123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124 |
- /* real.c - software floating point emulation.
- Copyright (C) 1993-2015 Free Software Foundation, Inc.
- Contributed by Stephen L. Moshier (moshier@world.std.com).
- Re-written by Richard Henderson <rth@redhat.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "tm.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "tree.h"
- #include "diagnostic-core.h"
- #include "real.h"
- #include "realmpfr.h"
- #include "tm_p.h"
- #include "dfp.h"
- #include "wide-int.h"
- #include "rtl.h"
- #include "options.h"
- /* The floating point model used internally is not exactly IEEE 754
- compliant, and close to the description in the ISO C99 standard,
- section 5.2.4.2.2 Characteristics of floating types.
- Specifically
- x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
- where
- s = sign (+- 1)
- b = base or radix, here always 2
- e = exponent
- p = precision (the number of base-b digits in the significand)
- f_k = the digits of the significand.
- We differ from typical IEEE 754 encodings in that the entire
- significand is fractional. Normalized significands are in the
- range [0.5, 1.0).
- A requirement of the model is that P be larger than the largest
- supported target floating-point type by at least 2 bits. This gives
- us proper rounding when we truncate to the target type. In addition,
- E must be large enough to hold the smallest supported denormal number
- in a normalized form.
- Both of these requirements are easily satisfied. The largest target
- significand is 113 bits; we store at least 160. The smallest
- denormal number fits in 17 exponent bits; we store 26. */
- /* Used to classify two numbers simultaneously. */
- #define CLASS2(A, B) ((A) << 2 | (B))
- #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
- #error "Some constant folding done by hand to avoid shift count warnings"
- #endif
- static void get_zero (REAL_VALUE_TYPE *, int);
- static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
- static void get_canonical_snan (REAL_VALUE_TYPE *, int);
- static void get_inf (REAL_VALUE_TYPE *, int);
- static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *, unsigned int);
- static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- unsigned int);
- static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- unsigned int);
- static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
- static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
- static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *, int);
- static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
- static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
- static int cmp_significand_0 (const REAL_VALUE_TYPE *);
- static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
- static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
- static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
- static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
- static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
- static void normalize (REAL_VALUE_TYPE *);
- static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *, int);
- static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
- static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
- static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
- static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
- static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
- static void decimal_from_integer (REAL_VALUE_TYPE *);
- static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
- size_t);
- static const REAL_VALUE_TYPE * ten_to_ptwo (int);
- static const REAL_VALUE_TYPE * ten_to_mptwo (int);
- static const REAL_VALUE_TYPE * real_digit (int);
- static void times_pten (REAL_VALUE_TYPE *, int);
- static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
- /* Initialize R with a positive zero. */
- static inline void
- get_zero (REAL_VALUE_TYPE *r, int sign)
- {
- memset (r, 0, sizeof (*r));
- r->sign = sign;
- }
- /* Initialize R with the canonical quiet NaN. */
- static inline void
- get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
- {
- memset (r, 0, sizeof (*r));
- r->cl = rvc_nan;
- r->sign = sign;
- r->canonical = 1;
- }
- static inline void
- get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
- {
- memset (r, 0, sizeof (*r));
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = 1;
- r->canonical = 1;
- }
- static inline void
- get_inf (REAL_VALUE_TYPE *r, int sign)
- {
- memset (r, 0, sizeof (*r));
- r->cl = rvc_inf;
- r->sign = sign;
- }
- /* Right-shift the significand of A by N bits; put the result in the
- significand of R. If any one bits are shifted out, return true. */
- static bool
- sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- unsigned int n)
- {
- unsigned long sticky = 0;
- unsigned int i, ofs = 0;
- if (n >= HOST_BITS_PER_LONG)
- {
- for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
- sticky |= a->sig[i];
- n &= HOST_BITS_PER_LONG - 1;
- }
- if (n != 0)
- {
- sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
- for (i = 0; i < SIGSZ; ++i)
- {
- r->sig[i]
- = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
- | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
- << (HOST_BITS_PER_LONG - n)));
- }
- }
- else
- {
- for (i = 0; ofs + i < SIGSZ; ++i)
- r->sig[i] = a->sig[ofs + i];
- for (; i < SIGSZ; ++i)
- r->sig[i] = 0;
- }
- return sticky != 0;
- }
- /* Right-shift the significand of A by N bits; put the result in the
- significand of R. */
- static void
- rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- unsigned int n)
- {
- unsigned int i, ofs = n / HOST_BITS_PER_LONG;
- n &= HOST_BITS_PER_LONG - 1;
- if (n != 0)
- {
- for (i = 0; i < SIGSZ; ++i)
- {
- r->sig[i]
- = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
- | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
- << (HOST_BITS_PER_LONG - n)));
- }
- }
- else
- {
- for (i = 0; ofs + i < SIGSZ; ++i)
- r->sig[i] = a->sig[ofs + i];
- for (; i < SIGSZ; ++i)
- r->sig[i] = 0;
- }
- }
- /* Left-shift the significand of A by N bits; put the result in the
- significand of R. */
- static void
- lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- unsigned int n)
- {
- unsigned int i, ofs = n / HOST_BITS_PER_LONG;
- n &= HOST_BITS_PER_LONG - 1;
- if (n == 0)
- {
- for (i = 0; ofs + i < SIGSZ; ++i)
- r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
- for (; i < SIGSZ; ++i)
- r->sig[SIGSZ-1-i] = 0;
- }
- else
- for (i = 0; i < SIGSZ; ++i)
- {
- r->sig[SIGSZ-1-i]
- = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
- | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
- >> (HOST_BITS_PER_LONG - n)));
- }
- }
- /* Likewise, but N is specialized to 1. */
- static inline void
- lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
- {
- unsigned int i;
- for (i = SIGSZ - 1; i > 0; --i)
- r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
- r->sig[0] = a->sig[0] << 1;
- }
- /* Add the significands of A and B, placing the result in R. Return
- true if there was carry out of the most significant word. */
- static inline bool
- add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
- {
- bool carry = false;
- int i;
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long ai = a->sig[i];
- unsigned long ri = ai + b->sig[i];
- if (carry)
- {
- carry = ri < ai;
- carry |= ++ri == 0;
- }
- else
- carry = ri < ai;
- r->sig[i] = ri;
- }
- return carry;
- }
- /* Subtract the significands of A and B, placing the result in R. CARRY is
- true if there's a borrow incoming to the least significant word.
- Return true if there was borrow out of the most significant word. */
- static inline bool
- sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b, int carry)
- {
- int i;
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long ai = a->sig[i];
- unsigned long ri = ai - b->sig[i];
- if (carry)
- {
- carry = ri > ai;
- carry |= ~--ri == 0;
- }
- else
- carry = ri > ai;
- r->sig[i] = ri;
- }
- return carry;
- }
- /* Negate the significand A, placing the result in R. */
- static inline void
- neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
- {
- bool carry = true;
- int i;
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long ri, ai = a->sig[i];
- if (carry)
- {
- if (ai)
- {
- ri = -ai;
- carry = false;
- }
- else
- ri = ai;
- }
- else
- ri = ~ai;
- r->sig[i] = ri;
- }
- }
- /* Compare significands. Return tri-state vs zero. */
- static inline int
- cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
- {
- int i;
- for (i = SIGSZ - 1; i >= 0; --i)
- {
- unsigned long ai = a->sig[i];
- unsigned long bi = b->sig[i];
- if (ai > bi)
- return 1;
- if (ai < bi)
- return -1;
- }
- return 0;
- }
- /* Return true if A is nonzero. */
- static inline int
- cmp_significand_0 (const REAL_VALUE_TYPE *a)
- {
- int i;
- for (i = SIGSZ - 1; i >= 0; --i)
- if (a->sig[i])
- return 1;
- return 0;
- }
- /* Set bit N of the significand of R. */
- static inline void
- set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
- {
- r->sig[n / HOST_BITS_PER_LONG]
- |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
- }
- /* Clear bit N of the significand of R. */
- static inline void
- clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
- {
- r->sig[n / HOST_BITS_PER_LONG]
- &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
- }
- /* Test bit N of the significand of R. */
- static inline bool
- test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
- {
- /* ??? Compiler bug here if we return this expression directly.
- The conversion to bool strips the "&1" and we wind up testing
- e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
- int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
- return t;
- }
- /* Clear bits 0..N-1 of the significand of R. */
- static void
- clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
- {
- int i, w = n / HOST_BITS_PER_LONG;
- for (i = 0; i < w; ++i)
- r->sig[i] = 0;
- r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
- }
- /* Divide the significands of A and B, placing the result in R. Return
- true if the division was inexact. */
- static inline bool
- div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
- {
- REAL_VALUE_TYPE u;
- int i, bit = SIGNIFICAND_BITS - 1;
- unsigned long msb, inexact;
- u = *a;
- memset (r->sig, 0, sizeof (r->sig));
- msb = 0;
- goto start;
- do
- {
- msb = u.sig[SIGSZ-1] & SIG_MSB;
- lshift_significand_1 (&u, &u);
- start:
- if (msb || cmp_significands (&u, b) >= 0)
- {
- sub_significands (&u, &u, b, 0);
- set_significand_bit (r, bit);
- }
- }
- while (--bit >= 0);
- for (i = 0, inexact = 0; i < SIGSZ; i++)
- inexact |= u.sig[i];
- return inexact != 0;
- }
- /* Adjust the exponent and significand of R such that the most
- significant bit is set. We underflow to zero and overflow to
- infinity here, without denormals. (The intermediate representation
- exponent is large enough to handle target denormals normalized.) */
- static void
- normalize (REAL_VALUE_TYPE *r)
- {
- int shift = 0, exp;
- int i, j;
- if (r->decimal)
- return;
- /* Find the first word that is nonzero. */
- for (i = SIGSZ - 1; i >= 0; i--)
- if (r->sig[i] == 0)
- shift += HOST_BITS_PER_LONG;
- else
- break;
- /* Zero significand flushes to zero. */
- if (i < 0)
- {
- r->cl = rvc_zero;
- SET_REAL_EXP (r, 0);
- return;
- }
- /* Find the first bit that is nonzero. */
- for (j = 0; ; j++)
- if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
- break;
- shift += j;
- if (shift > 0)
- {
- exp = REAL_EXP (r) - shift;
- if (exp > MAX_EXP)
- get_inf (r, r->sign);
- else if (exp < -MAX_EXP)
- get_zero (r, r->sign);
- else
- {
- SET_REAL_EXP (r, exp);
- lshift_significand (r, r, shift);
- }
- }
- }
- /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
- result may be inexact due to a loss of precision. */
- static bool
- do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b, int subtract_p)
- {
- int dexp, sign, exp;
- REAL_VALUE_TYPE t;
- bool inexact = false;
- /* Determine if we need to add or subtract. */
- sign = a->sign;
- subtract_p = (sign ^ b->sign) ^ subtract_p;
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
- get_zero (r, sign & !subtract_p);
- return false;
- case CLASS2 (rvc_zero, rvc_normal):
- case CLASS2 (rvc_zero, rvc_inf):
- case CLASS2 (rvc_zero, rvc_nan):
- /* 0 + ANY = ANY. */
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- /* ANY + NaN = NaN. */
- case CLASS2 (rvc_normal, rvc_inf):
- /* R + Inf = Inf. */
- *r = *b;
- r->sign = sign ^ subtract_p;
- return false;
- case CLASS2 (rvc_normal, rvc_zero):
- case CLASS2 (rvc_inf, rvc_zero):
- case CLASS2 (rvc_nan, rvc_zero):
- /* ANY + 0 = ANY. */
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- /* NaN + ANY = NaN. */
- case CLASS2 (rvc_inf, rvc_normal):
- /* Inf + R = Inf. */
- *r = *a;
- return false;
- case CLASS2 (rvc_inf, rvc_inf):
- if (subtract_p)
- /* Inf - Inf = NaN. */
- get_canonical_qnan (r, 0);
- else
- /* Inf + Inf = Inf. */
- *r = *a;
- return false;
- case CLASS2 (rvc_normal, rvc_normal):
- break;
- default:
- gcc_unreachable ();
- }
- /* Swap the arguments such that A has the larger exponent. */
- dexp = REAL_EXP (a) - REAL_EXP (b);
- if (dexp < 0)
- {
- const REAL_VALUE_TYPE *t;
- t = a, a = b, b = t;
- dexp = -dexp;
- sign ^= subtract_p;
- }
- exp = REAL_EXP (a);
- /* If the exponents are not identical, we need to shift the
- significand of B down. */
- if (dexp > 0)
- {
- /* If the exponents are too far apart, the significands
- do not overlap, which makes the subtraction a noop. */
- if (dexp >= SIGNIFICAND_BITS)
- {
- *r = *a;
- r->sign = sign;
- return true;
- }
- inexact |= sticky_rshift_significand (&t, b, dexp);
- b = &t;
- }
- if (subtract_p)
- {
- if (sub_significands (r, a, b, inexact))
- {
- /* We got a borrow out of the subtraction. That means that
- A and B had the same exponent, and B had the larger
- significand. We need to swap the sign and negate the
- significand. */
- sign ^= 1;
- neg_significand (r, r);
- }
- }
- else
- {
- if (add_significands (r, a, b))
- {
- /* We got carry out of the addition. This means we need to
- shift the significand back down one bit and increase the
- exponent. */
- inexact |= sticky_rshift_significand (r, r, 1);
- r->sig[SIGSZ-1] |= SIG_MSB;
- if (++exp > MAX_EXP)
- {
- get_inf (r, sign);
- return true;
- }
- }
- }
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp);
- /* Zero out the remaining fields. */
- r->signalling = 0;
- r->canonical = 0;
- r->decimal = 0;
- /* Re-normalize the result. */
- normalize (r);
- /* Special case: if the subtraction results in zero, the result
- is positive. */
- if (r->cl == rvc_zero)
- r->sign = 0;
- else
- r->sig[0] |= inexact;
- return inexact;
- }
- /* Calculate R = A * B. Return true if the result may be inexact. */
- static bool
- do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
- {
- REAL_VALUE_TYPE u, t, *rr;
- unsigned int i, j, k;
- int sign = a->sign ^ b->sign;
- bool inexact = false;
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- case CLASS2 (rvc_zero, rvc_normal):
- case CLASS2 (rvc_normal, rvc_zero):
- /* +-0 * ANY = 0 with appropriate sign. */
- get_zero (r, sign);
- return false;
- case CLASS2 (rvc_zero, rvc_nan):
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- /* ANY * NaN = NaN. */
- *r = *b;
- r->sign = sign;
- return false;
- case CLASS2 (rvc_nan, rvc_zero):
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- /* NaN * ANY = NaN. */
- *r = *a;
- r->sign = sign;
- return false;
- case CLASS2 (rvc_zero, rvc_inf):
- case CLASS2 (rvc_inf, rvc_zero):
- /* 0 * Inf = NaN */
- get_canonical_qnan (r, sign);
- return false;
- case CLASS2 (rvc_inf, rvc_inf):
- case CLASS2 (rvc_normal, rvc_inf):
- case CLASS2 (rvc_inf, rvc_normal):
- /* Inf * Inf = Inf, R * Inf = Inf */
- get_inf (r, sign);
- return false;
- case CLASS2 (rvc_normal, rvc_normal):
- break;
- default:
- gcc_unreachable ();
- }
- if (r == a || r == b)
- rr = &t;
- else
- rr = r;
- get_zero (rr, 0);
- /* Collect all the partial products. Since we don't have sure access
- to a widening multiply, we split each long into two half-words.
