12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259 |
- /* Convert a program in SSA form into Normal form.
- Copyright (C) 2004-2015 Free Software Foundation, Inc.
- Contributed by Andrew Macleod <amacleod@redhat.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
- GCC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "tm.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "tree.h"
- #include "fold-const.h"
- #include "stor-layout.h"
- #include "predict.h"
- #include "hard-reg-set.h"
- #include "function.h"
- #include "dominance.h"
- #include "cfg.h"
- #include "cfgrtl.h"
- #include "cfganal.h"
- #include "basic-block.h"
- #include "gimple-pretty-print.h"
- #include "bitmap.h"
- #include "sbitmap.h"
- #include "tree-ssa-alias.h"
- #include "internal-fn.h"
- #include "tree-eh.h"
- #include "gimple-expr.h"
- #include "is-a.h"
- #include "gimple.h"
- #include "gimple-iterator.h"
- #include "gimple-ssa.h"
- #include "tree-cfg.h"
- #include "tree-phinodes.h"
- #include "ssa-iterators.h"
- #include "stringpool.h"
- #include "tree-ssanames.h"
- #include "dumpfile.h"
- #include "diagnostic-core.h"
- #include "tree-ssa-live.h"
- #include "tree-ssa-ter.h"
- #include "tree-ssa-coalesce.h"
- #include "tree-outof-ssa.h"
- /* FIXME: A lot of code here deals with expanding to RTL. All that code
- should be in cfgexpand.c. */
- #include "hashtab.h"
- #include "rtl.h"
- #include "flags.h"
- #include "statistics.h"
- #include "real.h"
- #include "fixed-value.h"
- #include "insn-config.h"
- #include "expmed.h"
- #include "dojump.h"
- #include "explow.h"
- #include "calls.h"
- #include "emit-rtl.h"
- #include "varasm.h"
- #include "stmt.h"
- #include "expr.h"
- /* Return TRUE if expression STMT is suitable for replacement. */
- bool
- ssa_is_replaceable_p (gimple stmt)
- {
- use_operand_p use_p;
- tree def;
- gimple use_stmt;
- /* Only consider modify stmts. */
- if (!is_gimple_assign (stmt))
- return false;
- /* If the statement may throw an exception, it cannot be replaced. */
- if (stmt_could_throw_p (stmt))
- return false;
- /* Punt if there is more than 1 def. */
- def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
- if (!def)
- return false;
- /* Only consider definitions which have a single use. */
- if (!single_imm_use (def, &use_p, &use_stmt))
- return false;
- /* Used in this block, but at the TOP of the block, not the end. */
- if (gimple_code (use_stmt) == GIMPLE_PHI)
- return false;
- /* There must be no VDEFs. */
- if (gimple_vdef (stmt))
- return false;
- /* Float expressions must go through memory if float-store is on. */
- if (flag_float_store
- && FLOAT_TYPE_P (gimple_expr_type (stmt)))
- return false;
- /* An assignment with a register variable on the RHS is not
- replaceable. */
- if (gimple_assign_rhs_code (stmt) == VAR_DECL
- && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
- return false;
- /* No function calls can be replaced. */
- if (is_gimple_call (stmt))
- return false;
- /* Leave any stmt with volatile operands alone as well. */
- if (gimple_has_volatile_ops (stmt))
- return false;
- return true;
- }
- /* Used to hold all the components required to do SSA PHI elimination.
- The node and pred/succ list is a simple linear list of nodes and
- edges represented as pairs of nodes.
- The predecessor and successor list: Nodes are entered in pairs, where
- [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
- predecessors, all the odd elements are successors.
- Rationale:
- When implemented as bitmaps, very large programs SSA->Normal times were
- being dominated by clearing the interference graph.
- Typically this list of edges is extremely small since it only includes
- PHI results and uses from a single edge which have not coalesced with
- each other. This means that no virtual PHI nodes are included, and
- empirical evidence suggests that the number of edges rarely exceed
- 3, and in a bootstrap of GCC, the maximum size encountered was 7.
