- {
- gsi = gsi_last_bb (join_bb);
- gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
- }
- else
- gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
- return true;
- }
- /* Conditional store replacement. We already know
- that the recognized pattern looks like so:
- split:
- if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
- THEN_BB:
- ...
- X = Y;
- ...
- goto JOIN_BB;
- ELSE_BB:
- ...
- X = Z;
- ...
- fallthrough (edge E0)
- JOIN_BB:
- some more
- We check that it is safe to sink the store to JOIN_BB by verifying that
- there are no read-after-write or write-after-write dependencies in
- THEN_BB and ELSE_BB. */
- static bool
- cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
- basic_block join_bb)
- {
- gimple then_assign = last_and_only_stmt (then_bb);
- gimple else_assign = last_and_only_stmt (else_bb);
- vec<data_reference_p> then_datarefs, else_datarefs;
- vec<ddr_p> then_ddrs, else_ddrs;
- gimple then_store, else_store;
- bool found, ok = false, res;
- struct data_dependence_relation *ddr;
- data_reference_p then_dr, else_dr;
- int i, j;
- tree then_lhs, else_lhs;
- basic_block blocks[3];
- if (MAX_STORES_TO_SINK == 0)
- return false;
- /* Handle the case with single statement in THEN_BB and ELSE_BB. */
- if (then_assign && else_assign)
- return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
- then_assign, else_assign);
- /* Find data references. */
- then_datarefs.create (1);
- else_datarefs.create (1);
- if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
- == chrec_dont_know)
- || !then_datarefs.length ()
- || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
- == chrec_dont_know)
- || !else_datarefs.length ())
- {
- free_data_refs (then_datarefs);
- free_data_refs (else_datarefs);
- return false;
- }
- /* Find pairs of stores with equal LHS. */
- auto_vec<gimple, 1> then_stores, else_stores;
- FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
- {
- if (DR_IS_READ (then_dr))
- continue;
- then_store = DR_STMT (then_dr);
- then_lhs = gimple_get_lhs (then_store);
- if (then_lhs == NULL_TREE)
- continue;
- found = false;
- FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
- {
- if (DR_IS_READ (else_dr))
- continue;
- else_store = DR_STMT (else_dr);
- else_lhs = gimple_get_lhs (else_store);
- if (else_lhs == NULL_TREE)
- continue;
- if (operand_equal_p (then_lhs, else_lhs, 0))
- {
- found = true;
- break;
- }
- }
- if (!found)
- continue;
- then_stores.safe_push (then_store);
- else_stores.safe_push (else_store);
- }
- /* No pairs of stores found. */
- if (!then_stores.length ()
- || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
- {
- free_data_refs (then_datarefs);
- free_data_refs (else_datarefs);
- return false;
- }
- /* Compute and check data dependencies in both basic blocks. */
- then_ddrs.create (1);
- else_ddrs.create (1);
- if (!compute_all_dependences (then_datarefs, &then_ddrs,
- vNULL, false)
- || !compute_all_dependences (else_datarefs, &else_ddrs,
- vNULL, false))
- {
- free_dependence_relations (then_ddrs);
- free_dependence_relations (else_ddrs);
- free_data_refs (then_datarefs);
- free_data_refs (else_datarefs);
- return false;
- }
- blocks[0] = then_bb;
- blocks[1] = else_bb;
- blocks[2] = join_bb;
- renumber_gimple_stmt_uids_in_blocks (blocks, 3);
- /* Check that there are no read-after-write or write-after-write dependencies
- in THEN_BB. */
- FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
- {
- struct data_reference *dra = DDR_A (ddr);
- struct data_reference *drb = DDR_B (ddr);
- if (DDR_ARE_DEPENDENT (ddr) != chrec_known
- && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
- && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
- || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
- && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
- || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
- {
- free_dependence_relations (then_ddrs);
- free_dependence_relations (else_ddrs);
- free_data_refs (then_datarefs);
- free_data_refs (else_datarefs);
- return false;
- }
- }
- /* Check that there are no read-after-write or write-after-write dependencies