- Consider the long-hand form of a four half-word multiplication:
- A B C D
- * E F G H
- --------------
- DE DF DG DH
- CE CF CG CH
- BE BF BG BH
- AE AF AG AH
- We construct partial products of the widened half-word products
- that are known to not overlap, e.g. DF+DH. Each such partial
- product is given its proper exponent, which allows us to sum them
- and obtain the finished product. */
- for (i = 0; i < SIGSZ * 2; ++i)
- {
- unsigned long ai = a->sig[i / 2];
- if (i & 1)
- ai >>= HOST_BITS_PER_LONG / 2;
- else
- ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
- if (ai == 0)
- continue;
- for (j = 0; j < 2; ++j)
- {
- int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
- + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
- if (exp > MAX_EXP)
- {
- get_inf (r, sign);
- return true;
- }
- if (exp < -MAX_EXP)
- {
- /* Would underflow to zero, which we shouldn't bother adding. */
- inexact = true;
- continue;
- }
- memset (&u, 0, sizeof (u));
- u.cl = rvc_normal;
- SET_REAL_EXP (&u, exp);
- for (k = j; k < SIGSZ * 2; k += 2)
- {
- unsigned long bi = b->sig[k / 2];
- if (k & 1)
- bi >>= HOST_BITS_PER_LONG / 2;
- else
- bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
- u.sig[k / 2] = ai * bi;
- }
- normalize (&u);
- inexact |= do_add (rr, rr, &u, 0);
- }
- }
- rr->sign = sign;
- if (rr != r)
- *r = t;
- return inexact;
- }
- /* Calculate R = A / B. Return true if the result may be inexact. */
- static bool
- do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
- {
- int exp, sign = a->sign ^ b->sign;
- REAL_VALUE_TYPE t, *rr;
- bool inexact;
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- /* 0 / 0 = NaN. */
- case CLASS2 (rvc_inf, rvc_inf):
- /* Inf / Inf = NaN. */
- get_canonical_qnan (r, sign);
- return false;
- case CLASS2 (rvc_zero, rvc_normal):
- case CLASS2 (rvc_zero, rvc_inf):
- /* 0 / ANY = 0. */
- case CLASS2 (rvc_normal, rvc_inf):
- /* R / Inf = 0. */
- get_zero (r, sign);
- return false;
- case CLASS2 (rvc_normal, rvc_zero):
- /* R / 0 = Inf. */
- case CLASS2 (rvc_inf, rvc_zero):
- /* Inf / 0 = Inf. */
- get_inf (r, sign);
- return false;
- case CLASS2 (rvc_zero, rvc_nan):
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- /* ANY / NaN = NaN. */
- *r = *b;
- r->sign = sign;
- return false;
- case CLASS2 (rvc_nan, rvc_zero):
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- /* NaN / ANY = NaN. */
- *r = *a;
- r->sign = sign;
- return false;
- case CLASS2 (rvc_inf, rvc_normal):
- /* Inf / R = Inf. */
- get_inf (r, sign);
- return false;
- case CLASS2 (rvc_normal, rvc_normal):
- break;
- default:
- gcc_unreachable ();
- }
- if (r == a || r == b)
- rr = &t;
- else
- rr = r;
- /* Make sure all fields in the result are initialized. */
- get_zero (rr, 0);
- rr->cl = rvc_normal;
- rr->sign = sign;
- exp = REAL_EXP (a) - REAL_EXP (b) + 1;
- if (exp > MAX_EXP)
- {
- get_inf (r, sign);
- return true;
- }
- if (exp < -MAX_EXP)
- {
- get_zero (r, sign);
- return true;
- }
- SET_REAL_EXP (rr, exp);
- inexact = div_significands (rr, a, b);
- /* Re-normalize the result. */
- normalize (rr);
- rr->sig[0] |= inexact;
- if (rr != r)
- *r = t;
- return inexact;
- }
- /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
- one of the two operands is a NaN. */
- static int
- do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
- int nan_result)
- {
- int ret;
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- /* Sign of zero doesn't matter for compares. */
- return 0;
- case CLASS2 (rvc_normal, rvc_zero):
- /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
- if (a->decimal)
- return decimal_do_compare (a, b, nan_result);
- /* Fall through. */
- case CLASS2 (rvc_inf, rvc_zero):
- case CLASS2 (rvc_inf, rvc_normal):
- return (a->sign ? -1 : 1);
- case CLASS2 (rvc_inf, rvc_inf):
- return -a->sign - -b->sign;
- case CLASS2 (rvc_zero, rvc_normal):
- /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
- if (b->decimal)
- return decimal_do_compare (a, b, nan_result);
- /* Fall through. */
- case CLASS2 (rvc_zero, rvc_inf):
- case CLASS2 (rvc_normal, rvc_inf):
- return (b->sign ? 1 : -1);
- case CLASS2 (rvc_zero, rvc_nan):
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- case CLASS2 (rvc_nan, rvc_zero):
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- return nan_result;
- case CLASS2 (rvc_normal, rvc_normal):
- break;
- default:
- gcc_unreachable ();
- }
- if (a->sign != b->sign)
- return -a->sign - -b->sign;
- if (a->decimal || b->decimal)
- return decimal_do_compare (a, b, nan_result);
- if (REAL_EXP (a) > REAL_EXP (b))
- ret = 1;
- else if (REAL_EXP (a) < REAL_EXP (b))
- ret = -1;
- else
- ret = cmp_significands (a, b);
- return (a->sign ? -ret : ret);
- }
- /* Return A truncated to an integral value toward zero. */
- static void
- do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
- {
- *r = *a;
- switch (r->cl)
- {
- case rvc_zero:
- case rvc_inf:
- case rvc_nan:
- break;
- case rvc_normal:
- if (r->decimal)
- {
- decimal_do_fix_trunc (r, a);
- return;
- }
- if (REAL_EXP (r) <= 0)
- get_zero (r, r->sign);
- else if (REAL_EXP (r) < SIGNIFICAND_BITS)
- clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
- break;
- default:
- gcc_unreachable ();
- }
- }
- /* Perform the binary or unary operation described by CODE.
- For a unary operation, leave OP1 NULL. This function returns
- true if the result may be inexact due to loss of precision. */
- bool
- real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
- const REAL_VALUE_TYPE *op1)
- {
- enum tree_code code = (enum tree_code) icode;
- if (op0->decimal || (op1 && op1->decimal))
- return decimal_real_arithmetic (r, code, op0, op1);
- switch (code)
- {
- case PLUS_EXPR:
- /* Clear any padding areas in *r if it isn't equal to one of the
- operands so that we can later do bitwise comparisons later on. */
- if (r != op0 && r != op1)
- memset (r, '\0', sizeof (*r));
- return do_add (r, op0, op1, 0);
- case MINUS_EXPR:
- if (r != op0 && r != op1)
- memset (r, '\0', sizeof (*r));
- return do_add (r, op0, op1, 1);
- case MULT_EXPR:
- if (r != op0 && r != op1)
- memset (r, '\0', sizeof (*r));
- return do_multiply (r, op0, op1);
- case RDIV_EXPR:
- if (r != op0 && r != op1)
- memset (r, '\0', sizeof (*r));
- return do_divide (r, op0, op1);
- case MIN_EXPR:
- if (op1->cl == rvc_nan)
- *r = *op1;
- else if (do_compare (op0, op1, -1) < 0)
- *r = *op0;
- else
- *r = *op1;
- break;
- case MAX_EXPR:
- if (op1->cl == rvc_nan)
- *r = *op1;
- else if (do_compare (op0, op1, 1) < 0)
- *r = *op1;
- else
- *r = *op0;
- break;
- case NEGATE_EXPR:
- *r = *op0;
- r->sign ^= 1;
- break;
- case ABS_EXPR:
- *r = *op0;
- r->sign = 0;
- break;
- case FIX_TRUNC_EXPR:
- do_fix_trunc (r, op0);
- break;
- default:
- gcc_unreachable ();
- }
- return false;
- }
- REAL_VALUE_TYPE
- real_value_negate (const REAL_VALUE_TYPE *op0)
- {
- REAL_VALUE_TYPE r;
- real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
- return r;
- }
- REAL_VALUE_TYPE
- real_value_abs (const REAL_VALUE_TYPE *op0)
- {
- REAL_VALUE_TYPE r;
- real_arithmetic (&r, ABS_EXPR, op0, NULL);
- return r;
- }
- bool
- real_compare (int icode, const REAL_VALUE_TYPE *op0,
- const REAL_VALUE_TYPE *op1)
- {
- enum tree_code code = (enum tree_code) icode;
- switch (code)
- {
- case LT_EXPR:
- return do_compare (op0, op1, 1) < 0;
- case LE_EXPR:
- return do_compare (op0, op1, 1) <= 0;
- case GT_EXPR:
- return do_compare (op0, op1, -1) > 0;
- case GE_EXPR:
- return do_compare (op0, op1, -1) >= 0;
- case EQ_EXPR:
- return do_compare (op0, op1, -1) == 0;
- case NE_EXPR:
- return do_compare (op0, op1, -1) != 0;
- case UNORDERED_EXPR:
- return op0->cl == rvc_nan || op1->cl == rvc_nan;
- case ORDERED_EXPR:
- return op0->cl != rvc_nan && op1->cl != rvc_nan;
- case UNLT_EXPR:
- return do_compare (op0, op1, -1) < 0;
- case UNLE_EXPR:
- return do_compare (op0, op1, -1) <= 0;
- case UNGT_EXPR:
- return do_compare (op0, op1, 1) > 0;
- case UNGE_EXPR:
- return do_compare (op0, op1, 1) >= 0;
- case UNEQ_EXPR:
- return do_compare (op0, op1, 0) == 0;
- case LTGT_EXPR:
- return do_compare (op0, op1, 0) != 0;
- default:
- gcc_unreachable ();
- }
- }
- /* Return floor log2(R). */
- int
- real_exponent (const REAL_VALUE_TYPE *r)
- {
- switch (r->cl)
- {
- case rvc_zero:
- return 0;
- case rvc_inf:
- case rvc_nan:
- return (unsigned int)-1 >> 1;
- case rvc_normal:
- return REAL_EXP (r);
- default:
- gcc_unreachable ();
- }
- }
- /* R = OP0 * 2**EXP. */
- void
- real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
- {
- *r = *op0;
- switch (r->cl)
- {
- case rvc_zero:
- case rvc_inf:
- case rvc_nan:
- break;
- case rvc_normal:
- exp += REAL_EXP (op0);
- if (exp > MAX_EXP)
- get_inf (r, r->sign);
- else if (exp < -MAX_EXP)
- get_zero (r, r->sign);
- else
- SET_REAL_EXP (r, exp);
- break;
- default:
- gcc_unreachable ();
- }
- }
- /* Determine whether a floating-point value X is infinite. */
- bool
- real_isinf (const REAL_VALUE_TYPE *r)
- {
- return (r->cl == rvc_inf);
- }
- /* Determine whether a floating-point value X is a NaN. */
- bool
- real_isnan (const REAL_VALUE_TYPE *r)
- {
- return (r->cl == rvc_nan);
- }
- /* Determine whether a floating-point value X is finite. */
- bool
- real_isfinite (const REAL_VALUE_TYPE *r)
- {
- return (r->cl != rvc_nan) && (r->cl != rvc_inf);
- }
- /* Determine whether a floating-point value X is negative. */
- bool
- real_isneg (const REAL_VALUE_TYPE *r)
- {
- return r->sign;
- }
- /* Determine whether a floating-point value X is minus zero. */
- bool
- real_isnegzero (const REAL_VALUE_TYPE *r)
- {
- return r->sign && r->cl == rvc_zero;
- }
- /* Compare two floating-point objects for bitwise identity. */
- bool
- real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
- {
- int i;
- if (a->cl != b->cl)
- return false;
- if (a->sign != b->sign)
- return false;
- switch (a->cl)
- {
- case rvc_zero:
- case rvc_inf:
- return true;
- case rvc_normal:
- if (a->decimal != b->decimal)
- return false;
- if (REAL_EXP (a) != REAL_EXP (b))
- return false;
- break;
- case rvc_nan:
- if (a->signalling != b->signalling)
- return false;
- /* The significand is ignored for canonical NaNs. */
- if (a->canonical || b->canonical)
- return a->canonical == b->canonical;
- break;
- default:
- gcc_unreachable ();
- }
- for (i = 0; i < SIGSZ; ++i)
- if (a->sig[i] != b->sig[i])
- return false;
- return true;
- }
- /* Try to change R into its exact multiplicative inverse in machine
- mode MODE. Return true if successful. */
- bool
- exact_real_inverse (machine_mode mode, REAL_VALUE_TYPE *r)
- {
- const REAL_VALUE_TYPE *one = real_digit (1);