- This also limits the number of possible nodes that are involved to
- rarely more than 6, and in the bootstrap of gcc, the maximum number
- of nodes encountered was 12. */
- typedef struct _elim_graph {
- /* Size of the elimination vectors. */
- int size;
- /* List of nodes in the elimination graph. */
- vec<int> nodes;
- /* The predecessor and successor edge list. */
- vec<int> edge_list;
- /* Source locus on each edge */
- vec<source_location> edge_locus;
- /* Visited vector. */
- sbitmap visited;
- /* Stack for visited nodes. */
- vec<int> stack;
- /* The variable partition map. */
- var_map map;
- /* Edge being eliminated by this graph. */
- edge e;
- /* List of constant copies to emit. These are pushed on in pairs. */
- vec<int> const_dests;
- vec<tree> const_copies;
- /* Source locations for any constant copies. */
- vec<source_location> copy_locus;
- } *elim_graph;
- /* For an edge E find out a good source location to associate with
- instructions inserted on edge E. If E has an implicit goto set,
- use its location. Otherwise search instructions in predecessors
- of E for a location, and use that one. That makes sense because
- we insert on edges for PHI nodes, and effects of PHIs happen on
- the end of the predecessor conceptually. */
- static void
- set_location_for_edge (edge e)
- {
- if (e->goto_locus)
- {
- set_curr_insn_location (e->goto_locus);
- }
- else
- {
- basic_block bb = e->src;
- gimple_stmt_iterator gsi;
- do
- {
- for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- if (is_gimple_debug (stmt))
- continue;
- if (gimple_has_location (stmt) || gimple_block (stmt))
- {
- set_curr_insn_location (gimple_location (stmt));
- return;
- }
- }
- /* Nothing found in this basic block. Make a half-assed attempt
- to continue with another block. */
- if (single_pred_p (bb))
- bb = single_pred (bb);
- else
- bb = e->src;
- }
- while (bb != e->src);
- }
- }
- /* Emit insns to copy SRC into DEST converting SRC if necessary. As
- SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
- which we deduce the size to copy in that case. */
- static inline rtx
- emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
- {
- rtx seq;
- start_sequence ();
- if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
- src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
- if (GET_MODE (src) == BLKmode)
- {
- gcc_assert (GET_MODE (dest) == BLKmode);
- emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
- }
- else
- emit_move_insn (dest, src);
- seq = get_insns ();
- end_sequence ();
- return seq;
- }
- /* Insert a copy instruction from partition SRC to DEST onto edge E. */
- static void
- insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
- {
- tree var;
- rtx seq;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "Inserting a partition copy on edge BB%d->BB%d :"
- "PART.%d = PART.%d",
- e->src->index,
- e->dest->index, dest, src);
- fprintf (dump_file, "\n");
- }
- gcc_assert (SA.partition_to_pseudo[dest]);
- gcc_assert (SA.partition_to_pseudo[src]);
- set_location_for_edge (e);
- /* If a locus is provided, override the default. */
- if (locus)
- set_curr_insn_location (locus);
- var = partition_to_var (SA.map, src);
- seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
- copy_rtx (SA.partition_to_pseudo[src]),
- TYPE_UNSIGNED (TREE_TYPE (var)),
- var);
- insert_insn_on_edge (seq, e);
- }
- /* Insert a copy instruction from expression SRC to partition DEST
- onto edge E. */
- static void
- insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
- {
- rtx dest_rtx, seq, x;
- machine_mode dest_mode, src_mode;
- int unsignedp;
- tree var;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
- e->src->index,
- e->dest->index, dest);
- print_generic_expr (dump_file, src, TDF_SLIM);
- fprintf (dump_file, "\n");
- }
- dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
- gcc_assert (dest_rtx);
- set_location_for_edge (e);
- /* If a locus is provided, override the default. */
- if (locus)
- set_curr_insn_location (locus);
- start_sequence ();
- var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
- src_mode = TYPE_MODE (TREE_TYPE (src));
- dest_mode = GET_MODE (dest_rtx);
- gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
- gcc_assert (!REG_P (dest_rtx)
- || dest_mode == promote_decl_mode (var, &unsignedp));
- if (src_mode != dest_mode)
- {
- x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
- x = convert_modes (dest_mode, src_mode, x, unsignedp);
- }
- else if (src_mode == BLKmode)
- {
- x = dest_rtx;
- store_expr (src, x, 0, false);