- in ELSE_BB. */
- FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
- {
- struct data_reference *dra = DDR_A (ddr);
- struct data_reference *drb = DDR_B (ddr);
- if (DDR_ARE_DEPENDENT (ddr) != chrec_known
- && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
- && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
- || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
- && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
- || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
- {
- free_dependence_relations (then_ddrs);
- free_dependence_relations (else_ddrs);
- free_data_refs (then_datarefs);
- free_data_refs (else_datarefs);
- return false;
- }
- }
- /* Sink stores with same LHS. */
- FOR_EACH_VEC_ELT (then_stores, i, then_store)
- {
- else_store = else_stores[i];
- res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
- then_store, else_store);
- ok = ok || res;
- }
- free_dependence_relations (then_ddrs);
- free_dependence_relations (else_ddrs);
- free_data_refs (then_datarefs);
- free_data_refs (else_datarefs);
- return ok;
- }
- /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
- static bool
- local_mem_dependence (gimple stmt, basic_block bb)
- {
- tree vuse = gimple_vuse (stmt);
- gimple def;
- if (!vuse)
- return false;
- def = SSA_NAME_DEF_STMT (vuse);
- return (def && gimple_bb (def) == bb);
- }
- /* Given a "diamond" control-flow pattern where BB0 tests a condition,
- BB1 and BB2 are "then" and "else" blocks dependent on this test,
- and BB3 rejoins control flow following BB1 and BB2, look for
- opportunities to hoist loads as follows. If BB3 contains a PHI of
- two loads, one each occurring in BB1 and BB2, and the loads are
- provably of adjacent fields in the same structure, then move both
- loads into BB0. Of course this can only be done if there are no
- dependencies preventing such motion.
- One of the hoisted loads will always be speculative, so the
- transformation is currently conservative:
- - The fields must be strictly adjacent.
- - The two fields must occupy a single memory block that is
- guaranteed to not cross a page boundary.
- The last is difficult to prove, as such memory blocks should be
- aligned on the minimum of the stack alignment boundary and the
- alignment guaranteed by heap allocation interfaces. Thus we rely
- on a parameter for the alignment value.
- Provided a good value is used for the last case, the first
- restriction could possibly be relaxed. */
- static void
- hoist_adjacent_loads (basic_block bb0, basic_block bb1,
- basic_block bb2, basic_block bb3)
- {
- int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
- unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
- gphi_iterator gsi;
- /* Walk the phis in bb3 looking for an opportunity. We are looking
- for phis of two SSA names, one each of which is defined in bb1 and
- bb2. */
- for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gphi *phi_stmt = gsi.phi ();
- gimple def1, def2, defswap;
- tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
- tree tree_offset1, tree_offset2, tree_size2, next;
- int offset1, offset2, size2;
- unsigned align1;
- gimple_stmt_iterator gsi2;
- basic_block bb_for_def1, bb_for_def2;
- if (gimple_phi_num_args (phi_stmt) != 2
- || virtual_operand_p (gimple_phi_result (phi_stmt)))
- continue;
- arg1 = gimple_phi_arg_def (phi_stmt, 0);
- arg2 = gimple_phi_arg_def (phi_stmt, 1);
- if (TREE_CODE (arg1) != SSA_NAME
- || TREE_CODE (arg2) != SSA_NAME
- || SSA_NAME_IS_DEFAULT_DEF (arg1)
- || SSA_NAME_IS_DEFAULT_DEF (arg2))
- continue;
- def1 = SSA_NAME_DEF_STMT (arg1);
- def2 = SSA_NAME_DEF_STMT (arg2);
- if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
- && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
- continue;
- /* Check the mode of the arguments to be sure a conditional move
- can be generated for it. */
- if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
- == CODE_FOR_nothing)
- continue;
- /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
- if (!gimple_assign_single_p (def1)
- || !gimple_assign_single_p (def2)