- REAL_VALUE_TYPE u;
- int i;
- if (r->cl != rvc_normal)
- return false;
- /* Check for a power of two: all significand bits zero except the MSB. */
- for (i = 0; i < SIGSZ-1; ++i)
- if (r->sig[i] != 0)
- return false;
- if (r->sig[SIGSZ-1] != SIG_MSB)
- return false;
- /* Find the inverse and truncate to the required mode. */
- do_divide (&u, one, r);
- real_convert (&u, mode, &u);
- /* The rounding may have overflowed. */
- if (u.cl != rvc_normal)
- return false;
- for (i = 0; i < SIGSZ-1; ++i)
- if (u.sig[i] != 0)
- return false;
- if (u.sig[SIGSZ-1] != SIG_MSB)
- return false;
- *r = u;
- return true;
- }
- /* Return true if arithmetic on values in IMODE that were promoted
- from values in TMODE is equivalent to direct arithmetic on values
- in TMODE. */
- bool
- real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
- {
- const struct real_format *tfmt, *ifmt;
- tfmt = REAL_MODE_FORMAT (tmode);
- ifmt = REAL_MODE_FORMAT (imode);
- /* These conditions are conservative rather than trying to catch the
- exact boundary conditions; the main case to allow is IEEE float
- and double. */
- return (ifmt->b == tfmt->b
- && ifmt->p > 2 * tfmt->p
- && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
- && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
- && ifmt->emax > 2 * tfmt->emax + 2
- && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
- && ifmt->round_towards_zero == tfmt->round_towards_zero
- && (ifmt->has_sign_dependent_rounding
- == tfmt->has_sign_dependent_rounding)
- && ifmt->has_nans >= tfmt->has_nans
- && ifmt->has_inf >= tfmt->has_inf
- && ifmt->has_signed_zero >= tfmt->has_signed_zero
- && !MODE_COMPOSITE_P (tmode)
- && !MODE_COMPOSITE_P (imode));
- }
- /* Render R as an integer. */
- HOST_WIDE_INT
- real_to_integer (const REAL_VALUE_TYPE *r)
- {
- unsigned HOST_WIDE_INT i;
- switch (r->cl)
- {
- case rvc_zero:
- underflow:
- return 0;
- case rvc_inf:
- case rvc_nan:
- overflow:
- i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
- if (!r->sign)
- i--;
- return i;
- case rvc_normal:
- if (r->decimal)
- return decimal_real_to_integer (r);
- if (REAL_EXP (r) <= 0)
- goto underflow;
- /* Only force overflow for unsigned overflow. Signed overflow is
- undefined, so it doesn't matter what we return, and some callers
- expect to be able to use this routine for both signed and
- unsigned conversions. */
- if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
- goto overflow;
- if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
- i = r->sig[SIGSZ-1];
- else
- {
- gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
- i = r->sig[SIGSZ-1];
- i = i << (HOST_BITS_PER_LONG - 1) << 1;
- i |= r->sig[SIGSZ-2];
- }
- i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
- if (r->sign)
- i = -i;
- return i;
- default:
- gcc_unreachable ();
- }
- }
- /* Likewise, but producing a wide-int of PRECISION. If the value cannot
- be represented in precision, *FAIL is set to TRUE. */
- wide_int
- real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
- {
- HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
- int exp;
- int words, w;
- wide_int result;
- switch (r->cl)
- {
- case rvc_zero:
- underflow:
- return wi::zero (precision);
- case rvc_inf:
- case rvc_nan:
- overflow:
- *fail = true;
- if (r->sign)
- return wi::set_bit_in_zero (precision - 1, precision);
- else
- return ~wi::set_bit_in_zero (precision - 1, precision);
- case rvc_normal:
- if (r->decimal)
- return decimal_real_to_integer (r, fail, precision);
- exp = REAL_EXP (r);
- if (exp <= 0)
- goto underflow;
- /* Only force overflow for unsigned overflow. Signed overflow is
- undefined, so it doesn't matter what we return, and some callers
- expect to be able to use this routine for both signed and
- unsigned conversions. */
- if (exp > precision)
- goto overflow;
- /* Put the significand into a wide_int that has precision W, which
- is the smallest HWI-multiple that has at least PRECISION bits.
- This ensures that the top bit of the significand is in the
- top bit of the wide_int. */
- words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
- w = words * HOST_BITS_PER_WIDE_INT;
- #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
- for (int i = 0; i < words; i++)
- {
- int j = SIGSZ - words + i;
- val[i] = (j < 0) ? 0 : r->sig[j];
- }
- #else
- gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
- for (int i = 0; i < words; i++)
- {
- int j = SIGSZ - (words * 2) + (i * 2);
- if (j < 0)
- val[i] = 0;
- else
- val[i] = r->sig[j];
- j += 1;
- if (j >= 0)
- val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
- }
- #endif
- /* Shift the value into place and truncate to the desired precision. */
- result = wide_int::from_array (val, words, w);
- result = wi::lrshift (result, w - exp);
- result = wide_int::from (result, precision, UNSIGNED);
- if (r->sign)
- return -result;
- else
- return result;
- default:
- gcc_unreachable ();
- }
- }
- /* A subroutine of real_to_decimal. Compute the quotient and remainder
- of NUM / DEN. Return the quotient and place the remainder in NUM.
- It is expected that NUM / DEN are close enough that the quotient is
- small. */
- static unsigned long
- rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
- {
- unsigned long q, msb;
- int expn = REAL_EXP (num), expd = REAL_EXP (den);
- if (expn < expd)
- return 0;
- q = msb = 0;
- goto start;
- do
- {
- msb = num->sig[SIGSZ-1] & SIG_MSB;
- q <<= 1;
- lshift_significand_1 (num, num);
- start:
- if (msb || cmp_significands (num, den) >= 0)
- {
- sub_significands (num, num, den, 0);
- q |= 1;
- }
- }
- while (--expn >= expd);
- SET_REAL_EXP (num, expd);
- normalize (num);
- return q;
- }
- /* Render R as a decimal floating point constant. Emit DIGITS significant
- digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
- maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
- zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
- to a string that, when parsed back in mode MODE, yields the same value. */
- #define M_LOG10_2 0.30102999566398119521
- void
- real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
- size_t buf_size, size_t digits,
- int crop_trailing_zeros, machine_mode mode)
- {
- const struct real_format *fmt = NULL;
- const REAL_VALUE_TYPE *one, *ten;
- REAL_VALUE_TYPE r, pten, u, v;
- int dec_exp, cmp_one, digit;
- size_t max_digits;
- char *p, *first, *last;
- bool sign;
- bool round_up;
- if (mode != VOIDmode)
- {
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- }
- r = *r_orig;
- switch (r.cl)
- {
- case rvc_zero:
- strcpy (str, (r.sign ? "-0.0" : "0.0"));
- return;
- case rvc_normal:
- break;
- case rvc_inf:
- strcpy (str, (r.sign ? "-Inf" : "+Inf"));
- return;
- case rvc_nan:
- /* ??? Print the significand as well, if not canonical? */
- sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
- (r_orig->signalling ? 'S' : 'Q'));
- return;
- default:
- gcc_unreachable ();
- }
- if (r.decimal)
- {
- decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
- return;
- }
- /* Bound the number of digits printed by the size of the representation. */
- max_digits = SIGNIFICAND_BITS * M_LOG10_2;
- if (digits == 0 || digits > max_digits)
- digits = max_digits;
- /* Estimate the decimal exponent, and compute the length of the string it
- will print as. Be conservative and add one to account for possible
- overflow or rounding error. */
- dec_exp = REAL_EXP (&r) * M_LOG10_2;
- for (max_digits = 1; dec_exp ; max_digits++)
- dec_exp /= 10;
- /* Bound the number of digits printed by the size of the output buffer. */
- max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
- gcc_assert (max_digits <= buf_size);
- if (digits > max_digits)
- digits = max_digits;
- one = real_digit (1);
- ten = ten_to_ptwo (0);
- sign = r.sign;
- r.sign = 0;
- dec_exp = 0;
- pten = *one;
- cmp_one = do_compare (&r, one, 0);
- if (cmp_one > 0)
- {
- int m;
- /* Number is greater than one. Convert significand to an integer
- and strip trailing decimal zeros. */
- u = r;
- SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
- /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
- m = floor_log2 (max_digits);
- /* Iterate over the bits of the possible powers of 10 that might
- be present in U and eliminate them. That is, if we find that
- 10**2**M divides U evenly, keep the division and increase
- DEC_EXP by 2**M. */
- do
- {
- REAL_VALUE_TYPE t;
- do_divide (&t, &u, ten_to_ptwo (m));
- do_fix_trunc (&v, &t);
- if (cmp_significands (&v, &t) == 0)
- {
- u = t;
- dec_exp += 1 << m;
- }
- }
- while (--m >= 0);
- /* Revert the scaling to integer that we performed earlier. */
- SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
- - (SIGNIFICAND_BITS - 1));
- r = u;
- /* Find power of 10. Do this by dividing out 10**2**M when
- this is larger than the current remainder. Fill PTEN with
- the power of 10 that we compute. */
- if (REAL_EXP (&r) > 0)
- {
- m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
- do
- {
- const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
- if (do_compare (&u, ptentwo, 0) >= 0)
- {
- do_divide (&u, &u, ptentwo);
- do_multiply (&pten, &pten, ptentwo);
- dec_exp += 1 << m;
- }
- }
- while (--m >= 0);
- }
- else
- /* We managed to divide off enough tens in the above reduction
- loop that we've now got a negative exponent. Fall into the
- less-than-one code to compute the proper value for PTEN. */
- cmp_one = -1;
- }
- if (cmp_one < 0)
- {
- int m;
- /* Number is less than one. Pad significand with leading
- decimal zeros. */
- v = r;
- while (1)
- {
- /* Stop if we'd shift bits off the bottom. */
- if (v.sig[0] & 7)
- break;
- do_multiply (&u, &v, ten);
- /* Stop if we're now >= 1. */
- if (REAL_EXP (&u) > 0)
- break;
- v = u;
- dec_exp -= 1;
- }
- r = v;
- /* Find power of 10. Do this by multiplying in P=10**2**M when
- the current remainder is smaller than 1/P. Fill PTEN with the
- power of 10 that we compute. */
- m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
- do
- {
- const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
- const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
- if (do_compare (&v, ptenmtwo, 0) <= 0)
- {
- do_multiply (&v, &v, ptentwo);
- do_multiply (&pten, &pten, ptentwo);
- dec_exp -= 1 << m;
- }
- }
- while (--m >= 0);
- /* Invert the positive power of 10 that we've collected so far. */
- do_divide (&pten, one, &pten);
- }
- p = str;
- if (sign)
- *p++ = '-';
- first = p++;
- /* At this point, PTEN should contain the nearest power of 10 smaller
- than R, such that this division produces the first digit.