- }
- else
- x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
- if (x != dest_rtx)
- emit_move_insn (dest_rtx, x);
- seq = get_insns ();
- end_sequence ();
- insert_insn_on_edge (seq, e);
- }
- /* Insert a copy instruction from RTL expression SRC to partition DEST
- onto edge E. */
- static void
- insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
- source_location locus)
- {
- rtx seq;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
- e->src->index,
- e->dest->index, dest);
- print_simple_rtl (dump_file, src);
- fprintf (dump_file, "\n");
- }
- gcc_assert (SA.partition_to_pseudo[dest]);
- set_location_for_edge (e);
- /* If a locus is provided, override the default. */
- if (locus)
- set_curr_insn_location (locus);
- /* We give the destination as sizeexp in case src/dest are BLKmode
- mems. Usually we give the source. As we result from SSA names
- the left and right size should be the same (and no WITH_SIZE_EXPR
- involved), so it doesn't matter. */
- seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
- src, unsignedsrcp,
- partition_to_var (SA.map, dest));
- insert_insn_on_edge (seq, e);
- }
- /* Insert a copy instruction from partition SRC to RTL lvalue DEST
- onto edge E. */
- static void
- insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
- {
- tree var;
- rtx seq;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "Inserting a temp copy on edge BB%d->BB%d : ",
- e->src->index,
- e->dest->index);
- print_simple_rtl (dump_file, dest);
- fprintf (dump_file, "= PART.%d\n", src);
- }
- gcc_assert (SA.partition_to_pseudo[src]);
- set_location_for_edge (e);
- /* If a locus is provided, override the default. */
- if (locus)
- set_curr_insn_location (locus);
- var = partition_to_var (SA.map, src);
- seq = emit_partition_copy (dest,
- copy_rtx (SA.partition_to_pseudo[src]),
- TYPE_UNSIGNED (TREE_TYPE (var)),
- var);
- insert_insn_on_edge (seq, e);
- }
- /* Create an elimination graph with SIZE nodes and associated data
- structures. */
- static elim_graph
- new_elim_graph (int size)
- {
- elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
- g->nodes.create (30);
- g->const_dests.create (20);
- g->const_copies.create (20);
- g->copy_locus.create (10);
- g->edge_list.create (20);
- g->edge_locus.create (10);
- g->stack.create (30);
- g->visited = sbitmap_alloc (size);
- return g;
- }
- /* Empty elimination graph G. */
- static inline void
- clear_elim_graph (elim_graph g)
- {
- g->nodes.truncate (0);
- g->edge_list.truncate (0);
- g->edge_locus.truncate (0);
- }
- /* Delete elimination graph G. */
- static inline void
- delete_elim_graph (elim_graph g)
- {
- sbitmap_free (g->visited);
- g->stack.release ();
- g->edge_list.release ();
- g->const_copies.release ();
- g->const_dests.release ();
- g->nodes.release ();
- g->copy_locus.release ();
- g->edge_locus.release ();
- free (g);
- }
- /* Return the number of nodes in graph G. */
- static inline int
- elim_graph_size (elim_graph g)
- {
- return g->nodes.length ();
- }
- /* Add NODE to graph G, if it doesn't exist already. */
- static inline void
- elim_graph_add_node (elim_graph g, int node)
- {
- int x;
- int t;
- FOR_EACH_VEC_ELT (g->nodes, x, t)
- if (t == node)
- return;
- g->nodes.safe_push (node);
- }
- /* Add the edge PRED->SUCC to graph G. */
- static inline void
- elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
- {
- g->edge_list.safe_push (pred);
- g->edge_list.safe_push (succ);
- g->edge_locus.safe_push (locus);
- }
- /* Remove an edge from graph G for which NODE is the predecessor, and
- return the successor node. -1 is returned if there is no such edge. */
- static inline int
- elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
- {
- int y;
- unsigned x;
- for (x = 0; x < g->edge_list.length (); x += 2)
- if (g->edge_list[x] == node)
- {
- g->edge_list[x] = -1;
- y = g->edge_list[x + 1];
- g->edge_list[x + 1] = -1;
- *locus = g->edge_locus[x / 2];
- g->edge_locus[x / 2] = UNKNOWN_LOCATION;
- return y;
- }
- *locus = UNKNOWN_LOCATION;
- return -1;
- }
- /* Find all the nodes in GRAPH which are successors to NODE in the
- edge list. VAR will hold the partition number found. CODE is the
- code fragment executed for every node found. */
- #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
- do { \
- unsigned x_; \
- int y_; \
- for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
- { \
- y_ = (GRAPH)->edge_list[x_]; \
- if (y_ != (NODE)) \
- continue; \
- (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