- || gimple_has_volatile_ops (def1)
- || gimple_has_volatile_ops (def2))
- continue;
- ref1 = gimple_assign_rhs1 (def1);
- ref2 = gimple_assign_rhs1 (def2);
- if (TREE_CODE (ref1) != COMPONENT_REF
- || TREE_CODE (ref2) != COMPONENT_REF)
- continue;
- /* The zeroth operand of the two component references must be
- identical. It is not sufficient to compare get_base_address of
- the two references, because this could allow for different
- elements of the same array in the two trees. It is not safe to
- assume that the existence of one array element implies the
- existence of a different one. */
- if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
- continue;
- field1 = TREE_OPERAND (ref1, 1);
- field2 = TREE_OPERAND (ref2, 1);
- /* Check for field adjacency, and ensure field1 comes first. */
- for (next = DECL_CHAIN (field1);
- next && TREE_CODE (next) != FIELD_DECL;
- next = DECL_CHAIN (next))
- ;
- if (next != field2)
- {
- for (next = DECL_CHAIN (field2);
- next && TREE_CODE (next) != FIELD_DECL;
- next = DECL_CHAIN (next))
- ;
- if (next != field1)
- continue;
- fieldswap = field1;
- field1 = field2;
- field2 = fieldswap;
- defswap = def1;
- def1 = def2;
- def2 = defswap;
- }
- bb_for_def1 = gimple_bb (def1);
- bb_for_def2 = gimple_bb (def2);
- /* Check for proper alignment of the first field. */
- tree_offset1 = bit_position (field1);
- tree_offset2 = bit_position (field2);
- tree_size2 = DECL_SIZE (field2);
- if (!tree_fits_uhwi_p (tree_offset1)
- || !tree_fits_uhwi_p (tree_offset2)
- || !tree_fits_uhwi_p (tree_size2))
- continue;
- offset1 = tree_to_uhwi (tree_offset1);
- offset2 = tree_to_uhwi (tree_offset2);
- size2 = tree_to_uhwi (tree_size2);
- align1 = DECL_ALIGN (field1) % param_align_bits;
- if (offset1 % BITS_PER_UNIT != 0)
- continue;
- /* For profitability, the two field references should fit within
- a single cache line. */
- if (align1 + offset2 - offset1 + size2 > param_align_bits)
- continue;
- /* The two expressions cannot be dependent upon vdefs defined
- in bb1/bb2. */
- if (local_mem_dependence (def1, bb_for_def1)
- || local_mem_dependence (def2, bb_for_def2))
- continue;
- /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
- bb0. We hoist the first one first so that a cache miss is handled
- efficiently regardless of hardware cache-fill policy. */
- gsi2 = gsi_for_stmt (def1);
- gsi_move_to_bb_end (&gsi2, bb0);
- gsi2 = gsi_for_stmt (def2);
- gsi_move_to_bb_end (&gsi2, bb0);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "\nHoisting adjacent loads from %d and %d into %d: \n",
- bb_for_def1->index, bb_for_def2->index, bb0->index);
- print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
- print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
- }
- }
- }
- /* Determine whether we should attempt to hoist adjacent loads out of
- diamond patterns in pass_phiopt. Always hoist loads if
- -fhoist-adjacent-loads is specified and the target machine has
- both a conditional move instruction and a defined cache line size. */
- static bool
- gate_hoist_loads (void)
- {
- return (flag_hoist_adjacent_loads == 1
- && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
- && HAVE_conditional_move);
- }
- /* This pass tries to replaces an if-then-else block with an
- assignment. We have four kinds of transformations. Some of these
- transformations are also performed by the ifcvt RTL optimizer.
- Conditional Replacement
- -----------------------
- This transformation, implemented in conditional_replacement,
- replaces
- bb0:
- if (cond) goto bb2; else goto bb1;
- bb1:
- bb2:
- x = PHI <0 (bb1), 1 (bb0), ...>;
- with
- bb0:
- x' = cond;
- goto bb2;
- bb2:
- x = PHI <x' (bb0), ...>;
- We remove bb1 as it becomes unreachable. This occurs often due to
- gimplification of conditionals.
- Value Replacement
- -----------------
- This transformation, implemented in value_replacement, replaces
- bb0:
- if (a != b) goto bb2; else goto bb1;
- bb1:
- bb2:
- x = PHI <a (bb1), b (bb0), ...>;
- with
- bb0:
- bb2:
- x = PHI <b (bb0), ...>;
- This opportunity can sometimes occur as a result of other
- optimizations.