- Using a divide-step primitive that returns the complete integral
- remainder avoids the rounding error that would be produced if
- we were to use do_divide here and then simply multiply by 10 for
- each subsequent digit. */
- digit = rtd_divmod (&r, &pten);
- /* Be prepared for error in that division via underflow ... */
- if (digit == 0 && cmp_significand_0 (&r))
- {
- /* Multiply by 10 and try again. */
- do_multiply (&r, &r, ten);
- digit = rtd_divmod (&r, &pten);
- dec_exp -= 1;
- gcc_assert (digit != 0);
- }
- /* ... or overflow. */
- if (digit == 10)
- {
- *p++ = '1';
- if (--digits > 0)
- *p++ = '0';
- dec_exp += 1;
- }
- else
- {
- gcc_assert (digit <= 10);
- *p++ = digit + '0';
- }
- /* Generate subsequent digits. */
- while (--digits > 0)
- {
- do_multiply (&r, &r, ten);
- digit = rtd_divmod (&r, &pten);
- *p++ = digit + '0';
- }
- last = p;
- /* Generate one more digit with which to do rounding. */
- do_multiply (&r, &r, ten);
- digit = rtd_divmod (&r, &pten);
- /* Round the result. */
- if (fmt && fmt->round_towards_zero)
- {
- /* If the format uses round towards zero when parsing the string
- back in, we need to always round away from zero here. */
- if (cmp_significand_0 (&r))
- digit++;
- round_up = digit > 0;
- }
- else
- {
- if (digit == 5)
- {
- /* Round to nearest. If R is nonzero there are additional
- nonzero digits to be extracted. */
- if (cmp_significand_0 (&r))
- digit++;
- /* Round to even. */
- else if ((p[-1] - '0') & 1)
- digit++;
- }
- round_up = digit > 5;
- }
- if (round_up)
- {
- while (p > first)
- {
- digit = *--p;
- if (digit == '9')
- *p = '0';
- else
- {
- *p = digit + 1;
- break;
- }
- }
- /* Carry out of the first digit. This means we had all 9's and
- now have all 0's. "Prepend" a 1 by overwriting the first 0. */
- if (p == first)
- {
- first[1] = '1';
- dec_exp++;
- }
- }
- /* Insert the decimal point. */
- first[0] = first[1];
- first[1] = '.';
- /* If requested, drop trailing zeros. Never crop past "1.0". */
- if (crop_trailing_zeros)
- while (last > first + 3 && last[-1] == '0')
- last--;
- /* Append the exponent. */
- sprintf (last, "e%+d", dec_exp);
- #ifdef ENABLE_CHECKING
- /* Verify that we can read the original value back in. */
- if (mode != VOIDmode)
- {
- real_from_string (&r, str);
- real_convert (&r, mode, &r);
- gcc_assert (real_identical (&r, r_orig));
- }
- #endif
- }
- /* Likewise, except always uses round-to-nearest. */
- void
- real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
- size_t digits, int crop_trailing_zeros)
- {
- real_to_decimal_for_mode (str, r_orig, buf_size,
- digits, crop_trailing_zeros, VOIDmode);
- }
- /* Render R as a hexadecimal floating point constant. Emit DIGITS
- significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
- choose the maximum for the representation. If CROP_TRAILING_ZEROS,
- strip trailing zeros. */
- void
- real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
- size_t digits, int crop_trailing_zeros)
- {
- int i, j, exp = REAL_EXP (r);
- char *p, *first;
- char exp_buf[16];
- size_t max_digits;
- switch (r->cl)
- {
- case rvc_zero:
- exp = 0;
- break;
- case rvc_normal:
- break;
- case rvc_inf:
- strcpy (str, (r->sign ? "-Inf" : "+Inf"));
- return;
- case rvc_nan:
- /* ??? Print the significand as well, if not canonical? */
- sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
- (r->signalling ? 'S' : 'Q'));
- return;
- default:
- gcc_unreachable ();
- }
- if (r->decimal)
- {
- /* Hexadecimal format for decimal floats is not interesting. */
- strcpy (str, "N/A");
- return;
- }
- if (digits == 0)
- digits = SIGNIFICAND_BITS / 4;
- /* Bound the number of digits printed by the size of the output buffer. */
- sprintf (exp_buf, "p%+d", exp);
- max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
- gcc_assert (max_digits <= buf_size);
- if (digits > max_digits)
- digits = max_digits;
- p = str;
- if (r->sign)
- *p++ = '-';
- *p++ = '0';
- *p++ = 'x';
- *p++ = '0';
- *p++ = '.';
- first = p;
- for (i = SIGSZ - 1; i >= 0; --i)
- for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
- {
- *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
- if (--digits == 0)
- goto out;
- }
- out:
- if (crop_trailing_zeros)
- while (p > first + 1 && p[-1] == '0')
- p--;
- sprintf (p, "p%+d", exp);
- }
- /* Initialize R from a decimal or hexadecimal string. The string is
- assumed to have been syntax checked already. Return -1 if the
- value underflows, +1 if overflows, and 0 otherwise. */
- int
- real_from_string (REAL_VALUE_TYPE *r, const char *str)
- {
- int exp = 0;
- bool sign = false;
- get_zero (r, 0);
- if (*str == '-')
- {
- sign = true;
- str++;
- }
- else if (*str == '+')
- str++;
- if (!strncmp (str, "QNaN", 4))
- {
- get_canonical_qnan (r, sign);
- return 0;
- }
- else if (!strncmp (str, "SNaN", 4))
- {
- get_canonical_snan (r, sign);
- return 0;
- }
- else if (!strncmp (str, "Inf", 3))
- {
- get_inf (r, sign);
- return 0;
- }
- if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
- {
- /* Hexadecimal floating point. */
- int pos = SIGNIFICAND_BITS - 4, d;
- str += 2;
- while (*str == '0')
- str++;
- while (1)
- {
- d = hex_value (*str);
- if (d == _hex_bad)
- break;
- if (pos >= 0)
- {
- r->sig[pos / HOST_BITS_PER_LONG]
- |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
- pos -= 4;
- }
- else if (d)
- /* Ensure correct rounding by setting last bit if there is
- a subsequent nonzero digit. */
- r->sig[0] |= 1;
- exp += 4;
- str++;
- }
- if (*str == '.')
- {
- str++;
- if (pos == SIGNIFICAND_BITS - 4)
- {
- while (*str == '0')
- str++, exp -= 4;
- }
- while (1)
- {
- d = hex_value (*str);
- if (d == _hex_bad)
- break;
- if (pos >= 0)
- {
- r->sig[pos / HOST_BITS_PER_LONG]
- |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
- pos -= 4;
- }
- else if (d)
- /* Ensure correct rounding by setting last bit if there is
- a subsequent nonzero digit. */
- r->sig[0] |= 1;
- str++;
- }
- }
- /* If the mantissa is zero, ignore the exponent. */
- if (!cmp_significand_0 (r))
- goto is_a_zero;
- if (*str == 'p' || *str == 'P')
- {
- bool exp_neg = false;
- str++;
- if (*str == '-')
- {
- exp_neg = true;
- str++;
- }
- else if (*str == '+')
- str++;
- d = 0;
- while (ISDIGIT (*str))
- {
- d *= 10;
- d += *str - '0';
- if (d > MAX_EXP)
- {
- /* Overflowed the exponent. */
- if (exp_neg)
- goto underflow;
- else
- goto overflow;
- }
- str++;
- }
- if (exp_neg)
- d = -d;
- exp += d;
- }
- r->cl = rvc_normal;
- SET_REAL_EXP (r, exp);
- normalize (r);
- }
- else
- {
- /* Decimal floating point. */
- const char *cstr = str;
- mpfr_t m;
- bool inexact;
- while (*cstr == '0')
- cstr++;
- if (*cstr == '.')
- {
- cstr++;
- while (*cstr == '0')
- cstr++;
- }
- /* If the mantissa is zero, ignore the exponent. */
- if (!ISDIGIT (*cstr))
- goto is_a_zero;
- /* Nonzero value, possibly overflowing or underflowing. */
- mpfr_init2 (m, SIGNIFICAND_BITS);
- inexact = mpfr_strtofr (m, str, NULL, 10, GMP_RNDZ);
- /* The result should never be a NaN, and because the rounding is
- toward zero should never be an infinity. */
- gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
- if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
- {
- mpfr_clear (m);
- goto underflow;
- }
- else if (mpfr_get_exp (m) > MAX_EXP - 4)
- {
- mpfr_clear (m);
- goto overflow;
- }
- else
- {
- real_from_mpfr (r, m, NULL_TREE, GMP_RNDZ);
- /* 1 to 3 bits may have been shifted off (with a sticky bit)
- because the hex digits used in real_from_mpfr did not
- start with a digit 8 to f, but the exponent bounds above
- should have avoided underflow or overflow. */
- gcc_assert (r->cl == rvc_normal);
- /* Set a sticky bit if mpfr_strtofr was inexact. */
- r->sig[0] |= inexact;
- mpfr_clear (m);
- }
- }
- r->sign = sign;
- return 0;
- is_a_zero:
- get_zero (r, sign);
- return 0;
- underflow:
- get_zero (r, sign);
- return -1;
- overflow:
- get_inf (r, sign);
- return 1;
- }
- /* Legacy. Similar, but return the result directly. */
- REAL_VALUE_TYPE
- real_from_string2 (const char *s, machine_mode mode)
- {
- REAL_VALUE_TYPE r;
- real_from_string (&r, s);
- if (mode != VOIDmode)
- real_convert (&r, mode, &r);
- return r;
- }
- /* Initialize R from string S and desired MODE. */
- void
- real_from_string3 (REAL_VALUE_TYPE *r, const char *s, machine_mode mode)
- {
- if (DECIMAL_FLOAT_MODE_P (mode))
- decimal_real_from_string (r, s);
- else
- real_from_string (r, s);
- if (mode != VOIDmode)
- real_convert (r, mode, r);
- }
- /* Initialize R from the wide_int VAL_IN. The MODE is not VOIDmode,*/
- void
- real_from_integer (REAL_VALUE_TYPE *r, machine_mode mode,
- const wide_int_ref &val_in, signop sgn)
- {
- if (val_in == 0)
- get_zero (r, 0);
- else
- {
- unsigned int len = val_in.get_precision ();
- int i, j, e = 0;
- int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
- const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
- * HOST_BITS_PER_WIDE_INT);
- memset (r, 0, sizeof (*r));
- r->cl = rvc_normal;
- r->sign = wi::neg_p (val_in, sgn);
- /* We have to ensure we can negate the largest negative number. */
- wide_int val = wide_int::from (val_in, maxbitlen, sgn);
- if (r->sign)
- val = -val;
- /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
- won't work with precisions that are not a multiple of
- HOST_BITS_PER_WIDE_INT. */
- len += HOST_BITS_PER_WIDE_INT - 1;
- /* Ensure we can represent the largest negative number. */
- len += 1;
- len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
- /* Cap the size to the size allowed by real.h. */
- if (len > realmax)
- {
- HOST_WIDE_INT cnt_l_z;
- cnt_l_z = wi::clz (val);
- if (maxbitlen - cnt_l_z > realmax)
- {
- e = maxbitlen - cnt_l_z - realmax;
- /* This value is too large, we must shift it right to
- preserve all the bits we can, and then bump the
- exponent up by that amount. */
- val = wi::lrshift (val, e);
- }
- len = realmax;
- }
- /* Clear out top bits so elt will work with precisions that aren't
- a multiple of HOST_BITS_PER_WIDE_INT. */
- val = wide_int::from (val, len, sgn);
- len = len / HOST_BITS_PER_WIDE_INT;
- SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
- j = SIGSZ - 1;
- if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
- for (i = len - 1; i >= 0; i--)
- {
- r->sig[j--] = val.elt (i);
- if (j < 0)
- break;
- }
- else
- {
- gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
- for (i = len - 1; i >= 0; i--)
- {
- HOST_WIDE_INT e = val.elt (i);
- r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
- if (j < 0)
- break;
- r->sig[j--] = e;
- if (j < 0)
- break;
- }
- }
- normalize (r);
- }
- if (DECIMAL_FLOAT_MODE_P (mode))
- decimal_from_integer (r);
- else if (mode != VOIDmode)
- real_convert (r, mode, r);
- }
- /* Render R, an integral value, as a floating point constant with no
- specified exponent. */
- static void
- decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
- size_t buf_size)
- {
- int dec_exp, digit, digits;
- REAL_VALUE_TYPE r, pten;
- char *p;
- bool sign;
- r = *r_orig;
- if (r.cl == rvc_zero)
- {
- strcpy (str, "0.");
- return;
- }
- sign = r.sign;
- r.sign = 0;
- dec_exp = REAL_EXP (&r) * M_LOG10_2;
- digits = dec_exp + 1;
- gcc_assert ((digits + 2) < (int)buf_size);
- pten = *real_digit (1);
- times_pten (&pten, dec_exp);
- p = str;
- if (sign)
- *p++ = '-';
- digit = rtd_divmod (&r, &pten);
- gcc_assert (digit >= 0 && digit <= 9);
- *p++ = digit + '0';
- while (--digits > 0)
- {
- times_pten (&r, 1);
- digit = rtd_divmod (&r, &pten);
- *p++ = digit + '0';
- }
- *p++ = '.';
- *p++ = '\0';
- }
- /* Convert a real with an integral value to decimal float. */
- static void
- decimal_from_integer (REAL_VALUE_TYPE *r)
- {
- char str[256];
- decimal_integer_string (str, r, sizeof (str) - 1);
- decimal_real_from_string (r, str);
- }
- /* Returns 10**2**N. */
- static const REAL_VALUE_TYPE *
- ten_to_ptwo (int n)
- {
- static REAL_VALUE_TYPE tens[EXP_BITS];
- gcc_assert (n >= 0);
- gcc_assert (n < EXP_BITS);
- if (tens[n].cl == rvc_zero)
- {
- if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
- {
- HOST_WIDE_INT t = 10;
- int i;
- for (i = 0; i < n; ++i)
- t *= t;
- real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
- }
- else
- {
- const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
- do_multiply (&tens[n], t, t);
- }
- }
- return &tens[n];
- }
- /* Returns 10**(-2**N). */
- static const REAL_VALUE_TYPE *
- ten_to_mptwo (int n)
- {
- static REAL_VALUE_TYPE tens[EXP_BITS];
- gcc_assert (n >= 0);
- gcc_assert (n < EXP_BITS);
- if (tens[n].cl == rvc_zero)
- do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
- return &tens[n];
- }
- /* Returns N. */
- static const REAL_VALUE_TYPE *
- real_digit (int n)
- {
- static REAL_VALUE_TYPE num[10];
- gcc_assert (n >= 0);
- gcc_assert (n <= 9);
- if (n > 0 && num[n].cl == rvc_zero)
- real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
- return &num[n];
- }
- /* Multiply R by 10**EXP. */
- static void
- times_pten (REAL_VALUE_TYPE *r, int exp)
- {
- REAL_VALUE_TYPE pten, *rr;
- bool negative = (exp < 0);
- int i;
- if (negative)
- {
- exp = -exp;
- pten = *real_digit (1);
- rr = &pten;
- }
- else
- rr = r;
- for (i = 0; exp > 0; ++i, exp >>= 1)
- if (exp & 1)
- do_multiply (rr, rr, ten_to_ptwo (i));
- if (negative)
- do_divide (r, r, &pten);
- }
- /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
- const REAL_VALUE_TYPE *
- dconst_e_ptr (void)
- {
- static REAL_VALUE_TYPE value;
- /* Initialize mathematical constants for constant folding builtins.