- (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
- CODE; \
- } \
- } while (0)
- /* Find all the nodes which are predecessors of NODE in the edge list for
- GRAPH. VAR will hold the partition number found. CODE is the
- code fragment executed for every node found. */
- #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
- do { \
- unsigned x_; \
- int y_; \
- for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
- { \
- y_ = (GRAPH)->edge_list[x_ + 1]; \
- if (y_ != (NODE)) \
- continue; \
- (void) ((VAR) = (GRAPH)->edge_list[x_]); \
- (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
- CODE; \
- } \
- } while (0)
- /* Add T to elimination graph G. */
- static inline void
- eliminate_name (elim_graph g, int T)
- {
- elim_graph_add_node (g, T);
- }
- /* Return true if this phi argument T should have a copy queued when using
- var_map MAP. PHI nodes should contain only ssa_names and invariants. A
- test for ssa_name is definitely simpler, but don't let invalid contents
- slip through in the meantime. */
- static inline bool
- queue_phi_copy_p (var_map map, tree t)
- {
- if (TREE_CODE (t) == SSA_NAME)
- {
- if (var_to_partition (map, t) == NO_PARTITION)
- return true;
- return false;
- }
- gcc_checking_assert (is_gimple_min_invariant (t));
- return true;
- }
- /* Build elimination graph G for basic block BB on incoming PHI edge
- G->e. */
- static void
- eliminate_build (elim_graph g)
- {
- tree Ti;
- int p0, pi;
- gphi_iterator gsi;
- clear_elim_graph (g);
- for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
- source_location locus;
- p0 = var_to_partition (g->map, gimple_phi_result (phi));
- /* Ignore results which are not in partitions. */
- if (p0 == NO_PARTITION)
- continue;
- Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
- locus = gimple_phi_arg_location_from_edge (phi, g->e);
- /* If this argument is a constant, or a SSA_NAME which is being
- left in SSA form, just queue a copy to be emitted on this
- edge. */
- if (queue_phi_copy_p (g->map, Ti))
- {
- /* Save constant copies until all other copies have been emitted
- on this edge. */
- g->const_dests.safe_push (p0);
- g->const_copies.safe_push (Ti);
- g->copy_locus.safe_push (locus);
- }
- else
- {
- pi = var_to_partition (g->map, Ti);
- if (p0 != pi)
- {
- eliminate_name (g, p0);
- eliminate_name (g, pi);
- elim_graph_add_edge (g, p0, pi, locus);
- }
- }
- }
- }
- /* Push successors of T onto the elimination stack for G. */
- static void
- elim_forward (elim_graph g, int T)
- {
- int S;
- source_location locus;
- bitmap_set_bit (g->visited, T);
- FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
- {
- if (!bitmap_bit_p (g->visited, S))
- elim_forward (g, S);
- });
- g->stack.safe_push (T);
- }
- /* Return 1 if there unvisited predecessors of T in graph G. */
- static int
- elim_unvisited_predecessor (elim_graph g, int T)
- {
- int P;
- source_location locus;
- FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
- {
- if (!bitmap_bit_p (g->visited, P))
- return 1;
- });
- return 0;
- }
- /* Process predecessors first, and insert a copy. */
- static void
- elim_backward (elim_graph g, int T)
- {
- int P;
- source_location locus;
- bitmap_set_bit (g->visited, T);
- FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
- {
- if (!bitmap_bit_p (g->visited, P))
- {
- elim_backward (g, P);
- insert_partition_copy_on_edge (g->e, P, T, locus);
- }
- });
- }
- /* Allocate a new pseudo register usable for storing values sitting
- in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
- static rtx
- get_temp_reg (tree name)
- {
- tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
- tree type = TREE_TYPE (var);
- int unsignedp;
- machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
- rtx x = gen_reg_rtx (reg_mode);
- if (POINTER_TYPE_P (type))
- mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
- return x;
- }
- /* Insert required copies for T in graph G. Check for a strongly connected
- region, and create a temporary to break the cycle if one is found. */
- static void
- elim_create (elim_graph g, int T)
- {
- int P, S;
- source_location locus;
- if (elim_unvisited_predecessor (g, T))
- {
- tree var = partition_to_var (g->map, T);
- rtx U = get_temp_reg (var);
- int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
- insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
- FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
- {
- if (!bitmap_bit_p (g->visited, P))
- {
- elim_backward (g, P);
- insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
- }
- });
- }