- Another case caught by value replacement looks like this:
- bb0:
- t1 = a == CONST;
- t2 = b > c;
- t3 = t1 & t2;
- if (t3 != 0) goto bb1; else goto bb2;
- bb1:
- bb2:
- x = PHI (CONST, a)
- Gets replaced with:
- bb0:
- bb2:
- t1 = a == CONST;
- t2 = b > c;
- t3 = t1 & t2;
- x = a;
- ABS Replacement
- ---------------
- This transformation, implemented in abs_replacement, replaces
- bb0:
- if (a >= 0) goto bb2; else goto bb1;
- bb1:
- x = -a;
- bb2:
- x = PHI <x (bb1), a (bb0), ...>;
- with
- bb0:
- x' = ABS_EXPR< a >;
- bb2:
- x = PHI <x' (bb0), ...>;
- MIN/MAX Replacement
- -------------------
- This transformation, minmax_replacement replaces
- bb0:
- if (a <= b) goto bb2; else goto bb1;
- bb1:
- bb2:
- x = PHI <b (bb1), a (bb0), ...>;
- with
- bb0:
- x' = MIN_EXPR (a, b)
- bb2:
- x = PHI <x' (bb0), ...>;
- A similar transformation is done for MAX_EXPR.
- This pass also performs a fifth transformation of a slightly different
- flavor.
- Adjacent Load Hoisting
- ----------------------
- This transformation replaces
- bb0:
- if (...) goto bb2; else goto bb1;
- bb1:
- x1 = (<expr>).field1;
- goto bb3;
- bb2:
- x2 = (<expr>).field2;
- bb3:
- # x = PHI <x1, x2>;
- with
- bb0:
- x1 = (<expr>).field1;
- x2 = (<expr>).field2;
- if (...) goto bb2; else goto bb1;
- bb1:
- goto bb3;
- bb2:
- bb3:
- # x = PHI <x1, x2>;
- The purpose of this transformation is to enable generation of conditional
- move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
- the loads is speculative, the transformation is restricted to very
- specific cases to avoid introducing a page fault. We are looking for
- the common idiom:
- if (...)
- x = y->left;
- else
- x = y->right;
- where left and right are typically adjacent pointers in a tree structure. */
- namespace {
- const pass_data pass_data_phiopt =
- {
- GIMPLE_PASS, /* type */
- "phiopt", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- TV_TREE_PHIOPT, /* tv_id */
- ( PROP_cfg | PROP_ssa ), /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0, /* todo_flags_finish */
- };
- class pass_phiopt : public gimple_opt_pass
- {
- public:
- pass_phiopt (gcc::context *ctxt)
- : gimple_opt_pass (pass_data_phiopt, ctxt)
- {}
- /* opt_pass methods: */
- opt_pass * clone () { return new pass_phiopt (m_ctxt); }
- virtual bool gate (function *) { return flag_ssa_phiopt; }
- virtual unsigned int execute (function *)
- {
- return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
- }
- }; // class pass_phiopt
- } // anon namespace
- gimple_opt_pass *
- make_pass_phiopt (gcc::context *ctxt)
- {
- return new pass_phiopt (ctxt);
- }
- namespace {
- const pass_data pass_data_cselim =
- {
- GIMPLE_PASS, /* type */
- "cselim", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- TV_TREE_PHIOPT, /* tv_id */
- ( PROP_cfg | PROP_ssa ), /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0, /* todo_flags_finish */
- };
- class pass_cselim : public gimple_opt_pass
- {
- public:
- pass_cselim (gcc::context *ctxt)
- : gimple_opt_pass (pass_data_cselim, ctxt)
- {}
- /* opt_pass methods: */
- virtual bool gate (function *) { return flag_tree_cselim; }
- virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
- }; // class pass_cselim
- } // anon namespace
- gimple_opt_pass *
- make_pass_cselim (gcc::context *ctxt)
- {
- return new pass_cselim (ctxt);
- }
|