- These constants need to be given to at least 160 bits precision. */
- if (value.cl == rvc_zero)
- {
- mpfr_t m;
- mpfr_init2 (m, SIGNIFICAND_BITS);
- mpfr_set_ui (m, 1, GMP_RNDN);
- mpfr_exp (m, m, GMP_RNDN);
- real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
- mpfr_clear (m);
- }
- return &value;
- }
- /* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */
- const REAL_VALUE_TYPE *
- dconst_third_ptr (void)
- {
- static REAL_VALUE_TYPE value;
- /* Initialize mathematical constants for constant folding builtins.
- These constants need to be given to at least 160 bits precision. */
- if (value.cl == rvc_zero)
- {
- real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (3));
- }
- return &value;
- }
- /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
- const REAL_VALUE_TYPE *
- dconst_sqrt2_ptr (void)
- {
- static REAL_VALUE_TYPE value;
- /* Initialize mathematical constants for constant folding builtins.
- These constants need to be given to at least 160 bits precision. */
- if (value.cl == rvc_zero)
- {
- mpfr_t m;
- mpfr_init2 (m, SIGNIFICAND_BITS);
- mpfr_sqrt_ui (m, 2, GMP_RNDN);
- real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
- mpfr_clear (m);
- }
- return &value;
- }
- /* Fills R with +Inf. */
- void
- real_inf (REAL_VALUE_TYPE *r)
- {
- get_inf (r, 0);
- }
- /* Fills R with a NaN whose significand is described by STR. If QUIET,
- we force a QNaN, else we force an SNaN. The string, if not empty,
- is parsed as a number and placed in the significand. Return true
- if the string was successfully parsed. */
- bool
- real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
- machine_mode mode)
- {
- const struct real_format *fmt;
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- if (*str == 0)
- {
- if (quiet)
- get_canonical_qnan (r, 0);
- else
- get_canonical_snan (r, 0);
- }
- else
- {
- int base = 10, d;
- memset (r, 0, sizeof (*r));
- r->cl = rvc_nan;
- /* Parse akin to strtol into the significand of R. */
- while (ISSPACE (*str))
- str++;
- if (*str == '-')
- str++;
- else if (*str == '+')
- str++;
- if (*str == '0')
- {
- str++;
- if (*str == 'x' || *str == 'X')
- {
- base = 16;
- str++;
- }
- else
- base = 8;
- }
- while ((d = hex_value (*str)) < base)
- {
- REAL_VALUE_TYPE u;
- switch (base)
- {
- case 8:
- lshift_significand (r, r, 3);
- break;
- case 16:
- lshift_significand (r, r, 4);
- break;
- case 10:
- lshift_significand_1 (&u, r);
- lshift_significand (r, r, 3);
- add_significands (r, r, &u);
- break;
- default:
- gcc_unreachable ();
- }
- get_zero (&u, 0);
- u.sig[0] = d;
- add_significands (r, r, &u);
- str++;
- }
- /* Must have consumed the entire string for success. */
- if (*str != 0)
- return false;
- /* Shift the significand into place such that the bits
- are in the most significant bits for the format. */
- lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
- /* Our MSB is always unset for NaNs. */
- r->sig[SIGSZ-1] &= ~SIG_MSB;
- /* Force quiet or signalling NaN. */
- r->signalling = !quiet;
- }
- return true;
- }
- /* Fills R with the largest finite value representable in mode MODE.
- If SIGN is nonzero, R is set to the most negative finite value. */
- void
- real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
- {
- const struct real_format *fmt;
- int np2;
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- memset (r, 0, sizeof (*r));
- if (fmt->b == 10)
- decimal_real_maxval (r, sign, mode);
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, fmt->emax);
- np2 = SIGNIFICAND_BITS - fmt->p;
- memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
- clear_significand_below (r, np2);
- if (fmt->pnan < fmt->p)
- /* This is an IBM extended double format made up of two IEEE
- doubles. The value of the long double is the sum of the
- values of the two parts. The most significant part is
- required to be the value of the long double rounded to the
- nearest double. Rounding means we need a slightly smaller
- value for LDBL_MAX. */
- clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
- }
- }
- /* Fills R with 2**N. */
- void
- real_2expN (REAL_VALUE_TYPE *r, int n, machine_mode fmode)
- {
- memset (r, 0, sizeof (*r));
- n++;
- if (n > MAX_EXP)
- r->cl = rvc_inf;
- else if (n < -MAX_EXP)
- ;
- else
- {
- r->cl = rvc_normal;
- SET_REAL_EXP (r, n);
- r->sig[SIGSZ-1] = SIG_MSB;
- }
- if (DECIMAL_FLOAT_MODE_P (fmode))
- decimal_real_convert (r, fmode, r);
- }
- static void
- round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
- {
- int p2, np2, i, w;
- int emin2m1, emax2;
- bool round_up = false;
- if (r->decimal)
- {
- if (fmt->b == 10)
- {
- decimal_round_for_format (fmt, r);
- return;
- }
- /* FIXME. We can come here via fp_easy_constant
- (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
- investigated whether this convert needs to be here, or
- something else is missing. */
- decimal_real_convert (r, DFmode, r);
- }
- p2 = fmt->p;
- emin2m1 = fmt->emin - 1;
- emax2 = fmt->emax;
- np2 = SIGNIFICAND_BITS - p2;
- switch (r->cl)
- {
- underflow:
- get_zero (r, r->sign);
- case rvc_zero:
- if (!fmt->has_signed_zero)
- r->sign = 0;
- return;
- overflow:
- get_inf (r, r->sign);
- case rvc_inf:
- return;
- case rvc_nan:
- clear_significand_below (r, np2);
- return;
- case rvc_normal:
- break;
- default:
- gcc_unreachable ();
- }
- /* Check the range of the exponent. If we're out of range,
- either underflow or overflow. */
- if (REAL_EXP (r) > emax2)
- goto overflow;
- else if (REAL_EXP (r) <= emin2m1)
- {
- int diff;
- if (!fmt->has_denorm)
- {
- /* Don't underflow completely until we've had a chance to round. */
- if (REAL_EXP (r) < emin2m1)
- goto underflow;
- }
- else
- {
- diff = emin2m1 - REAL_EXP (r) + 1;
- if (diff > p2)
- goto underflow;
- /* De-normalize the significand. */
- r->sig[0] |= sticky_rshift_significand (r, r, diff);
- SET_REAL_EXP (r, REAL_EXP (r) + diff);
- }
- }
- if (!fmt->round_towards_zero)
- {
- /* There are P2 true significand bits, followed by one guard bit,
- followed by one sticky bit, followed by stuff. Fold nonzero
- stuff into the sticky bit. */
- unsigned long sticky;
- bool guard, lsb;
- sticky = 0;
- for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
- sticky |= r->sig[i];
- sticky |= r->sig[w]
- & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
- guard = test_significand_bit (r, np2 - 1);
- lsb = test_significand_bit (r, np2);
- /* Round to even. */
- round_up = guard && (sticky || lsb);
- }
- if (round_up)
- {
- REAL_VALUE_TYPE u;
- get_zero (&u, 0);
- set_significand_bit (&u, np2);
- if (add_significands (r, r, &u))
- {
- /* Overflow. Means the significand had been all ones, and
- is now all zeros. Need to increase the exponent, and
- possibly re-normalize it. */
- SET_REAL_EXP (r, REAL_EXP (r) + 1);
- if (REAL_EXP (r) > emax2)
- goto overflow;
- r->sig[SIGSZ-1] = SIG_MSB;
- }
- }
- /* Catch underflow that we deferred until after rounding. */
- if (REAL_EXP (r) <= emin2m1)
- goto underflow;
- /* Clear out trailing garbage. */
- clear_significand_below (r, np2);
- }
- /* Extend or truncate to a new mode. */
- void
- real_convert (REAL_VALUE_TYPE *r, machine_mode mode,
- const REAL_VALUE_TYPE *a)
- {
- const struct real_format *fmt;
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- *r = *a;
- if (a->decimal || fmt->b == 10)
- decimal_real_convert (r, mode, a);
- round_for_format (fmt, r);
- /* round_for_format de-normalizes denormals. Undo just that part. */
- if (r->cl == rvc_normal)
- normalize (r);
- }
- /* Legacy. Likewise, except return the struct directly. */
- REAL_VALUE_TYPE
- real_value_truncate (machine_mode mode, REAL_VALUE_TYPE a)
- {
- REAL_VALUE_TYPE r;
- real_convert (&r, mode, &a);
- return r;
- }
- /* Return true if truncating to MODE is exact. */
- bool
- exact_real_truncate (machine_mode mode, const REAL_VALUE_TYPE *a)
- {
- const struct real_format *fmt;
- REAL_VALUE_TYPE t;
- int emin2m1;
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- /* Don't allow conversion to denormals. */
- emin2m1 = fmt->emin - 1;
- if (REAL_EXP (a) <= emin2m1)
- return false;
- /* After conversion to the new mode, the value must be identical. */
- real_convert (&t, mode, a);
- return real_identical (&t, a);
- }
- /* Write R to the given target format. Place the words of the result
- in target word order in BUF. There are always 32 bits in each
- long, no matter the size of the host long.
- Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
- long
- real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
- const struct real_format *fmt)
- {
- REAL_VALUE_TYPE r;
- long buf1;
- r = *r_orig;
- round_for_format (fmt, &r);
- if (!buf)
- buf = &buf1;
- (*fmt->encode) (fmt, buf, &r);
- return *buf;
- }
- /* Similar, but look up the format from MODE. */
- long
- real_to_target (long *buf, const REAL_VALUE_TYPE *r, machine_mode mode)
- {
- const struct real_format *fmt;
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- return real_to_target_fmt (buf, r, fmt);
- }
- /* Read R from the given target format. Read the words of the result
- in target word order in BUF. There are always 32 bits in each
- long, no matter the size of the host long. */
- void
- real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
- const struct real_format *fmt)
- {
- (*fmt->decode) (fmt, r, buf);
- }
- /* Similar, but look up the format from MODE. */
- void
- real_from_target (REAL_VALUE_TYPE *r, const long *buf, machine_mode mode)
- {
- const struct real_format *fmt;
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- (*fmt->decode) (fmt, r, buf);
- }
- /* Return the number of bits of the largest binary value that the
- significand of MODE will hold. */
- /* ??? Legacy. Should get access to real_format directly. */
- int
- significand_size (machine_mode mode)
- {
- const struct real_format *fmt;
- fmt = REAL_MODE_FORMAT (mode);
- if (fmt == NULL)
- return 0;
- if (fmt->b == 10)
- {
- /* Return the size in bits of the largest binary value that can be
- held by the decimal coefficient for this mode. This is one more
- than the number of bits required to hold the largest coefficient
- of this mode. */
- double log2_10 = 3.3219281;
- return fmt->p * log2_10;
- }
- return fmt->p;
- }
- /* Return a hash value for the given real value. */
- /* ??? The "unsigned int" return value is intended to be hashval_t,
- but I didn't want to pull hashtab.h into real.h. */
- unsigned int
- real_hash (const REAL_VALUE_TYPE *r)
- {
- unsigned int h;
- size_t i;
- h = r->cl | (r->sign << 2);
- switch (r->cl)
- {
- case rvc_zero:
- case rvc_inf:
- return h;
- case rvc_normal:
- h |= REAL_EXP (r) << 3;
- break;
- case rvc_nan:
- if (r->signalling)
- h ^= (unsigned int)-1;
- if (r->canonical)
- return h;
- break;
- default:
- gcc_unreachable ();
- }
- if (sizeof (unsigned long) > sizeof (unsigned int))
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long s = r->sig[i];
- h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
- }
- else
- for (i = 0; i < SIGSZ; ++i)
- h ^= r->sig[i];
- return h;
- }
- /* IEEE single-precision format. */
- static void encode_ieee_single (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_ieee_single (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void
- encode_ieee_single (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long image, sig, exp;
- unsigned long sign = r->sign;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
- image = sign << 31;
- sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
- switch (r->cl)
- {
- case rvc_zero:
- break;
- case rvc_inf:
- if (fmt->has_inf)
- image |= 255 << 23;
- else
- image |= 0x7fffffff;
- break;
- case rvc_nan:
- if (fmt->has_nans)
- {
- if (r->canonical)
- sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
- if (r->signalling == fmt->qnan_msb_set)
- sig &= ~(1 << 22);
- else
- sig |= 1 << 22;
- if (sig == 0)
- sig = 1 << 21;
- image |= 255 << 23;
- image |= sig;
- }
- else
- image |= 0x7fffffff;
- break;
- case rvc_normal:
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one. */
- if (denormal)
- exp = 0;
- else
- exp = REAL_EXP (r) + 127 - 1;
- image |= exp << 23;
- image |= sig;
- break;
- default:
- gcc_unreachable ();
- }
- buf[0] = image;
- }
- static void
- decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- unsigned long image = buf[0] & 0xffffffff;
- bool sign = (image >> 31) & 1;
- int exp = (image >> 23) & 0xff;
- memset (r, 0, sizeof (*r));
- image <<= HOST_BITS_PER_LONG - 24;
- image &= ~SIG_MSB;
- if (exp == 0)
- {
- if (image && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, -126);
- r->sig[SIGSZ-1] = image << 1;
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
- {
- if (image)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
- ^ fmt->qnan_msb_set);
- r->sig[SIGSZ-1] = image;
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 127 + 1);
- r->sig[SIGSZ-1] = image | SIG_MSB;
- }
- }
- const struct real_format ieee_single_format =
- {
- encode_ieee_single,
- decode_ieee_single,
- 2,
- 24,
- 24,
- -125,
- 128,
- 31,
- 31,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ieee_single"
- };
- const struct real_format mips_single_format =
- {
- encode_ieee_single,
- decode_ieee_single,
- 2,
- 24,
- 24,
- -125,
- 128,
- 31,
- 31,
- false,
- true,
- true,
- true,
- true,
- true,
- false,
- true,
- "mips_single"
- };
- const struct real_format motorola_single_format =
- {
- encode_ieee_single,
- decode_ieee_single,
- 2,
- 24,
- 24,
- -125,
- 128,
- 31,
- 31,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- true,
- "motorola_single"
- };
- /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
- single precision with the following differences:
- - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
- are generated.