- else
- {
- S = elim_graph_remove_succ_edge (g, T, &locus);
- if (S != -1)
- {
- bitmap_set_bit (g->visited, T);
- insert_partition_copy_on_edge (g->e, T, S, locus);
- }
- }
- }
- /* Eliminate all the phi nodes on edge E in graph G. */
- static void
- eliminate_phi (edge e, elim_graph g)
- {
- int x;
- gcc_assert (g->const_copies.length () == 0);
- gcc_assert (g->copy_locus.length () == 0);
- /* Abnormal edges already have everything coalesced. */
- if (e->flags & EDGE_ABNORMAL)
- return;
- g->e = e;
- eliminate_build (g);
- if (elim_graph_size (g) != 0)
- {
- int part;
- bitmap_clear (g->visited);
- g->stack.truncate (0);
- FOR_EACH_VEC_ELT (g->nodes, x, part)
- {
- if (!bitmap_bit_p (g->visited, part))
- elim_forward (g, part);
- }
- bitmap_clear (g->visited);
- while (g->stack.length () > 0)
- {
- x = g->stack.pop ();
- if (!bitmap_bit_p (g->visited, x))
- elim_create (g, x);
- }
- }
- /* If there are any pending constant copies, issue them now. */
- while (g->const_copies.length () > 0)
- {
- int dest;
- tree src;
- source_location locus;
- src = g->const_copies.pop ();
- dest = g->const_dests.pop ();
- locus = g->copy_locus.pop ();
- insert_value_copy_on_edge (e, dest, src, locus);
- }
- }
- /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
- check to see if this allows another PHI node to be removed. */
- static void
- remove_gimple_phi_args (gphi *phi)
- {
- use_operand_p arg_p;
- ssa_op_iter iter;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Removing Dead PHI definition: ");
- print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
- }
- FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
- {
- tree arg = USE_FROM_PTR (arg_p);
- if (TREE_CODE (arg) == SSA_NAME)
- {
- /* Remove the reference to the existing argument. */
- SET_USE (arg_p, NULL_TREE);
- if (has_zero_uses (arg))
- {
- gimple stmt;
- gimple_stmt_iterator gsi;
- stmt = SSA_NAME_DEF_STMT (arg);
- /* Also remove the def if it is a PHI node. */
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- remove_gimple_phi_args (as_a <gphi *> (stmt));
- gsi = gsi_for_stmt (stmt);
- remove_phi_node (&gsi, true);
- }
- }
- }
- }
- }
- /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
- static void
- eliminate_useless_phis (void)
- {
- basic_block bb;
- gphi_iterator gsi;
- tree result;
- FOR_EACH_BB_FN (bb, cfun)
- {
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
- {
- gphi *phi = gsi.phi ();
- result = gimple_phi_result (phi);
- if (virtual_operand_p (result))
- {
- #ifdef ENABLE_CHECKING
- size_t i;
- /* There should be no arguments which are not virtual, or the
- results will be incorrect. */
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- {
- tree arg = PHI_ARG_DEF (phi, i);
- if (TREE_CODE (arg) == SSA_NAME
- && !virtual_operand_p (arg))
- {
- fprintf (stderr, "Argument of PHI is not virtual (");
- print_generic_expr (stderr, arg, TDF_SLIM);
- fprintf (stderr, "), but the result is :");
- print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
- internal_error ("SSA corruption");
- }
- }
- #endif
- remove_phi_node (&gsi, true);
- }
- else
- {
- /* Also remove real PHIs with no uses. */
- if (has_zero_uses (result))
- {
- remove_gimple_phi_args (phi);
- remove_phi_node (&gsi, true);
- }
- else
- gsi_next (&gsi);
- }
- }
- }
- }
- /* This function will rewrite the current program using the variable mapping
- found in MAP. If the replacement vector VALUES is provided, any
- occurrences of partitions with non-null entries in the vector will be
- replaced with the expression in the vector instead of its mapped
- variable. */
- static void
- rewrite_trees (var_map map ATTRIBUTE_UNUSED)
- {
- #ifdef ENABLE_CHECKING
- basic_block bb;
- /* Search for PHIs where the destination has no partition, but one
- or more arguments has a partition. This should not happen and can
- create incorrect code. */
- FOR_EACH_BB_FN (bb, cfun)
- {
- gphi_iterator gsi;
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
- tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
- if (T0 == NULL_TREE)
- {
- size_t i;
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- {
- tree arg = PHI_ARG_DEF (phi, i);
- if (TREE_CODE (arg) == SSA_NAME
- && var_to_partition (map, arg) != NO_PARTITION)
- {
- fprintf (stderr, "Argument of PHI is in a partition :(");
- print_generic_expr (stderr, arg, TDF_SLIM);
- fprintf (stderr, "), but the result is not :");
- print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
- internal_error ("SSA corruption");
- }
- }
- }
- }
- }
- #endif
- }