- - NaNs are not supported.
- - The range of non-zero numbers in binary is
- (001)[1.]000...000 to (255)[1.]111...111.
- - Denormals can be represented, but are treated as +0.0 when
- used as an operand and are never generated as a result.
- - -0.0 can be represented, but a zero result is always +0.0.
- - the only supported rounding mode is trunction (towards zero). */
- const struct real_format spu_single_format =
- {
- encode_ieee_single,
- decode_ieee_single,
- 2,
- 24,
- 24,
- -125,
- 129,
- 31,
- 31,
- true,
- false,
- false,
- false,
- true,
- true,
- false,
- false,
- "spu_single"
- };
- /* IEEE double-precision format. */
- static void encode_ieee_double (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_ieee_double (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void
- encode_ieee_double (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
- image_hi = r->sign << 31;
- image_lo = 0;
- if (HOST_BITS_PER_LONG == 64)
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
- sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
- }
- else
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = r->sig[SIGSZ-2];
- sig_lo = (sig_hi << 21) | (sig_lo >> 11);
- sig_hi = (sig_hi >> 11) & 0xfffff;
- }
- switch (r->cl)
- {
- case rvc_zero:
- break;
- case rvc_inf:
- if (fmt->has_inf)
- image_hi |= 2047 << 20;
- else
- {
- image_hi |= 0x7fffffff;
- image_lo = 0xffffffff;
- }
- break;
- case rvc_nan:
- if (fmt->has_nans)
- {
- if (r->canonical)
- {
- if (fmt->canonical_nan_lsbs_set)
- {
- sig_hi = (1 << 19) - 1;
- sig_lo = 0xffffffff;
- }
- else
- {
- sig_hi = 0;
- sig_lo = 0;
- }
- }
- if (r->signalling == fmt->qnan_msb_set)
- sig_hi &= ~(1 << 19);
- else
- sig_hi |= 1 << 19;
- if (sig_hi == 0 && sig_lo == 0)
- sig_hi = 1 << 18;
- image_hi |= 2047 << 20;
- image_hi |= sig_hi;
- image_lo = sig_lo;
- }
- else
- {
- image_hi |= 0x7fffffff;
- image_lo = 0xffffffff;
- }
- break;
- case rvc_normal:
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one. */
- if (denormal)
- exp = 0;
- else
- exp = REAL_EXP (r) + 1023 - 1;
- image_hi |= exp << 20;
- image_hi |= sig_hi;
- image_lo = sig_lo;
- break;
- default:
- gcc_unreachable ();
- }
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = image_hi, buf[1] = image_lo;
- else
- buf[0] = image_lo, buf[1] = image_hi;
- }
- static void
- decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- unsigned long image_hi, image_lo;
- bool sign;
- int exp;
- if (FLOAT_WORDS_BIG_ENDIAN)
- image_hi = buf[0], image_lo = buf[1];
- else
- image_lo = buf[0], image_hi = buf[1];
- image_lo &= 0xffffffff;
- image_hi &= 0xffffffff;
- sign = (image_hi >> 31) & 1;
- exp = (image_hi >> 20) & 0x7ff;
- memset (r, 0, sizeof (*r));
- image_hi <<= 32 - 21;
- image_hi |= image_lo >> 21;
- image_hi &= 0x7fffffff;
- image_lo <<= 32 - 21;
- if (exp == 0)
- {
- if ((image_hi || image_lo) && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, -1022);
- if (HOST_BITS_PER_LONG == 32)
- {
- image_hi = (image_hi << 1) | (image_lo >> 31);
- image_lo <<= 1;
- r->sig[SIGSZ-1] = image_hi;
- r->sig[SIGSZ-2] = image_lo;
- }
- else
- {
- image_hi = (image_hi << 31 << 2) | (image_lo << 1);
- r->sig[SIGSZ-1] = image_hi;
- }
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
- {
- if (image_hi || image_lo)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = image_hi;
- r->sig[SIGSZ-2] = image_lo;
- }
- else
- r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 1023 + 1);
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = image_hi | SIG_MSB;
- r->sig[SIGSZ-2] = image_lo;
- }
- else
- r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
- }
- }
- const struct real_format ieee_double_format =
- {
- encode_ieee_double,
- decode_ieee_double,
- 2,
- 53,
- 53,
- -1021,
- 1024,
- 63,
- 63,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ieee_double"
- };
- const struct real_format mips_double_format =
- {
- encode_ieee_double,
- decode_ieee_double,
- 2,
- 53,
- 53,
- -1021,
- 1024,
- 63,
- 63,
- false,
- true,
- true,
- true,
- true,
- true,
- false,
- true,
- "mips_double"
- };
- const struct real_format motorola_double_format =
- {
- encode_ieee_double,
- decode_ieee_double,
- 2,
- 53,
- 53,
- -1021,
- 1024,
- 63,
- 63,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- true,
- "motorola_double"
- };
- /* IEEE extended real format. This comes in three flavors: Intel's as
- a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
- 12- and 16-byte images may be big- or little endian; Motorola's is
- always big endian. */
- /* Helper subroutine which converts from the internal format to the
- 12-byte little-endian Intel format. Functions below adjust this
- for the other possible formats. */
- static void
- encode_ieee_extended (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long image_hi, sig_hi, sig_lo;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
- image_hi = r->sign << 15;
- sig_hi = sig_lo = 0;
- switch (r->cl)
- {
- case rvc_zero:
- break;
- case rvc_inf:
- if (fmt->has_inf)
- {
- image_hi |= 32767;
- /* Intel requires the explicit integer bit to be set, otherwise
- it considers the value a "pseudo-infinity". Motorola docs
- say it doesn't care. */
- sig_hi = 0x80000000;
- }
- else
- {
- image_hi |= 32767;
- sig_lo = sig_hi = 0xffffffff;
- }
- break;
- case rvc_nan:
- if (fmt->has_nans)
- {
- image_hi |= 32767;
- if (r->canonical)
- {
- if (fmt->canonical_nan_lsbs_set)
- {
- sig_hi = (1 << 30) - 1;
- sig_lo = 0xffffffff;
- }
- }
- else if (HOST_BITS_PER_LONG == 32)
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = r->sig[SIGSZ-2];
- }
- else
- {
- sig_lo = r->sig[SIGSZ-1];
- sig_hi = sig_lo >> 31 >> 1;
- sig_lo &= 0xffffffff;
- }
- if (r->signalling == fmt->qnan_msb_set)
- sig_hi &= ~(1 << 30);
- else
- sig_hi |= 1 << 30;
- if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
- sig_hi = 1 << 29;
- /* Intel requires the explicit integer bit to be set, otherwise
- it considers the value a "pseudo-nan". Motorola docs say it
- doesn't care. */
- sig_hi |= 0x80000000;
- }
- else
- {
- image_hi |= 32767;
- sig_lo = sig_hi = 0xffffffff;
- }
- break;
- case rvc_normal:
- {
- int exp = REAL_EXP (r);
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one.
- Except for Motorola, which consider exp=0 and explicit
- integer bit set to continue to be normalized. In theory
- this discrepancy has been taken care of by the difference
- in fmt->emin in round_for_format. */
- if (denormal)
- exp = 0;
- else
- {
- exp += 16383 - 1;
- gcc_assert (exp >= 0);
- }
- image_hi |= exp;
- if (HOST_BITS_PER_LONG == 32)
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = r->sig[SIGSZ-2];
- }
- else
- {
- sig_lo = r->sig[SIGSZ-1];
- sig_hi = sig_lo >> 31 >> 1;
- sig_lo &= 0xffffffff;
- }
- }
- break;
- default:
- gcc_unreachable ();
- }
- buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
- }
- /* Convert from the internal format to the 12-byte Motorola format
- for an IEEE extended real. */
- static void
- encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- long intermed[3];
- encode_ieee_extended (fmt, intermed, r);
- if (r->cl == rvc_inf)
- /* For infinity clear the explicit integer bit again, so that the
- format matches the canonical infinity generated by the FPU. */
- intermed[1] = 0;
- /* Motorola chips are assumed always to be big-endian. Also, the
- padding in a Motorola extended real goes between the exponent and
- the mantissa. At this point the mantissa is entirely within
- elements 0 and 1 of intermed, and the exponent entirely within
- element 2, so all we have to do is swap the order around, and
- shift element 2 left 16 bits. */
- buf[0] = intermed[2] << 16;
- buf[1] = intermed[1];
- buf[2] = intermed[0];
- }
- /* Convert from the internal format to the 12-byte Intel format for
- an IEEE extended real. */
- static void
- encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- /* All the padding in an Intel-format extended real goes at the high
- end, which in this case is after the mantissa, not the exponent.
- Therefore we must shift everything down 16 bits. */
- long intermed[3];
- encode_ieee_extended (fmt, intermed, r);
- buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
- buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
- buf[2] = (intermed[0] << 16);
- }
- else
- /* encode_ieee_extended produces what we want directly. */
- encode_ieee_extended (fmt, buf, r);
- }
- /* Convert from the internal format to the 16-byte Intel format for
- an IEEE extended real. */
- static void
- encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- /* All the padding in an Intel-format extended real goes at the high end. */
- encode_ieee_extended_intel_96 (fmt, buf, r);
- buf[3] = 0;
- }
- /* As above, we have a helper function which converts from 12-byte
- little-endian Intel format to internal format. Functions below
- adjust for the other possible formats. */
- static void
- decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- unsigned long image_hi, sig_hi, sig_lo;
- bool sign;
- int exp;
- sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
- sig_lo &= 0xffffffff;
- sig_hi &= 0xffffffff;
- image_hi &= 0xffffffff;
- sign = (image_hi >> 15) & 1;
- exp = image_hi & 0x7fff;
- memset (r, 0, sizeof (*r));
- if (exp == 0)
- {
- if ((sig_hi || sig_lo) && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- /* When the IEEE format contains a hidden bit, we know that
- it's zero at this point, and so shift up the significand
- and decrease the exponent to match. In this case, Motorola
- defines the explicit integer bit to be valid, so we don't
- know whether the msb is set or not. */
- SET_REAL_EXP (r, fmt->emin);
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = sig_hi;
- r->sig[SIGSZ-2] = sig_lo;
- }
- else
- r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
- {
- /* See above re "pseudo-infinities" and "pseudo-nans".
- Short summary is that the MSB will likely always be
- set, and that we don't care about it. */
- sig_hi &= 0x7fffffff;
- if (sig_hi || sig_lo)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = sig_hi;
- r->sig[SIGSZ-2] = sig_lo;
- }
- else
- r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 16383 + 1);
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = sig_hi;
- r->sig[SIGSZ-2] = sig_lo;
- }
- else
- r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
- }
- }
- /* Convert from the internal format to the 12-byte Motorola format
- for an IEEE extended real. */
- static void
- decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- long intermed[3];
- /* Motorola chips are assumed always to be big-endian. Also, the
- padding in a Motorola extended real goes between the exponent and
- the mantissa; remove it. */
- intermed[0] = buf[2];
- intermed[1] = buf[1];
- intermed[2] = (unsigned long)buf[0] >> 16;
- decode_ieee_extended (fmt, r, intermed);
- }
- /* Convert from the internal format to the 12-byte Intel format for
- an IEEE extended real. */
- static void
- decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- /* All the padding in an Intel-format extended real goes at the high
- end, which in this case is after the mantissa, not the exponent.