- /* Given the out-of-ssa info object SA (with prepared partitions)
- eliminate all phi nodes in all basic blocks. Afterwards no
- basic block will have phi nodes anymore and there are possibly
- some RTL instructions inserted on edges. */
- void
- expand_phi_nodes (struct ssaexpand *sa)
- {
- basic_block bb;
- elim_graph g = new_elim_graph (sa->map->num_partitions);
- g->map = sa->map;
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
- EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
- if (!gimple_seq_empty_p (phi_nodes (bb)))
- {
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, bb->preds)
- eliminate_phi (e, g);
- set_phi_nodes (bb, NULL);
- /* We can't redirect EH edges in RTL land, so we need to do this
- here. Redirection happens only when splitting is necessary,
- which it is only for critical edges, normally. For EH edges
- it might also be necessary when the successor has more than
- one predecessor. In that case the edge is either required to
- be fallthru (which EH edges aren't), or the predecessor needs
- to end with a jump (which again, isn't the case with EH edges).
- Hence, split all EH edges on which we inserted instructions
- and whose successor has multiple predecessors. */
- for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
- {
- if (e->insns.r && (e->flags & EDGE_EH)
- && !single_pred_p (e->dest))
- {
- rtx_insn *insns = e->insns.r;
- basic_block bb;
- e->insns.r = NULL;
- bb = split_edge (e);
- single_pred_edge (bb)->insns.r = insns;
- }
- else
- ei_next (&ei);
- }
- }
- delete_elim_graph (g);
- }
- /* Remove the ssa-names in the current function and translate them into normal
- compiler variables. PERFORM_TER is true if Temporary Expression Replacement
- should also be used. */
- static void
- remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
- {
- bitmap values = NULL;
- var_map map;
- unsigned i;
- map = coalesce_ssa_name ();
- /* Return to viewing the variable list as just all reference variables after
- coalescing has been performed. */
- partition_view_normal (map, false);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "After Coalescing:\n");
- dump_var_map (dump_file, map);
- }
- if (perform_ter)
- {
- values = find_replaceable_exprs (map);
- if (values && dump_file && (dump_flags & TDF_DETAILS))
- dump_replaceable_exprs (dump_file, values);
- }
- rewrite_trees (map);
- sa->map = map;
- sa->values = values;
- sa->partition_has_default_def = BITMAP_ALLOC (NULL);
- for (i = 1; i < num_ssa_names; i++)
- {
- tree t = ssa_name (i);
- if (t && SSA_NAME_IS_DEFAULT_DEF (t))
- {
- int p = var_to_partition (map, t);
- if (p != NO_PARTITION)
- bitmap_set_bit (sa->partition_has_default_def, p);
- }
- }
- }
- /* If not already done so for basic block BB, assign increasing uids
- to each of its instructions. */
- static void
- maybe_renumber_stmts_bb (basic_block bb)
- {
- unsigned i = 0;
- gimple_stmt_iterator gsi;
- if (!bb->aux)
- return;
- bb->aux = NULL;
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- gimple_set_uid (stmt, i);
- i++;
- }
- }
- /* Return true if we can determine that the SSA_NAMEs RESULT (a result
- of a PHI node) and ARG (one of its arguments) conflict. Return false
- otherwise, also when we simply aren't sure. */
- static bool
- trivially_conflicts_p (basic_block bb, tree result, tree arg)
- {
- use_operand_p use;
- imm_use_iterator imm_iter;
- gimple defa = SSA_NAME_DEF_STMT (arg);
- /* If ARG isn't defined in the same block it's too complicated for
- our little mind. */
- if (gimple_bb (defa) != bb)
- return false;
- FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
- {
- gimple use_stmt = USE_STMT (use);
- if (is_gimple_debug (use_stmt))
- continue;
- /* Now, if there's a use of RESULT that lies outside this basic block,
- then there surely is a conflict with ARG. */
- if (gimple_bb (use_stmt) != bb)
- return true;
- if (gimple_code (use_stmt) == GIMPLE_PHI)
- continue;
- /* The use now is in a real stmt of BB, so if ARG was defined
- in a PHI node (like RESULT) both conflict. */
- if (gimple_code (defa) == GIMPLE_PHI)
- return true;
- maybe_renumber_stmts_bb (bb);
- /* If the use of RESULT occurs after the definition of ARG,
- the two conflict too. */
- if (gimple_uid (defa) < gimple_uid (use_stmt))
- return true;
- }
- return false;
- }
- /* Search every PHI node for arguments associated with backedges which
- we can trivially determine will need a copy (the argument is either
- not an SSA_NAME or the argument has a different underlying variable
- than the PHI result).
- Insert a copy from the PHI argument to a new destination at the
- end of the block with the backedge to the top of the loop. Update
- the PHI argument to reference this new destination. */
- static void
- insert_backedge_copies (void)
- {
- basic_block bb;
- gphi_iterator gsi;
- mark_dfs_back_edges ();
- FOR_EACH_BB_FN (bb, cfun)
- {
- /* Mark block as possibly needing calculation of UIDs. */
- bb->aux = &bb->aux;
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
- tree result = gimple_phi_result (phi);
- size_t i;
- if (virtual_operand_p (result))
- continue;
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- {
- tree arg = gimple_phi_arg_def (phi, i);
- edge e = gimple_phi_arg_edge (phi, i);
- /* If the argument is not an SSA_NAME, then we will need a
- constant initialization. If the argument is an SSA_NAME with
- a different underlying variable then a copy statement will be
- needed. */
- if ((e->flags & EDGE_DFS_BACK)
- && (TREE_CODE (arg) != SSA_NAME
- || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
- || trivially_conflicts_p (bb, result, arg)))
- {
- tree name;
- gassign *stmt;
- gimple last = NULL;
- gimple_stmt_iterator gsi2;
- gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
- if (!gsi_end_p (gsi2))
- last = gsi_stmt (gsi2);
- /* In theory the only way we ought to get back to the
- start of a loop should be with a COND_EXPR or GOTO_EXPR.
- However, better safe than sorry.
- If the block ends with a control statement or
- something that might throw, then we have to
- insert this assignment before the last
- statement. Else insert it after the last statement. */
- if (last && stmt_ends_bb_p (last))
- {
- /* If the last statement in the block is the definition
- site of the PHI argument, then we can't insert
- anything after it. */
- if (TREE_CODE (arg) == SSA_NAME
- && SSA_NAME_DEF_STMT (arg) == last)
- continue;
- }
- /* Create a new instance of the underlying variable of the
- PHI result. */
- name = copy_ssa_name (result);
- stmt = gimple_build_assign (name,
- gimple_phi_arg_def (phi, i));
- /* copy location if present. */
- if (gimple_phi_arg_has_location (phi, i))
- gimple_set_location (stmt,
- gimple_phi_arg_location (phi, i));
- /* Insert the new statement into the block and update
- the PHI node. */
- if (last && stmt_ends_bb_p (last))
- gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
- else
- gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
- SET_PHI_ARG_DEF (phi, i, name);
- }
- }
- }
- /* Unmark this block again. */
- bb->aux = NULL;
- }
- }
- /* Free all memory associated with going out of SSA form. SA is
- the outof-SSA info object. */
- void
- finish_out_of_ssa (struct ssaexpand *sa)
- {
- free (sa->partition_to_pseudo);
- if (sa->values)
- BITMAP_FREE (sa->values);
- delete_var_map (sa->map);
- BITMAP_FREE (sa->partition_has_default_def);
- memset (sa, 0, sizeof *sa);
- }
- /* Take the current function out of SSA form, translating PHIs as described in
- R. Morgan, ``Building an Optimizing Compiler'',
- Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
- unsigned int
- rewrite_out_of_ssa (struct ssaexpand *sa)
- {
- /* If elimination of a PHI requires inserting a copy on a backedge,
- then we will have to split the backedge which has numerous
- undesirable performance effects.
- A significant number of such cases can be handled here by inserting
- copies into the loop itself. */
- insert_backedge_copies ();
- /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
- eliminate_useless_phis ();
- if (dump_file && (dump_flags & TDF_DETAILS))
- gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
- remove_ssa_form (flag_tree_ter, sa);
- if (dump_file && (dump_flags & TDF_DETAILS))
- gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
- return 0;
- }
|