- Therefore we must shift everything up 16 bits. */
- long intermed[3];
- intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
- intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
- intermed[2] = ((unsigned long)buf[0] >> 16);
- decode_ieee_extended (fmt, r, intermed);
- }
- else
- /* decode_ieee_extended produces what we want directly. */
- decode_ieee_extended (fmt, r, buf);
- }
- /* Convert from the internal format to the 16-byte Intel format for
- an IEEE extended real. */
- static void
- decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- /* All the padding in an Intel-format extended real goes at the high end. */
- decode_ieee_extended_intel_96 (fmt, r, buf);
- }
- const struct real_format ieee_extended_motorola_format =
- {
- encode_ieee_extended_motorola,
- decode_ieee_extended_motorola,
- 2,
- 64,
- 64,
- -16382,
- 16384,
- 95,
- 95,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- true,
- "ieee_extended_motorola"
- };
- const struct real_format ieee_extended_intel_96_format =
- {
- encode_ieee_extended_intel_96,
- decode_ieee_extended_intel_96,
- 2,
- 64,
- 64,
- -16381,
- 16384,
- 79,
- 79,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ieee_extended_intel_96"
- };
- const struct real_format ieee_extended_intel_128_format =
- {
- encode_ieee_extended_intel_128,
- decode_ieee_extended_intel_128,
- 2,
- 64,
- 64,
- -16381,
- 16384,
- 79,
- 79,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ieee_extended_intel_128"
- };
- /* The following caters to i386 systems that set the rounding precision
- to 53 bits instead of 64, e.g. FreeBSD. */
- const struct real_format ieee_extended_intel_96_round_53_format =
- {
- encode_ieee_extended_intel_96,
- decode_ieee_extended_intel_96,
- 2,
- 53,
- 53,
- -16381,
- 16384,
- 79,
- 79,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ieee_extended_intel_96_round_53"
- };
- /* IBM 128-bit extended precision format: a pair of IEEE double precision
- numbers whose sum is equal to the extended precision value. The number
- with greater magnitude is first. This format has the same magnitude
- range as an IEEE double precision value, but effectively 106 bits of
- significand precision. Infinity and NaN are represented by their IEEE
- double precision value stored in the first number, the second number is
- +0.0 or -0.0 for Infinity and don't-care for NaN. */
- static void encode_ibm_extended (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_ibm_extended (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void
- encode_ibm_extended (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- REAL_VALUE_TYPE u, normr, v;
- const struct real_format *base_fmt;
- base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
- /* Renormalize R before doing any arithmetic on it. */
- normr = *r;
- if (normr.cl == rvc_normal)
- normalize (&normr);
- /* u = IEEE double precision portion of significand. */
- u = normr;
- round_for_format (base_fmt, &u);
- encode_ieee_double (base_fmt, &buf[0], &u);
- if (u.cl == rvc_normal)
- {
- do_add (&v, &normr, &u, 1);
- /* Call round_for_format since we might need to denormalize. */
- round_for_format (base_fmt, &v);
- encode_ieee_double (base_fmt, &buf[2], &v);
- }
- else
- {
- /* Inf, NaN, 0 are all representable as doubles, so the
- least-significant part can be 0.0. */
- buf[2] = 0;
- buf[3] = 0;
- }
- }
- static void
- decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- REAL_VALUE_TYPE u, v;
- const struct real_format *base_fmt;
- base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
- decode_ieee_double (base_fmt, &u, &buf[0]);
- if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
- {
- decode_ieee_double (base_fmt, &v, &buf[2]);
- do_add (r, &u, &v, 0);
- }
- else
- *r = u;
- }
- const struct real_format ibm_extended_format =
- {
- encode_ibm_extended,
- decode_ibm_extended,
- 2,
- 53 + 53,
- 53,
- -1021 + 53,
- 1024,
- 127,
- -1,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ibm_extended"
- };
- const struct real_format mips_extended_format =
- {
- encode_ibm_extended,
- decode_ibm_extended,
- 2,
- 53 + 53,
- 53,
- -1021 + 53,
- 1024,
- 127,
- -1,
- false,
- true,
- true,
- true,
- true,
- true,
- false,
- true,
- "mips_extended"
- };
- /* IEEE quad precision format. */
- static void encode_ieee_quad (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_ieee_quad (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void
- encode_ieee_quad (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long image3, image2, image1, image0, exp;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
- REAL_VALUE_TYPE u;
- image3 = r->sign << 31;
- image2 = 0;
- image1 = 0;
- image0 = 0;
- rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
- switch (r->cl)
- {
- case rvc_zero:
- break;
- case rvc_inf:
- if (fmt->has_inf)
- image3 |= 32767 << 16;
- else
- {
- image3 |= 0x7fffffff;
- image2 = 0xffffffff;
- image1 = 0xffffffff;
- image0 = 0xffffffff;
- }
- break;
- case rvc_nan:
- if (fmt->has_nans)
- {
- image3 |= 32767 << 16;
- if (r->canonical)
- {
- if (fmt->canonical_nan_lsbs_set)
- {
- image3 |= 0x7fff;
- image2 = image1 = image0 = 0xffffffff;
- }
- }
- else if (HOST_BITS_PER_LONG == 32)
- {
- image0 = u.sig[0];
- image1 = u.sig[1];
- image2 = u.sig[2];
- image3 |= u.sig[3] & 0xffff;
- }
- else
- {
- image0 = u.sig[0];
- image1 = image0 >> 31 >> 1;
- image2 = u.sig[1];
- image3 |= (image2 >> 31 >> 1) & 0xffff;
- image0 &= 0xffffffff;
- image2 &= 0xffffffff;
- }
- if (r->signalling == fmt->qnan_msb_set)
- image3 &= ~0x8000;
- else
- image3 |= 0x8000;
- if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
- image3 |= 0x4000;
- }
- else
- {
- image3 |= 0x7fffffff;
- image2 = 0xffffffff;
- image1 = 0xffffffff;
- image0 = 0xffffffff;
- }
- break;
- case rvc_normal:
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one. */
- if (denormal)
- exp = 0;
- else
- exp = REAL_EXP (r) + 16383 - 1;
- image3 |= exp << 16;
- if (HOST_BITS_PER_LONG == 32)
- {
- image0 = u.sig[0];
- image1 = u.sig[1];
- image2 = u.sig[2];
- image3 |= u.sig[3] & 0xffff;
- }
- else
- {
- image0 = u.sig[0];
- image1 = image0 >> 31 >> 1;
- image2 = u.sig[1];
- image3 |= (image2 >> 31 >> 1) & 0xffff;
- image0 &= 0xffffffff;
- image2 &= 0xffffffff;
- }
- break;
- default:
- gcc_unreachable ();
- }
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- buf[0] = image3;
- buf[1] = image2;
- buf[2] = image1;
- buf[3] = image0;
- }
- else
- {
- buf[0] = image0;
- buf[1] = image1;
- buf[2] = image2;
- buf[3] = image3;
- }
- }
- static void
- decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- unsigned long image3, image2, image1, image0;
- bool sign;
- int exp;
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- image3 = buf[0];
- image2 = buf[1];
- image1 = buf[2];
- image0 = buf[3];
- }
- else
- {
- image0 = buf[0];
- image1 = buf[1];
- image2 = buf[2];
- image3 = buf[3];
- }
- image0 &= 0xffffffff;
- image1 &= 0xffffffff;
- image2 &= 0xffffffff;
- sign = (image3 >> 31) & 1;
- exp = (image3 >> 16) & 0x7fff;
- image3 &= 0xffff;
- memset (r, 0, sizeof (*r));
- if (exp == 0)
- {
- if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[0] = image0;
- r->sig[1] = image1;
- r->sig[2] = image2;
- r->sig[3] = image3;
- }
- else
- {
- r->sig[0] = (image1 << 31 << 1) | image0;
- r->sig[1] = (image3 << 31 << 1) | image2;
- }
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
- {
- if (image3 | image2 | image1 | image0)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[0] = image0;
- r->sig[1] = image1;
- r->sig[2] = image2;
- r->sig[3] = image3;
- }
- else
- {
- r->sig[0] = (image1 << 31 << 1) | image0;
- r->sig[1] = (image3 << 31 << 1) | image2;
- }
- lshift_significand (r, r, SIGNIFICAND_BITS - 113);
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 16383 + 1);
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[0] = image0;
- r->sig[1] = image1;
- r->sig[2] = image2;
- r->sig[3] = image3;
- }
- else
- {
- r->sig[0] = (image1 << 31 << 1) | image0;
- r->sig[1] = (image3 << 31 << 1) | image2;
- }
- lshift_significand (r, r, SIGNIFICAND_BITS - 113);
- r->sig[SIGSZ-1] |= SIG_MSB;
- }
- }
- const struct real_format ieee_quad_format =
- {
- encode_ieee_quad,
- decode_ieee_quad,
- 2,
- 113,
- 113,
- -16381,
- 16384,
- 127,
- 127,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ieee_quad"
- };
- const struct real_format mips_quad_format =
- {
- encode_ieee_quad,
- decode_ieee_quad,
- 2,
- 113,
- 113,
- -16381,
- 16384,
- 127,
- 127,
- false,
- true,
- true,
- true,
- true,
- true,
- false,
- true,
- "mips_quad"
- };
- /* Descriptions of VAX floating point formats can be found beginning at
- http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
- The thing to remember is that they're almost IEEE, except for word
- order, exponent bias, and the lack of infinities, nans, and denormals.
- We don't implement the H_floating format here, simply because neither
- the VAX or Alpha ports use it. */
- static void encode_vax_f (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_vax_f (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void encode_vax_d (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_vax_d (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void encode_vax_g (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_vax_g (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void
- encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long sign, exp, sig, image;
- sign = r->sign << 15;
- switch (r->cl)
- {
- case rvc_zero:
- image = 0;
- break;
- case rvc_inf:
- case rvc_nan:
- image = 0xffff7fff | sign;
- break;
- case rvc_normal:
- sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
- exp = REAL_EXP (r) + 128;
- image = (sig << 16) & 0xffff0000;
- image |= sign;
- image |= exp << 7;
- image |= sig >> 16;
- break;
- default:
- gcc_unreachable ();
- }
- buf[0] = image;
- }
- static void
- decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
- {
- unsigned long image = buf[0] & 0xffffffff;
- int exp = (image >> 7) & 0xff;
- memset (r, 0, sizeof (*r));
- if (exp != 0)
- {
- r->cl = rvc_normal;
- r->sign = (image >> 15) & 1;
- SET_REAL_EXP (r, exp - 128);
- image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
- r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
- }
- }
- static void
- encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long image0, image1, sign = r->sign << 15;
- switch (r->cl)
- {
- case rvc_zero:
- image0 = image1 = 0;
- break;
- case rvc_inf:
- case rvc_nan:
- image0 = 0xffff7fff | sign;
- image1 = 0xffffffff;
- break;
- case rvc_normal:
- /* Extract the significand into straight hi:lo. */
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = r->sig[SIGSZ-1];
- image1 = (image0 >> (64 - 56)) & 0xffffffff;
- image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
- }
- else
- {
- image0 = r->sig[SIGSZ-1];
- image1 = r->sig[SIGSZ-2];
- image1 = (image0 << 24) | (image1 >> 8);
- image0 = (image0 >> 8) & 0xffffff;
- }
- /* Rearrange the half-words of the significand to match the
- external format. */
- image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
- image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
- /* Add the sign and exponent. */
- image0 |= sign;
- image0 |= (REAL_EXP (r) + 128) << 7;
- break;
- default:
- gcc_unreachable ();
- }
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = image1, buf[1] = image0;
- else
- buf[0] = image0, buf[1] = image1;
- }
- static void
- decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
- {
- unsigned long image0, image1;
- int exp;
- if (FLOAT_WORDS_BIG_ENDIAN)
- image1 = buf[0], image0 = buf[1];
- else
- image0 = buf[0], image1 = buf[1];
- image0 &= 0xffffffff;
- image1 &= 0xffffffff;
- exp = (image0 >> 7) & 0xff;
- memset (r, 0, sizeof (*r));
- if (exp != 0)
- {
- r->cl = rvc_normal;
- r->sign = (image0 >> 15) & 1;
- SET_REAL_EXP (r, exp - 128);
- /* Rearrange the half-words of the external format into
- proper ascending order. */
- image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
- image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = (image0 << 31 << 1) | image1;
- image0 <<= 64 - 56;
- image0 |= SIG_MSB;
- r->sig[SIGSZ-1] = image0;
- }
- else
- {
- r->sig[SIGSZ-1] = image0;
- r->sig[SIGSZ-2] = image1;
- lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
- r->sig[SIGSZ-1] |= SIG_MSB;
- }
- }
- }
- static void
- encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long image0, image1, sign = r->sign << 15;
- switch (r->cl)
- {
- case rvc_zero:
- image0 = image1 = 0;
- break;
- case rvc_inf:
- case rvc_nan:
- image0 = 0xffff7fff | sign;
- image1 = 0xffffffff;
- break;
- case rvc_normal:
- /* Extract the significand into straight hi:lo. */
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = r->sig[SIGSZ-1];
- image1 = (image0 >> (64 - 53)) & 0xffffffff;
- image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
- }
- else
- {
- image0 = r->sig[SIGSZ-1];
- image1 = r->sig[SIGSZ-2];
- image1 = (image0 << 21) | (image1 >> 11);
- image0 = (image0 >> 11) & 0xfffff;
- }
- /* Rearrange the half-words of the significand to match the
- external format. */
- image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
- image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
- /* Add the sign and exponent. */
- image0 |= sign;
- image0 |= (REAL_EXP (r) + 1024) << 4;
- break;
- default:
- gcc_unreachable ();
- }
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = image1, buf[1] = image0;
- else
- buf[0] = image0, buf[1] = image1;
- }
- static void
- decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
- {
- unsigned long image0, image1;
- int exp;
- if (FLOAT_WORDS_BIG_ENDIAN)
- image1 = buf[0], image0 = buf[1];
- else
- image0 = buf[0], image1 = buf[1];
- image0 &= 0xffffffff;
- image1 &= 0xffffffff;
- exp = (image0 >> 4) & 0x7ff;
- memset (r, 0, sizeof (*r));
- if (exp != 0)
- {
- r->cl = rvc_normal;
- r->sign = (image0 >> 15) & 1;
- SET_REAL_EXP (r, exp - 1024);
- /* Rearrange the half-words of the external format into
- proper ascending order. */
- image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
- image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = (image0 << 31 << 1) | image1;
- image0 <<= 64 - 53;
- image0 |= SIG_MSB;
- r->sig[SIGSZ-1] = image0;
- }
- else
- {
- r->sig[SIGSZ-1] = image0;
- r->sig[SIGSZ-2] = image1;
- lshift_significand (r, r, 64 - 53);
- r->sig[SIGSZ-1] |= SIG_MSB;
- }
- }
- }
- const struct real_format vax_f_format =
- {
- encode_vax_f,
- decode_vax_f,
- 2,
- 24,
- 24,
- -127,
- 127,
- 15,
- 15,
- false,
- false,
- false,
- false,
- false,
- false,
- false,
- false,
- "vax_f"
- };
- const struct real_format vax_d_format =
- {
- encode_vax_d,
- decode_vax_d,
- 2,
- 56,
- 56,
- -127,
- 127,
- 15,
- 15,
- false,
- false,
- false,
- false,
- false,
- false,
- false,
- false,
- "vax_d"
- };
- const struct real_format vax_g_format =
- {
- encode_vax_g,
- decode_vax_g,
- 2,
- 53,
- 53,
- -1023,
- 1023,
- 15,
- 15,
- false,
- false,
- false,
- false,
- false,
- false,
- false,
- false,
- "vax_g"
- };
- /* Encode real R into a single precision DFP value in BUF. */
- static void
- encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf ATTRIBUTE_UNUSED,
- const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
- {
- encode_decimal32 (fmt, buf, r);
- }
- /* Decode a single precision DFP value in BUF into a real R. */
- static void
- decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
- const long *buf ATTRIBUTE_UNUSED)
- {
- decode_decimal32 (fmt, r, buf);
- }
- /* Encode real R into a double precision DFP value in BUF. */
- static void
- encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf ATTRIBUTE_UNUSED,
- const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
- {
- encode_decimal64 (fmt, buf, r);
- }
- /* Decode a double precision DFP value in BUF into a real R. */
- static void
- decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
- const long *buf ATTRIBUTE_UNUSED)
- {
- decode_decimal64 (fmt, r, buf);
- }
- /* Encode real R into a quad precision DFP value in BUF. */
- static void
- encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf ATTRIBUTE_UNUSED,
- const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
- {
- encode_decimal128 (fmt, buf, r);
- }
- /* Decode a quad precision DFP value in BUF into a real R. */
- static void
- decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
- const long *buf ATTRIBUTE_UNUSED)
- {
- decode_decimal128 (fmt, r, buf);
- }
- /* Single precision decimal floating point (IEEE 754). */
- const struct real_format decimal_single_format =
- {
- encode_decimal_single,
- decode_decimal_single,
- 10,
- 7,
- 7,
- -94,
- 97,
- 31,
- 31,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "decimal_single"
- };
- /* Double precision decimal floating point (IEEE 754). */
- const struct real_format decimal_double_format =
- {
- encode_decimal_double,
- decode_decimal_double,
- 10,
- 16,
- 16,
- -382,
- 385,
- 63,
- 63,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "decimal_double"
- };
- /* Quad precision decimal floating point (IEEE 754). */
- const struct real_format decimal_quad_format =
- {
- encode_decimal_quad,
- decode_decimal_quad,
- 10,
- 34,
- 34,
- -6142,
- 6145,
- 127,
- 127,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "decimal_quad"
- };
- /* Encode half-precision floats. This routine is used both for the IEEE
- ARM alternative encodings. */
- static void
- encode_ieee_half (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- unsigned long image, sig, exp;
- unsigned long sign = r->sign;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
- image = sign << 15;
- sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
- switch (r->cl)
- {
- case rvc_zero:
- break;
- case rvc_inf:
- if (fmt->has_inf)
- image |= 31 << 10;
- else
- image |= 0x7fff;
- break;
- case rvc_nan:
- if (fmt->has_nans)
- {
- if (r->canonical)
- sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
- if (r->signalling == fmt->qnan_msb_set)
- sig &= ~(1 << 9);
- else
- sig |= 1 << 9;
- if (sig == 0)
- sig = 1 << 8;
- image |= 31 << 10;
- image |= sig;
- }
- else
- image |= 0x3ff;
- break;
- case rvc_normal:
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one. */
- if (denormal)
- exp = 0;
- else
- exp = REAL_EXP (r) + 15 - 1;
- image |= exp << 10;
- image |= sig;
- break;
- default:
- gcc_unreachable ();
- }
- buf[0] = image;
- }
- /* Decode half-precision floats. This routine is used both for the IEEE
- ARM alternative encodings. */
- static void
- decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
- {
- unsigned long image = buf[0] & 0xffff;
- bool sign = (image >> 15) & 1;
- int exp = (image >> 10) & 0x1f;
- memset (r, 0, sizeof (*r));
- image <<= HOST_BITS_PER_LONG - 11;
- image &= ~SIG_MSB;
- if (exp == 0)
- {
- if (image && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, -14);
- r->sig[SIGSZ-1] = image << 1;
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
- {
- if (image)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
- ^ fmt->qnan_msb_set);
- r->sig[SIGSZ-1] = image;
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 15 + 1);
- r->sig[SIGSZ-1] = image | SIG_MSB;
- }
- }
- /* Half-precision format, as specified in IEEE 754R. */
- const struct real_format ieee_half_format =
- {
- encode_ieee_half,
- decode_ieee_half,
- 2,
- 11,
- 11,
- -13,
- 16,
- 15,
- 15,
- false,
- true,
- true,
- true,
- true,
- true,
- true,
- false,
- "ieee_half"
- };
- /* ARM's alternative half-precision format, similar to IEEE but with
- no reserved exponent value for NaNs and infinities; rather, it just
- extends the range of exponents by one. */
- const struct real_format arm_half_format =
- {
- encode_ieee_half,
- decode_ieee_half,
- 2,
- 11,
- 11,
- -13,
- 17,
- 15,
- 15,
- false,
- true,
- false,
- false,
- true,
- true,
- false,
- false,
- "arm_half"
- };
- /* A synthetic "format" for internal arithmetic. It's the size of the
- internal significand minus the two bits needed for proper rounding.
- The encode and decode routines exist only to satisfy our paranoia
- harness. */
- static void encode_internal (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
- static void decode_internal (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
- static void
- encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
- {
- memcpy (buf, r, sizeof (*r));
- }
- static void
- decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
- {
- memcpy (r, buf, sizeof (*r));
- }
- const struct real_format real_internal_format =
- {
- encode_internal,
- decode_internal,
- 2,
- SIGNIFICAND_BITS - 2,
- SIGNIFICAND_BITS - 2,
- -MAX_EXP,
- MAX_EXP,
- -1,
- -1,
- false,
- false,
- true,
- true,
- false,
- true,
- true,
- false,
- "real_internal"
- };
- /* Calculate X raised to the integer exponent N in mode MODE and store
- the result in R. Return true if the result may be inexact due to
- loss of precision. The algorithm is the classic "left-to-right binary
- method" described in section 4.6.3 of Donald Knuth's "Seminumerical
- Algorithms", "The Art of Computer Programming", Volume 2. */
- bool
- real_powi (REAL_VALUE_TYPE *r, machine_mode mode,
- const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
- {
- unsigned HOST_WIDE_INT bit;
- REAL_VALUE_TYPE t;
- bool inexact = false;
- bool init = false;
- bool neg;
- int i;
- if (n == 0)
- {
- *r = dconst1;
- return false;
- }
- else if (n < 0)
- {
- /* Don't worry about overflow, from now on n is unsigned. */
- neg = true;
- n = -n;
- }
- else
- neg = false;
- t = *x;
- bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
- for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
- {
- if (init)
- {
- inexact |= do_multiply (&t, &t, &t);
- if (n & bit)
- inexact |= do_multiply (&t, &t, x);
- }
- else if (n & bit)
- init = true;
- bit >>= 1;
- }
- if (neg)
- inexact |= do_divide (&t, &dconst1, &t);
- real_convert (r, mode, &t);
- return inexact;
- }
- /* Round X to the nearest integer not larger in absolute value, i.e.
- towards zero, placing the result in R in mode MODE. */
- void
- real_trunc (REAL_VALUE_TYPE *r, machine_mode mode,
- const REAL_VALUE_TYPE *x)
- {
- do_fix_trunc (r, x);
- if (mode != VOIDmode)
- real_convert (r, mode, r);
- }
- /* Round X to the largest integer not greater in value, i.e. round
- down, placing the result in R in mode MODE. */
- void
- real_floor (REAL_VALUE_TYPE *r, machine_mode mode,
- const REAL_VALUE_TYPE *x)
- {
- REAL_VALUE_TYPE t;
- do_fix_trunc (&t, x);
- if (! real_identical (&t, x) && x->sign)
- do_add (&t, &t, &dconstm1, 0);
- if (mode != VOIDmode)
- real_convert (r, mode, &t);
- else
- *r = t;
- }
- /* Round X to the smallest integer not less then argument, i.e. round
- up, placing the result in R in mode MODE. */
- void
- real_ceil (REAL_VALUE_TYPE *r, machine_mode mode,
- const REAL_VALUE_TYPE *x)
- {
- REAL_VALUE_TYPE t;
- do_fix_trunc (&t, x);
- if (! real_identical (&t, x) && ! x->sign)
- do_add (&t, &t, &dconst1, 0);
- if (mode != VOIDmode)
- real_convert (r, mode, &t);
- else
- *r = t;
- }
- /* Round X to the nearest integer, but round halfway cases away from
- zero. */
- void
- real_round (REAL_VALUE_TYPE *r, machine_mode mode,
- const REAL_VALUE_TYPE *x)
- {
- do_add (r, x, &dconsthalf, x->sign);
- do_fix_trunc (r, r);
- if (mode != VOIDmode)
- real_convert (r, mode, r);
- }
- /* Set the sign of R to the sign of X. */
- void
- real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
- {
- r->sign = x->sign;
- }
- /* Check whether the real constant value given is an integer. */
- bool
- real_isinteger (const REAL_VALUE_TYPE *c, machine_mode mode)
- {
- REAL_VALUE_TYPE cint;
- real_trunc (&cint, mode, c);
- return real_identical (c, &cint);
- }
- /* Write into BUF the maximum representable finite floating-point
- number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
- float string. LEN is the size of BUF, and the buffer must be large
- enough to contain the resulting string. */
- void
- get_max_float (const struct real_format *fmt, char *buf, size_t len)
- {
- int i, n;
- char *p;
- strcpy (buf, "0x0.");
- n = fmt->p;
- for (i = 0, p = buf + 4; i + 3 < n; i += 4)
- *p++ = 'f';
- if (i < n)
- *p++ = "08ce"[n - i];
- sprintf (p, "p%d", fmt->emax);
- if (fmt->pnan < fmt->p)
- {
- /* This is an IBM extended double format made up of two IEEE
- doubles. The value of the long double is the sum of the
- values of the two parts. The most significant part is
- required to be the value of the long double rounded to the
- nearest double. Rounding means we need a slightly smaller
- value for LDBL_MAX. */
- buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
- }
- gcc_assert (strlen (buf) < len);
- }
- /* True if mode M has a NaN representation and
- the treatment of NaN operands is important. */
- bool
- HONOR_NANS (machine_mode m)
- {
- return MODE_HAS_NANS (m) && !flag_finite_math_only;
- }
- bool
- HONOR_NANS (const_tree t)
- {
- return HONOR_NANS (element_mode (t));
- }
- bool
- HONOR_NANS (const_rtx x)
- {
- return HONOR_NANS (GET_MODE (x));
- }
- /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
- bool
- HONOR_SNANS (machine_mode m)
- {
- return flag_signaling_nans && HONOR_NANS (m);
- }
- bool
- HONOR_SNANS (const_tree t)
- {
- return HONOR_SNANS (element_mode (t));
- }
- bool
- HONOR_SNANS (const_rtx x)
- {
- return HONOR_SNANS (GET_MODE (x));
- }
- /* As for HONOR_NANS, but true if the mode can represent infinity and
- the treatment of infinite values is important. */
- bool
- HONOR_INFINITIES (machine_mode m)
- {
- return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
- }
- bool
- HONOR_INFINITIES (const_tree t)
- {
- return HONOR_INFINITIES (element_mode (t));
- }
- bool
- HONOR_INFINITIES (const_rtx x)
- {
- return HONOR_INFINITIES (GET_MODE (x));
- }
- /* Like HONOR_NANS, but true if the given mode distinguishes between
- positive and negative zero, and the sign of zero is important. */
- bool
- HONOR_SIGNED_ZEROS (machine_mode m)
- {
- return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
- }
- bool
- HONOR_SIGNED_ZEROS (const_tree t)
- {
- return HONOR_SIGNED_ZEROS (element_mode (t));
- }
- bool
- HONOR_SIGNED_ZEROS (const_rtx x)
- {
- return HONOR_SIGNED_ZEROS (GET_MODE (x));
- }
- /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
- and the rounding mode is important. */
- bool
- HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
- {
- return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
- }
- bool
- HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
- {
- return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
- }
- bool
- HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
- {
- return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));
- }
|